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ON THE EXISTENCE OF THE THIRD SOLUTION OF
THE NONLINEAR BIHARMONIC EQUATION WITH

DIRICHLET BOUNDARY CONDITION

TACKSUN JUNG* and Q-HEUNG CHOI**

Abstract. We are concerned with the multiplicity of solutions of
the nonlinear biharmonic equation with Dirichlet boundary con-
dition, ∆2u + c∆u = g(u), in Ω, where c ∈ R and ∆2 denotes
the biharmonic operator. We show that there exists at least three
solutions of the above problem under the suitable condition of g(u).

1. Introduction

Let Ω be a smooth bounded region in Rn with smooth boundary
∂Ω. Let λ1 < λ2 ≤ . . . ≤ λk ≤ . . . be the eigenvalues of −∆ with
Dirichlet boundary condition in Ω. In this paper we are concerned with
the multiplicity of solutions of the nonlinear biharmonic equation with
Dirichlet boundary condition

∆2u + c∆u = g(u) in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω,

where g is a differentiable function from R to R such that g(0) = 0,
c ∈ R and ∆2 denotes the biharmonic operator. Let

g′(∞) = lim
|u|→∞

g(u)
u

∈ R.

The problem (1.1) was studied by Choi and Jung in [5]. The authors
proved that (1.1) has at least two solutions by a variation of linking
theorem. The authors also proved in [7] that the problem

∆2u + c∆u = bu+ + s in Ω, (1.2)

Received Feburuary 9, 2007.
2000 Mathematics Subject Classification: Primary 34C15, 34C25, 35Q72.
Key words and phrases: Dirichlet condition, biharmonic equation, linking

theorem.



82 Tacksun Jung and Q-Heung Choi

u = 0, ∆u = 0 on ∂Ω
has at least two solutions by a variational reduction method when λ1 <
c < λ2, b < λ1(λ1 − c) or c < λ1, λk(λk − c) < b < λk+1(λk+1 − c). This
type problem arises in the study of travelling waves in a suspension
bridge ([8], [10]) or the study of the static deflection of an elastic plate
in a fluid. The following is the main result of this paper.

Theorem 1.1. Assume that λi < c < λi+1, λi+1(λi+1− c) < λk(λk−
c) < g′(∞) < λk+1(λk+1−c), λk+m(λk+m−c) < g′(0) < λk+m+1(λk+m+1

−c) and g′(t) ≤ γ < λk+m+1(λk+m+1 − c), where m ≥ 1, k > i + 1 and
γ ∈ R. Then problem (1.1) has at least three solutions.

Theorem 1.2. Assume that λi < c < λi+1, λi+1(λi+1− c) < λk(λk−
c) < g′(0) < λk+1(λk+1−c), λk+m(λk+m−c) < g′(∞) < λk+m+1(λk+m+1

−c) and g′(t) ≤ γ < λk+m+1(λk+m+1 − c), where m ≥ 1, k > i + 1 and
γ ∈ R. Then problem (1.1) has at least three solutions.

In section 2 we recall a Linking Scale Theorem which will play a
crucial role in our argument. In section 3 we define a Banach space H
spanned by eigenfunctions of ∆2+c∆ with Dirichlet boundary condition
which can be applied in the linking scale theorem. In section 4 we prove
Theorem 1.1 and Theorem 1.2.

2. Linking scale theorem

Definition 2.1. Let X be a Hilbert space, Y ⊂ X,
rho > 0 and e ∈ X\Y , e 6= 0. Set:

Bρ(Y ) = {x ∈ Y |‖x‖X ≤ ρ},
Sρ(Y ) = {x ∈ Y |‖x‖X = ρ},

∆ρ(e, Y ) = {σe + v|σ ≥ 0, v ∈ Y, ‖σe + v‖X ≤ ρ},
Σρ(e, Y ) = {σe + v|σ ≥ 0, v ∈ Y, ‖σe + v‖X = ρ} ∪ {v|v ∈ Y, ‖v‖X ≤ ρ}.

Now we recall a theorem of existence of three solutions which is link-
ing scale theorem.

Theorem 2.1. (Linking scale theorem) Let X be an Hilbert space,
which is topological direct sum of the four subspaces X0, X1, X2 and
X3. Let F ∈ C1(X, R). Moreover assume:
(a) dimXi < +∞ for i = 0, 1, 2;
(b) there exist ρ > 0, R > 0 and e ∈ X2, e 6= 0 such that;

ρ < R and sup
Sρ(X0⊕X1⊕X2)

F < inf
ΣR(e,X3)

F ;
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(c) there exist ρ′ > 0, R′ > 0 and e′ ∈ X1, e′ 6= 0 such that:

ρ′ < R′ and sup
Sρ′ (X0⊕X1)

F ≤ inf
ΣR′ (e′,X2⊕X3)

F ;

(d) R ≤ R′(⇒ ∆R(e,X3) ⊂ ΣR′(e′, X2 ⊕X3));
(e) −∞ < a = inf∆R′ (e,X2⊕X3) F ;

(f) (P.S.)c holds for any c ∈ [a, b] where b = supBρ(X0⊕X1⊕X2) F .
Then there exist three critical levels c1, c2 and c3 for the functional F
such that:

a ≤ c3 ≤ sup
Sρ′ (X0⊕X1)

F < inf
ΣR′ (e′,X2⊕X3)

F ≤ inf
∆R(e,X3)

F ≤ c2

≤ sup
Sρ(X0⊕X1⊕X2)

F < inf
ΣR(e.X3)

F ≤ c1 ≤ b.

3. Variational formulation

Let λk(k = 1, 2, . . .) denote the eigenvalues and φk(k = 1, 2, . . .) the
corresponding eigenfunctions, suitably normalized with respect to L2(Ω)
inner product, of the eigenvalue problem ∆u + λu = 0 in Ω, with the
Dirichlet boundary condition, where each eigenvalue λk is repeated as
often as its multiplicity. We recall that 0 < λ1 < λ2 ≤ λ3 ≤ . . . , λi →
+∞ and that φ1(x) > 0 for x ∈ Ω. The eigenvalue problem ∆2u +
c∆u = µu in Ω with the Dirichlet boundary condition u = 0, ∆u = 0
on ∂Ω, has infinitely many eigenvalues λk(λk − c), k = 1, 2, . . ., and
corresponding eigenfunctions φk(x). The set of functions {φk} is an
orthogonal base for W 1,2

0 (Ω). Let us denote an element u of W 1,2
0 (Ω) as

u =
∑

hkφk,
∑

h2
k < ∞. Let c be not an eigenvalue of −∆ and define a

subspace E of W 1,2
0 (Ω) as follows

E = {u ∈ W 1,2
0 (Ω) :

∑
|λk(λk − c)|h2

k < ∞}.
Then this is a complete normed space with a norm

|‖u|‖ = [
∑

|λk(λk − c)|h2
k]

1
2 .

We need the following some properties which are proved in [6, 7]. Since
λk → +∞ and c is fixed, we have:

Proposition 3.1. Let c be not an eigenvalue of −∆ with the Dirich-
let boundary condition. Then we have
(i) (∆2u + c∆)u ∈ E implies u ∈ E.
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(ii) |‖u|‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if |‖u|‖ = 0.

Proposition 3.2. Assume that g : E → R satisfies the assumptions
of Theorem 1.1. Then all solutions in L2(Ω) of

∆2u + c∆u = g(u) in L2(Ω)

belong to E.

Proof. Let g(u) =
∑

hkφk ∈ L2(Ω). Then

(∆2 + c∆)−1(g(u)) =
∑ 1

λk(λk − c)
hkφk.

Hence we have

|‖(∆2 + c∆)−1g(u)|‖2 =
∑

|λk(λk − c)| 1
λk(λk − c))2

h2
k ≤ C

∑
h2

k

for some C > 0, which means that

|‖(∆2 + c∆)−1g(u)|‖ ≤ C1‖u‖L2(Ω).

With the aid of Proposition 3.2 it is enough that we investigate the
existence of solutions of (1.1) in the subspace E of L2(Ω). Let I : E → R
be the functional defined by,

I(u) =
∫

Ω

1
2
|∆u|2 − c

2
|∇u|2 −G(u), (3.1)

where G(s) =
∫ s
0 g(σ)dσ. Under the assumptions of Theorem 1.1, I(u)

is well defined. By the following Proposition, I is of class C1 and the
weak solutions of (1.1) coincide with the critical points of I(u).

Proposition 3.3. Assume that g(u) satisfies the assumptions of The-
orem 1.1. Then I(u) is continuous and Frèchet differentiable in E and

DI(u)(h) =
∫

Ω
∆u ·∆h− c∇u · ∇h− g(u)h (3.2)

for h ∈ X. Moreover
∫
Ω G(u)dx is C1 with respect to u. Thus I ∈ C1.
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Proof. Let u ∈ E. First we will prove that I(u) is continuous. We
consider

I(u + v)− I(u) =
∫

Ω
[
1
2
|∆(u + v)|2 − c

2
|∇(u + v)|2 −G(u + v)]

−
∫

Ω
[
1
2
|∆u|2 − c

2
|∇u|2 −G(u)]

=
∫

Ω
[u · (∆2v + c∆v) +

1
2
v · (∆2v + c∆v)

−(G(u + v)−G(u))].

Let u =
∑

hkφk, v =
∑

h̃kφk. Then we have

|
∫

Ω
u · (∆2v + c∆v)dx| = |

∑
λk(λk − c)hkh̃k| ≤ |‖u|‖ · |‖v|‖

|
∫

Ω
v · (∆2v + c∆v)dx| = |

∑
λk(λk − c)h̃2

k| ≤ |‖v|‖2.

On the other hand, by Mean Value Theorem and g′(t) ≤ γ, we have

|G(u + v)−G(u)| = |
∫ u+v

0
g(s)ds−

∫ u

0
g(s)ds|

≤ γ|v|(|u|+ |v|)

Hence

|
∫

Ω
[G(u + v)−G(u)]dx| ≤ Cγ|‖v|‖(|‖u|‖+ |‖v|‖).

With the above results, we see that I(u) is continuous at u. To prove
that I(u) is Fréchet differentiable at u ∈ E, we compute

|I(u + v) − I(u)−DI(u)v|
= |

∫

Ω

1
2
v(∆2v + c∆v)−G(u + v) + G(u)− g(u)v|

≤ 1
2
|‖v|‖2 + Cγ|‖v|‖2,

since |G(u + v)−G(u)− g(u)v| = | ∫ u+v
u g(s)ds− g(u)v| ≤ γv2.

Let Z2 act on E orthogonally. Then E has two invariant orthogonal
subspaces FixZ2 and Fix⊥Z2

. Let us set

H = Fix⊥Z2
.
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The Z2 action has the representation u 7→ −u, ∀u ∈ H. Thus Z2

acts freely on the invariant subspace H. We note that H is a closed
invariant linear subspace of E compactly embedded in L2(Ω). It is easily
checked that ∆2 + c∆ and g are equivariant on H, so I is invariant on
H. Moreover (∆2 + c∆)(H) ⊆ H, ∆2 + c∆ : H → H is an isomorphism
and DI(H) ⊆ H. Therefore critical points on H are critical points on
E.

4. Proof of Theorem 1.1 and Theorem 1.2.

Here we let λi < c < λi+1. First, we consider the case λi+1(λi+1−c) <
λk(λk − c) < g′(∞) < λk+1(λk+1 − c), λk+m(λk+m − c) < g′(0) <
λk+m+1(λk+m+1−c) and g′(t) ≤ γ < λk+m+1(λk+m+1−c), where m ≥ 1
and k > i+1. Let Hk be the subspace of H spanned by φ1, . . . , φk whose
eigenvalues are λ1(λ1 − c), . . . , λk(λk − c). Let H⊥

k be the orthogonal
complement of Hk in H. Let r = 1

2{λk(λk − c) + λk+1(λk+1 − c)} and
let L : H → H be the linear continuous operator such that

(Lu, v) =
∫

Ω
(∆2u + c∆u) · vdx− r

∫

Ω
uvdx.

Then L is symmetric, bijective and equivariant. The spaces Hk, H⊥
k are

the negative space of L and the positive space of L. Moreover, there
exists ν > 0 such that

∀u ∈ Hk : (Lu, u) ≤ (λk(λk − r))
∫

Ω
u2dx ≤ −ν|‖u|‖2,

∀u ∈ H⊥
k : (Lu, u) ≥ (λk+1(λk+1 − c))

∫

Ω
u2dx ≥ ν|‖u|‖2.

We can write

I(u) =
1
2
(Lu, u)− ψ(u),

where

ψ(u) =
∫

Ω
[G(u)− 1

2
ru2]dx.

Since H is compactly embedded in L2, the map Dψ : X → X is compact.

Lemma 4.1. Assume that g(u) satisfies the assumptions of Theorem
1.1. Then I(u) satisfies the (P.S.)M condition for any M ∈ R.

Proof. Let (un) be a sequence in H with DI(un) → 0 and I(un) → M .
Since L is an isomorphism and Dψ is compact, it is sufficient to show that
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(un) is bounded in H. By contradiction, we assume that |‖un|‖ → +∞.
Let us take a, b ∈ R with

λk(λk − c) < a < lim
|s|→∞

g(s)
s

< b < λk+1(λk+1 − c)

and define gr : R → R by

gr(s) = g(s)− rs.

Set α = a− r and β = b− r, so that

α < lim
|s|→∞

gr(s)
s

< β.

Let gr(s) = ηr(s) + γr(s)s with

γr(s) =

{
min{max{gr(s)

s , α}, β} if s 6= 0,
min{max{g′(0)− r, α}, β} if s = 0.

Then γr is a Borel function with α ≤ γr(s) ≤ β for every s ∈ R and
ηr ∈ Cc(R). Let vn = un

|‖un|‖ . Up to a subsequence, we have vn → v in
H and γr(un) ⇀ γ′ in L∞(Ω) with α ≤ γ′ ≤ β a.e. in Ω. Moreover

ηr(un)
|‖un|‖ → 0 in L∞(Ω).

Since DI(un) → 0, we get

DI(un)un

|‖un|‖2
= (Lvn, vn)−

∫

Ω

ηr(un)
|‖un|‖ vn −

∫

Ω
γr(un)v2

n −→ 0.

Let P+ : H → H⊥
k and P− : H → Hk denote the orthogonal projections.

Since P+vn − P−vn is bounded in H, we have

(LP+vn, P+vn)− (LP−vn, P−vn)− ∫
Ω

ηr(un)
|‖un|‖ (P+vn − P−vn)dx

− ∫
Ω γr(un)vn(P+vn − P−vn)dx −→ 0.

Since P+vn − P−vn → P+v − P−v in H, we get

ν ≤
∫

Ω
γ′v(P+v − P−v)dx.

Hence v 6= 0. On the other hand, we also have

(Lvn, P+v − P−v)−
∫

Ω

ηr(un)
|‖un|‖ (P+v − P−v)dx

−
∫

Ω
γr(un)vn(P+v − P−v)dx −→ 0,
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so that

(LP+v, P+v)− (LP−v, P−v)−
∫

Ω
γ′(P+v)2dx +

∫

Ω
γ′(P−v)2dx

= (Lv, P+v − P−v)−
∫

Ω
γ′(P+v + P−v)(P+v − P−v)dx = 0.

It follows that

(λk+1(λk+1−c)−r−β)
∫

Ω
(P+v)2dx+(r+α−λk(λk−c))

∫

Ω
(P−v)2dx ≤ 0.

Thus P+v = P−v = 0, which gives a contradiction.

Lemma 4.2. Under the same assumptions of Theorem 1.1, The func-
tion I(u) is bounded from above on Hk;

sup
u∈Hk

I(u) < 0, (4.1)

and from below on H⊥
k ; there exists Rk > 0 such that

inf
u∈H⊥

k
|‖u|‖=Rk

I(u) > 0 (4.2)

and

inf
u∈H⊥

k
|‖u|‖<Rk

I(u) > −∞. (4.3)

Proof. For some constant d ≥ 0, we have Gr(s) ≥ 1
2αs2 + d, where

Gr(s) =
∫ s
0 gr(σ)dσ. For u ∈ Hk,

(Lu, u) ≤ (λk(λk−c)−r)
∫

Ω
u2dx =

λk(λk − c)− λk+1(λk+1 − c)
2

∫

Ω
u2,

∫

Ω
Gr(u) ≥ α

2

∫

Ω
u2 + d|Ω|,

so that

I(u) ≤ 1
2
· λk(λk − c)− λk+1(λk+1 − c)

2

∫

Ω
u2 − α

2

∫

Ω
u2 − d|Ω| < 0,

since λk(λk−c)−λk+1(λk+1−c)
2 < α. Thus the functional I is bounded from

above on Hk. Next we will prove that (4.2) and (4.3) hold. To get our
claim (4.2), it is enough to prove that:

lim
u∈H⊥

|‖u|‖→+∞

I(u) = +∞.
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We have

lim
u∈H⊥

k
|‖u|‖→+∞

I(u)

≥ lim
u∈H⊥

k
|‖u|‖→∞

1
2
(1− r

λk+1(λk+1 − c)
)|‖u|‖2 − lim

u∈H⊥
k

|‖u|‖→+ infty

∫

Ω
Gr(u)dx

≥ lim
u∈H⊥

k
|‖u|‖→+∞

1
2
(1− r

λk+1(λk+1 − c)
)|‖u|‖2 − lim

u∈H⊥
k

|‖u|‖→+∞

1
2
β

∫

Ω
u2 − b̄|Ω|

≥ lim
u∈H⊥

k
|‖u|‖→+∞

1
2
(1− r

λk+1(λk+1 − c)
− β

λk+1(λk+1 − c)
)|‖u|‖2 − b̄|Ω|

−→ +∞,

since there exists b̄ ∈ R such that Gr(u) < 1
2βu2 + b̄, and

β <
λk+1(λk+1 − c)− λk(λk − c)

2
.

Now we will prove (4.3). Since λk+m(λk+m−c) < g′(0) < λk+m+1(λk+m+1

−c) and g′(t) ≤ γ < λk+m+1(λk+m+1−c), there exists λk+m(λk+m−c) <
γ̄ < λk+m+1(λk+m+1 − c) and d̄ ≥ 0 such that G(u) < γ̄

2u2 + d̄. Thus

inf
u∈H⊥

k
|‖u|‖<R

I(u) = inf
u∈H⊥

k
|‖u|‖<R

{1
2
|‖u|‖ −

∫

Ω
G(u)}

> inf
u∈H⊥

k
|‖u|‖<R

{1
2
(1− γ̄

λk+1(λk+1 − c)
)|‖u|‖2 − d̄|Ω|}

> −∞.

Lemma 4.3. Under the same assumptions of Theorem 1.1, there exists
ρk > 0 such that

sup
u∈Hk

|‖u|‖=ρk

I(u) < 0.

Proof. Let L∞ : H → H be the linear operator defined by

(L∞u, v) = (∆2u + c∆u)v − g′(∞)
∫

Ω
uvdx,

where λi+1(λi+1− c) < λk(λk − c) < g′(∞) < λk+1(λk+1− c), k > i + 1.
Then L∞ is an isomorphism. The spaces Hk, and H⊥

k are the negative
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space of L∞ and the positive space of L∞ respectively, and

H = Hk ⊕H⊥
k .

Set G∞(s) = G(s)− 1
2g′(∞)s2. Then

I(u) =
1
2
(L∞u, u)−

∫

Ω
G∞(s)dx.

Thus, by Lemma 4.2, limu∈H
u→0

1
|‖u|‖2

∫
Ω G∞(u)dx ≥ 0. Then

lim
u∈Hk
u→0

I(u)
|‖u|‖2

< lim
u∈Hk
u→0

1
2|‖u|‖2

[λk(λk − c)− g′(∞)]
∫

Ω
u2

− lim
u∈Hk
u→0

1
|‖u|‖2

∫

Ω
G∞(u)dx < 0.

thus there exists ρk > 0 such that

sup
u∈Hk

|‖u|‖=ρk

< 0.

Lemma 4.4. Under the same assumptions of Theorem 1.1,

inf
z∈H⊥

k
,σ≥0

|‖z−σe1|‖=Rk

I(z − σe1) ≥ 0.

Proof. By Lemma 4.2, there exists Rk > 0 such that

inf
u∈H⊥

k
|‖u|‖=Rk

I(u) > 0.

To get our claim, it is enough to prove that

lim
z∈H⊥

k
,σ≥0,

|‖z−σe1|‖→+∞

I(z − σe1) = +∞. (4.4)

To prove (4.4), we need to show that

max
z∈H⊥

k
|‖z|‖=1

∫
z2 = max

z∈H⊥
k

,σ≥0,

|‖z−σe1|‖=1

∫
(z − σe1)2. (4.5)

In fact, we have immediately max z∈H⊥
k

|‖z|‖=1

∫
z2 ≤ max z∈H⊥

k
,σ≥0

|‖z−σe1|‖=1

∫
(z −

σe1)2. Now we prove that max z∈H⊥
k

|‖z|‖=1

∫
z2 ≥ max z∈H⊥

k
,σ≥0

|‖z−σe1|‖=1

∫
(z − σe1)2.



The nonlinear biharmonic equation with dirihlet bouncary condition 91

If σ > 0, then

2
∫

(z − σe1)v = ν(z − σe1, v), ∀v ∈ H1 ⊕H⊥
k .

Taking v = z − σe1 we get ν = 2
∫

(z − σe1)2 and taking v = e1 we also
get

0 ≤ 2
∫

(z−σe1)e1 = 2
∫

(z−σe1)2(z−σe1, e1) = −2σ

∫
(z−σe1)2 < 0

which gives a contradiction. Then z − σe1 = z ∈ H⊥
k and so

max
z∈H⊥

k
|‖z−σe1|‖=1

∫
(z − σe1)2 = max

z∈H⊥
k

|‖z|‖=1

∫
z2.

Thus we proved (4.5). Now we prove (4.4). For some constant β, b ≥ 0,
we have G∞(s) ≥ 1

2s2 + b, where G∞(s) =
∫ s
0 g∞(σ)dσ, g∞(s) = g(s)−

g′(∞)s. For z ∈ H⊥
k and σ ≥ 0, by (4.5) we get

I(z − σe1)

≥ 1
2
|‖z − σe1|‖2 − 1

2
g′(∞)

∫

Ω
(z − σe1)2 − 1

2
β

∫

Ω
(z − σe1)2 − b|Ω|

=
1
2
|‖z − σe1|‖2(1− g′(∞)

∫
(z − σe1)2

|‖z − σe1|‖2
− β

∫
(z − σe1)2

|‖z − σe1|‖2
)− b|Ω|

≥ 1
2
|‖z − σe1|‖2(1− (g′(∞) + β) max

z∈H⊥
k ,σ≥0

∫
(z − σe1)2

|‖z − σe1|‖2
)− b|Ω|

≥ 1
2
|‖z − σe1|‖2(1− (g′(∞) + β) max

z∈H⊥
k

|‖z|‖=1

∫
z2)− b|Ω| −→ ∞

as |‖z − σe1|‖ → +∞. Thus we proved the lemma.

From Lemma 4.3 and Lemma 4.4 we have

Lemma 4.5. Under the same assumptions of Theorem 1.1, there exists
ρk > 0 such that

sup
u∈Hk

|‖u|‖=ρk

I(u) ≤ inf
z∈Σ(−e1,H⊥

k )
I(z − σe1),

where Σ(−e1,H
⊥
k ) = {z ∈ H⊥

k ||‖z|‖ ≤ Rk} ∪ {z − σe1|z ∈ H⊥
k , σ ≥

0, |‖z − σe1|‖ = Rk}, with Rk > ρk.
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Lemma 4.6. Let G0 : R → R be a continuous function such that

inf
s∈R

G0(s)
1 + s2

> −∞, lim
s→0

G0(s)
s2

≥ 0.

Then

lim
u→0
u∈H

1
|‖u|‖2

∫

Ω
G0(u)dx ≥ 0.

Proof.

h(s) =

{
(Go(s)

s2 )− if s 6= 0,
0 if s = 0.

Then h : R → R is bounded, continuous, with h(0) = 0 and G0(s) ≥
−h(s)s2. If (un) is a sequence in H with un → 0, then up to a subse-
quence, un → 0 a.e., and vn = un

|‖un|‖ is strongly convergent in L2(Ω).
Since

1
|‖un|‖2

∫

Ω
G0(un)dx ≥ −

∫

Ω
h(un)v2

ndx,

the claim follows.

Lemma 4.7. Under the same assumptions of Theorem 1.1, there exists
ρk+m > 0 such that

sup
u∈Hk+m

|‖u|‖=ρk+m

I(u) < inf
z∈Σ(ek+m,H⊥

k+m)
I(z),

where Σ(ek+m,H⊥
k+m) = {w ∈ H⊥

k+m||‖w|‖ ≤ Rk+m} ∪ {w + σek+m|w ∈
H⊥

k+m, σ ≥ 0, |‖w + σek+m|‖ = Rk+m} with Rk+m > ρk+m.

Proof.
sup

u∈Hk+m
|‖u|‖=ρk+m,ρ→0

I(u) < 0. (4.4)

From the assumptions of Theorem 1.1, λk+m(λk+m − c) < g′(0) <
λk+m+1(λk+m+1 − c), m ≥ 1. Let L0 : H → H be the linear opera-
tor defined by

(L0u, v) = (∆2u + c∆u)v − g′(0)
∫

Ω
uvdx.

Then L0 is an isomorphism. The space Hk+m, H⊥
k+m are the negative

space of L0 and the positive space of L0, respectively, and

H = Hk+m ⊕H⊥
k+m.
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Set G0(s) = G(s)− 1
2g′(0)s2. Then

I(u) =
1
2
(L0u, u)−

∫

Ω
G0(u)dx.

Note that inf G0(s)
1+s2 > −∞, lims→0

G0(s)
s2 ≥ 0. Thus by Lemma 4.1,

lim u→0
u∈H

1
|‖u|‖2

∫
Ω G0(u)dx ≥ 0. Then

lim
u→0

u∈Hk+m

I(u)
|‖u|‖2

< lim
u→0

u∈Hk+m

1
2|‖u|‖2

[λk+m(λk+m − c)− g′(0)]
∫

Ω
u2

− lim
u→0

u∈Hk+m

1
|‖u|‖2

∫

Ω
G0(u)dx < 0.

Thus there exists ρk+m > 0 such that sup u∈Hk+m
|‖u|‖=ρk+m,ρ→0

I(u) < 0. By

Lemma 4.2, inf u∈H⊥
k

|‖u|‖=Rk

I(u) > 0. Thus we have

sup
u∈Hk+m

|‖u|‖=ρk+m,ρk+m→0

I(u) < inf
u∈H⊥

k
|‖u|‖=Rk

I(u)

with Rk > ρk+m. In other words, there exists

ek+m ∈ Span{φk+1, . . . , φk+m}
such that

sup
u∈Hk+m

|‖u|‖=ρk+m,ρk+m→0

I(u) < inf
u∈H⊥

k+m
⊕ek+m

ek+m∈Span{φk+1,...,φk+n},|‖u|‖=Rk+m

I(u).

PROOF OF THEOREM 1.1. AND THEOREM 1.2.
By Lemma 4.5, there exists ρk > 0 such that

sup
u∈Hk

|‖u|‖=ρk

I(u) ≤ inf
z∈Σ(−e1,H⊥

k )
I(z − σe1),

where Σ(−e1,H
⊥
k ) = {z ∈ H⊥

k ||‖z|‖ ≤ Rk} ∪ {z − σe1|z ∈ H⊥
k , σ ≥

0, |‖z−σe1|‖ = Rk}, with Rk > ρk. By Lemma 4.7, there exists ρk+m >
0 such that

sup
u∈Hk+m

|‖u|‖=ρk+m

I(u) < inf
z∈Σ(ek+m,H⊥

k+m)
I(z),

where Σ(ek+m,H⊥
k+m) = {w ∈ H⊥

k+m||‖w|‖ ≤ Rk+m} ∪ {w + σek+m|w ∈
H⊥

k+m, σ ≥ 0, |‖w + σek+m|‖ = Rk+m} with Rk+m > ρk+m and Rk >
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Rk+m. Thus by linking scale theorem 2.1., (1.1) has at least three solu-
tions.
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