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ON THE EXISTENCE OF THE THIRD SOLUTION OF
THE NONLINEAR BIHARMONIC EQUATION WITH
DIRICHLET BOUNDARY CONDITION

TACKSUN JUNG* aND Q-HEUNG CHOTI**

ABSTRACT. We are concerned with the multiplicity of solutions of
the nonlinear biharmonic equation with Dirichlet boundary con-
dition, A%u + cAu = g(u), in Q, where ¢ € R and A? denotes
the biharmonic operator. We show that there exists at least three
solutions of the above problem under the suitable condition of g(u).

1. Introduction

Let ©Q be a smooth bounded region in R"™ with smooth boundary
00. Let A1 < Ay < ... < A\ < ... be the eigenvalues of —A with
Dirichlet boundary condition in 2. In this paper we are concerned with
the multiplicity of solutions of the nonlinear biharmonic equation with
Dirichlet boundary condition

A?u+ cAu = g(u) in Q, (1.1)
u =0, Au=20 on 0,
where g is a differentiable function from R to R such that ¢g(0) = 0,
c € R and A? denotes the biharmonic operator. Let

g'(c0) = lim 9(w) € R.
lu|—o0 U
The problem (1.1) was studied by Choi and Jung in [5]. The authors
proved that (1.1) has at least two solutions by a variation of linking

theorem. The authors also proved in [7] that the problem
A*u+ cAu=but + s in €, (1.2)
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u =0, Au=20 on 0f2
has at least two solutions by a variational reduction method when A\; <
c< A2, b< Ai(A1—c¢)ore< A, Ag( Ak —¢) <b < Agy1(Agy1 — ). This
type problem arises in the study of travelling waves in a suspension
bridge ([8], [10]) or the study of the static deflection of an elastic plate
in a fluid. The following is the main result of this paper.

THEOREM 1.1. Assume that \; < ¢ < A\it1, Ai+1 ()\i+1 *C) < Ak()\k —
¢) < g'(00) < At 1(Ak1=6)5 Mo (Aotm—¢) < 9'(0) < Mpemt1 (A1
—c) and ¢'(t) < v < Mgtm+1(Metm+1 — ¢), where m > 1, k > i+ 1 and
v € R. Then problem (1.1) has at least three solutions.

THEOREM 1.2. Assume that \; < ¢ < A\j4+1, )\i—i-l(/\i-i—l —C) < /\k()\k -
c) < 9'(0) < X1 (M1 —6)5 Mg (Aigm—c) < 9'(00) < Mgt (Akpme1
—c) and ¢'(t) < v < Mgrma1(Akrme1 —¢), wherem > 1, k > i+ 1 and
v € R. Then problem (1.1) has at least three solutions.

In section 2 we recall a Linking Scale Theorem which will play a
crucial role in our argument. In section 3 we define a Banach space H
spanned by eigenfunctions of A?+cA with Dirichlet boundary condition
which can be applied in the linking scale theorem. In section 4 we prove
Theorem 1.1 and Theorem 1.2.

2. Linking scale theorem

DEFINITION 2.1. Let X be a Hilbert space, Y C X,
rho>0and e € X\Y, e # 0. Set:
B,(Y)={z € Y|[lz|x < p},
Sp(Y) ={z € Y||zl|x = p},
Agle,Y) = {oe+vlo = 0,0 € Y, [oe + vlx < p},
Y,(e,Y)={oe+v|loc>0,veY,|oe+v||x =p}U{vveY,|v||x <p}
Now we recall a theorem of existence of three solutions which is link-

ing scale theorem.

THEOREM 2.1. (Linking scale theorem) Let X be an Hilbert space,
which is topological direct sum of the four subspaces Xgy, X1, Xo and
X3. Let F € CY(X, R). Moreover assume:

(a) dimX; < +oo fori=0,1,2;
(b) there exist p > 0, R > 0 and e € Xo, e # 0 such that;

p<R  and sup F< inf F;
Sp(Xo®X10X2) Yr(e,X3)
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(¢) there exist p' >0, R’ > 0 and ¢’ € X, ¢ # 0 such that:

o <R and sup F < inf F;
Sp/(Xo@Xl) Z}%’(‘3/7‘X2EBX—3)
(d) R < R'(= Agr(e, X3) C Xpi(e, Xo ® X3));
(e) —oo < a=1infa (e x,0x5) I
(f) (P.S.)c holds for any c € [a,b] where b =supp (x,ex,0x,) £
Then there exist three critical levels c1, co and c3 for the functional F
such that:

a<ecz< sup F < inf F< inf F<ey
Sp/(X()@Xl) Z}%’(617){265)(3) AR(67X3)

= sup F< inf F<¢ <b.
Sp(Xo®X10X2) Yr(e.X3)

3. Variational formulation

Let Ap(k =1,2,...) denote the eigenvalues and ¢p(k = 1,2,...) the
corresponding eigenfunctions, suitably normalized with respect to L?(Q)
inner product, of the eigenvalue problem Au + Au = 0 in €, with the
Dirichlet boundary condition, where each eigenvalue )\ is repeated as
often as its multiplicity. We recall that 0 < Ay < Ay < A3 < ...\ —
+oo and that ¢1(z) > 0 for # € Q. The eigenvalue problem AZu +
cAu = pu in  with the Dirichlet boundary condition u = 0, Au = 0
on 0f), has infinitely many eigenvalues Ag(Ax — ¢), & = 1,2,..., and
corresponding eigenfunctions ¢y(x). The set of functions {¢} is an
orthogonal base for VVO1 (). Let us denote an element u of I/VO1 2(Q) as
u=">3 hgor, Y hi < 0. Let ¢ be not an eigenvalue of —A and define a

subspace E of VVO1 2(Q) as follows
E={ueW;Q): Y [\ — )b} < oo},
Then this is a complete normed space with a norm
lralll = [ O = )l

We need the following some properties which are proved in [6, 7]. Since
A — +00o and c is fixed, we have:

PROPOSITION 3.1. Let ¢ be not an eigenvalue of —A with the Dirich-

let boundary condition. Then we have
(i) (A%u+ cA)u € E implies u € E.
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(ii) |[[ull = Cllul|2(qy, for some C' > 0.
(iii) [Jull2() = 0 1f and only if |||u]|| = 0.

PROPOSITION 3.2. Assume that g : E — R satisfies the assumptions
of Theorem 1.1. Then all solutions in L?(§2) of

A%u 4 cAu = g(u) in L*(Q)
belong to E.

Proof. Let g(u) = > hypoyp € L*(Q). Then

2
(A% 4 cA)™! Zm kPk-

Hence we have
2 2 2 2
(A% + eA)gu)]|> =D [Ae(An (A h <C> hp
for some C' > 0, which means that

11(A% + eA) gl < Crllullp2(q).-
O

With the aid of Proposition 3.2 it is enough that we investigate the
existence of solutions of (1.1) in the subspace F of L?(Q). Let [ : E — R
be the functional defined by,

1
1) = [ G1AuP = 59l - G, (3.1)
02 2
where G(s) = [ g(o)do. Under the assumptions of Theorem 1.1, I(u)

is well deﬁned By the following Proposition, I is of class C'' and the
weak solutions of (1.1) coincide with the critical points of I(u).

PROPOSITION 3.3. Assume that g(u) satisfies the assumptions of The-
orem 1.1. Then I(u) is continuous and Fréchet differentiable in E and

DI(u)(h) = /QAu - Ah —cVu-Vh —g(u)h (3.2)

for h € X. Moreover fQ u)dx is C* with respect to u. Thus I € C1.
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Proof. Let w € E. First we will prove that I(u) is continuous. We
consider

I(u+v)—I(u) = /Q[;A(uw)r? — SV (u+ o) — Glu+v)]

- [ 15140 = 519uP - Gw)

= / [u- (A%v + cAv) + %v (A% 4 cAv)
Q
—(G(u+v) — G(u))).
Let u =3 hypop, v =" hyor. Then we have

I/u'(A2v+0Av)dw| =1 M = hih] < [l - [0l

]/ (A% + cAv)dz| = |Zx\k A — o) R2| < |||v]|I?.
On the other hand, by Mean Value Theorem and ¢'(t) <, we have

Glu+v) — Glu)| = |/ ds—/oug(s)ds|

< Afol(ful + [vl)

Hence
!/Q[G(quv) = G(u)ldz| < Cylllv][[([llulll + [llv[])-

With the above results, we see that I(u) is continuous at u. To prove
that I(u) is Fréchet differentiable at u € E, we compute

[I(u+v) — I(u)— DI(u)v|
= | /Q SU(A%0 +cAv) — Glu+0) + Glu) — glu)l

1
Sl + Gyl

IN

since |G(u+v) — G(u) — = | [V g(s)ds — g(u)v| < yv2. O

Let Z5 act on E orthogonally. Then E has two invariant orthogonal
subspaces Fizz, and Fixz. Let us set

H = Fixy,.
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The Z5 action has the representation u — —u, Yu € H. Thus Z»
acts freely on the invariant subspace H. We note that H is a closed
invariant linear subspace of E compactly embedded in L?(2). It is easily
checked that A? + cA and g are equivariant on H, so I is invariant on
H. Moreover (A% +cA)(H) C H, A2+ cA: H — H is an isomorphism
and DI(H) C H. Therefore critical points on H are critical points on
E.

4. Proof of Theorem 1.1 and Theorem 1.2.

Here we let \; < ¢ < \j41. First, we consider the case A\jy1(Ai41—c¢) <
Ae(Ae —¢) < g'(00) < N1 (M1 — €y MmN — €) < ¢'(0) <
Atmt1(Aktm+1—c¢) and ¢'(1) <5 < Mepmt1(Ag+m+1 —¢), where m > 1
and k > ¢+1. Let Hg be the subspace of H spanned by ¢1, ..., ¢ whose
eigenvalues are Aj(A; — ¢),..., \e(Ax — ¢). Let Hi- be the orthogonal
complement of Hy, in H. Let r = ${\x(A\r — ¢) + Apy1(Ag+1 — ¢)} and
let L : H — H be the linear continuous operator such that

(Lu,v) = /(A2u + cAu) - vdx — T‘/ uvdz.
Q Q

Then L is symmetric, bijective and equivariant. The spaces Hy, H kL are
the negative space of L and the positive space of L. Moreover, there
exists v > 0 such that

Vue H, (Lu,u) < (0 (e — 'r))/ w2dz < |||l
Q

Vu e Hi (Lu,u) > (M1 (A1 — c))/ uldr > vl|ul|?.
Q

We can write

where

() = /Q Glu) — %ruQ]dzx.

Since H is compactly embedded in L?, the map D¢ : X — X is compact.

LEMMA 4.1. Assume that g(u) satisfies the assumptions of Theorem
1.1. Then I(u) satisfies the (P.S.)yr condition for any M € R.

Proof. Let (uy) be a sequence in H with DI(uy,) — 0and I(u,) — M.
Since L is an isomorphism and D) is compact, it is sufficient to show that
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(up) is bounded in H. By contradiction, we assume that |||u,||| — +oo.
Let us take a,b € R with

Ae( A —¢) <a < lim @ <b < Aet1( A1 — ©)

|s| =00 S
and define g, : R — R by
gr(s) = g(s) —rs.
Set a =a—rand 8 =0—r, so that

a < lim 9r(s) < B.
|[s| o0 S
Let g,(s) = nr(s) +7:(s)s with
(s) = min{max{gTT(S), at, B} if s #0,
i min{max{¢'(0) — r,a}, 5} if s=0.

Then 7, is a Borel function with o < 7,(s) < g for every s € R and

Ny € Co(R). Let v, = m Up to a subsequence, we have v, — v in
H and v, (u,) = 7' in L®(Q) with a <+ < a.e. in Q. Moreover
N (un)

—0 in L*(Q).
i

Since DI (uy,) — 0, we get

DI(up)up Ny () 9
:(Lv,v)—/ vn—/’yr(u)vn—>0.
[l[n][I? T Ja lunll o "

Let PT: H — HkL and P~ : H — Hj, denote the orthogonal projections.
Since PTv, — P~ v, is bounded in H, we have

(LP Y0, PYu,) — (LP v, Pv,) — [oy, 8 (Pto, — P=0,)da

[lTwnll

— Jo ¥ (tn)vp (Pt o, — P vy )de — 0.

Since PTv, — P~v, — P*v— P v in H, we get

v < / Y v(Ptv — P v)d.
Q

Hence v # 0. On the other hand, we also have

(Lvp, PTv — P7v) — / 1 (tn) (PTv — P v)dx
o llunll

—/ Yo (U)o (PTv — P~ v)dz — 0,
Q
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so that
(LP*v, PTv) — (LP v, P v) — /Q'y/(PJrv)2d:E+ /Q’y/(Pv)2d:1c
= (Lv,PTv— P7v) — /Q’y’(PJrv + P v)(PTv— P v)dz = 0.
It follows that

(A1 Mpgp1—c)—r—p) / (PT)2dz+(r+a—XAg(\p—c)) / (P~v)%dz < 0.
Q Q
Thus P*v = P~v = 0, which gives a contradiction. O

LEMMA 4.2. Under the same assumptions of Theorem 1.1, The func-
tion I(u) is bounded from above on Hy;

sup I(u) <0, (4.1)
u€Hy,

and from below on HkL; there exists Ry > 0 such that

inf I(u)>0 (4.2)
ueH-
[lulll=Rg
and
inf  I(u) > —oc. (4.3)
uEHJ-
Hulll <Ry,

Proof For some constant d > 0, we have G,(s) > fas? + d, where
fo gr(0)do. For u € Hy,

(Lu,u) < (Aukk—c)—r%/ 2dz =

/G /u+@m

Me(Ak =€) = M1 (A1 — ©) / W2
2 I ’

so that
1 A _
I(w) <+ Me(Me =€) = Apr1( A1 — ¢ / w2 a/ W2 — d|Q] <0,
2 2 0 2 /o
since 2Qe=9)= ’\’““()"“*1 9 < . Thus the functional I is bounded from

above on Hj. Next we will prove that (4.2) and (4.3) hold. To get our
claim (4.2), it is enough to prove that:

lim I(u) = 4o0.
HL

[lu] =00
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We have
lim  I(u)

uGHIi-

1wl =00

1 r
>  lim —(1——-——— || = lim /G w)dx
[T wersveeser LU S KX
[[w]]]— o0 [w]||—+ infty
> lim - — " P~ lim 1,3/ w2 5|0
- ueH- 2 >\k+1()\k+1 - C) weHL 2 Q
[l —-+oo ][] =+ o0
. 1 r 3 5 -
> lim —=(1-— — ull|* — b|Q2
- uweng 2( M1 Akt =€) Apgr1(Apgr — C))’H L &
[[w|||—+o0
— 400,

since there exists b € R such that G, (u) < %ﬁuz + b, and

Mer1( Akt — €) = Ap(Ap — ©)
B < 5 .

Now we will prove (4.3). Since Mgtm(Agrm—¢) < ¢'(0) < Mgrma1(MNetma1
—c) and ¢'(t) < v < Mppmr1(Aegma1—c), there exists Mgy (Argm —c) <
¥ < Metmt1(Agtma1 — ¢) and d > 0 such that G(u) < %u2 +d. Thus

. . 1
i dw =t (Gl - [ G)
[lulll <R [lulll<R
1 5 , -
> inf {-(1 — ————)|||u]||” — 4|2
it {50 = 5l - d)
MNulll<Rr
> —o0.
O

LEMMA 4.3. Under the same assumptions of Theorem 1.1, there exists
pr > 0 such that
sup I(u) <O.
u€EHy,
llulll=pg

Proof. Let Lo, : H — H be the linear operator defined by
(Loott, v) = (A%u + cAu)v — g’(oo)/ wvdz,
Q

where \i11(Aiy1 —¢) < Mg(Ak —¢) < ¢'(00) < M1 (ANg+1 —¢), k> i+ 1.
Then Lo, is an isomorphism. The spaces Hy, and H. kl are the negative
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space of Ly, and the positive space of L, respectively, and
H = H, ® Hi.
Set Go(s) = G(s) — 1¢/(00)s?. Then
1
I(u) = Q(Loou,u) - / Goo(s)dz.
Q

Thus, by Lemma 4.2, limuecu W Jo Goo(u)dz > 0. Then

I(U) m #P\k(Ak_C) —g/(OO>]/ U2

im
BTl S S 0
.

lim —— [ Goo(u)dx <O.
B Tl Jo &

thus there exists pr > 0 such that

sup < 0.
u€Hyp,
lulll=pg

LEMMA 4.4. Under the same assumptions of Theorem 1.1,

inf  I(z—oe;) >0.
2€H,0>0
lllz—oerlll=Rg

Proof. By Lemma 4.2, there exists Ry > 0 such that
inf  I(u) > 0.

weH;-
[lulll=Ry,

To get our claim, it is enough to prove that

lim I(z —oe1) = +o0. (4.4)
ZEHJ‘,UZO,
lz—ceq || =00

To prove (4.4), we need to show that

max /22 =  max /(z —oep)?. (4.5)

zeri zeri,azo,

[Iz]l]=1 [lz—ceqlll=1
. . 2
In fact, we have immediately max . . [2* < max sent o0 (= —
ll=|ll=1 llz—oeqll=1
oe1)?. Now we prove that max cent J 2% > max set o0 [(z —oer)?.

Hi=zll=1 [lz—oerlll=1
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If 0 > 0, then
2/(2—061)11:1/(2—061,11), Yo € Hy @ Hit.

Taking v = 2z — ge; we get v =2 [(z — oe1)? and taking v = e; we also
get

0< 2/(z—ael)el _ 2/(2—061)2@—0@1,@1) - —20-/(2—0@1)2 <0

which gives a contradiction. Then z —oe; =2 € H kL and so

max /(z —0e1)? = max /zz.
zeH zEHE

[|lz—oeq|||=1 [zlll=1

Thus we proved (4.5). Now we prove (4 4). For some constant 3, b > 0,

we have Goo(s) > 35% 4 b, where Goo(s) = [ goo(0)d0, goo(s) = g(s) —
g'(cc)s. For z € Hif and o > 0, by (4.5) we get
I(z—oey)
1 2 1 2 1 2
2 llz—oell” = 5g'(c0) | (2 —0er)” — 55 (2’—061) — 0|9
2 2 o
1 (z —oey1)? —oep)?
= Sl oerllP( - g (c0) / -~ bje)
2 [llz=oerll® 7 1ll= - U€1|||2
1 2 / / 061
> |||z —ce 1-— 00 max —b|Q2
> Gl oellF (o) +0) o [ EZTAG) e

> %Il\z—aellll2(1—(g’(00)+ﬁ) max [ %) - b — oo

zEHk
Hzll=1

as |||z — oe1]|| — +o00. Thus we proved the lemma. O

From Lemma 4.3 and Lemma 4.4 we have

LEMMA 4.5. Under the same assumptions of Theorem 1.1, there exists
pr > 0 such that

sup I(u) < inf I(z — oey),
u€H, z€S(—e1,Hib)
ulll=pk
where X(—e1, Hi") = {z € Hit|||l2]| < Rx} U {z — oei|z € Hit o >
0,|||z — geil|| = Rk}, with R > pg.
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LEMMA 4.6. Let Gy : R — R be a continuous function such that

inf Gos) > —00, lim Go(s) > 0.
seR 1+ s2 s—0 s2
Then
1
lim / Go(u)dz > 0.
v0 [lull® Jo
Proof.

0 if s=0.

Then h : R — R is bounded, continuous, with A(0) = 0 and Gy(s) >
—h(s)s?. If (u,) is a sequence in H with u, — 0, then up to a subse-

Go(s)\— .
h@)—{ A

quence, u, — 0 a.e., and v, = \HZZ\H is strongly convergent in L?(Q).
Since
1
2/ Go(up)dzr > —/ h(up)v2de,
lunl[* Jo 0
the claim follows. O

LEMMA 4.7. Under the same assumptions of Theorem 1.1, there exists
Pk+m > 0 such that

sup  I(u) < inf I(z),
wEHE Zez(ek—kmvH]j__A,_m)
HNulll=Pk4+m

where S(exym, Hifrn) = {w € Hig [ wl]] € Riqon } U {w + €ppm|w €

Hli_—i-m? 0 > 0,|[|w+ oepiml|l| = Ritm} With Riim > prtm.
Proof.
sup I(u) < 0. (4.4)
u€H},

Haalll=ppe om0
From the assumptions of Theorem 1.1, Agrpm(Agrm — ¢) < ¢'(0) <
Metma1(Aktme1 —¢), m > 1. Let Lo : H — H be the linear opera-
tor defined by

(Lou,v) = (A%u + cAu)v — g’(O)/ uvdzx.
Q

Then L is an isomorphism. The space Hyyn,, H ,€l+m are the negative

space of Ly and the positive space of Lg, respectively, and

H = Hyym @ Hifp



The nonlinear biharmonic equation with dirihlet bouncary condition 93
Set Go(s) = G(s) — 1¢/(0)s®. Then

I(u) = %(Lou,u)— /Q Go(u)da.

Note that inf ?1(382) > —00, thHOGg—gs) > 0. Thus by Lemma 4.1,

lingg W Jo Go(u)dz > 0. Then

I(u) . 1 ’ 2
im — < lim  ———[Aeem(Agem —¢) — ¢'(0 /u
T NI Sl e (e 1),

uEH | uEH |
T .
—  lim ——— [ Gp(u)dz <0.
w0 llulll* Ja

uEH |

Thus there exists pgim > 0 such that sup  wem,,,, I(u) < 0. By
Il =pjo 50
Lemma 4.2, inf ;1 I(u) > 0. Thus we have

Hlulll=Ry,
sup I(u) < inf I(u)
wEHE uEHé‘
[lelll=pk 4 m Pl 4m—0 Hlulll=Ry,

with Rr > pr+m. In other words, there exists

Cktm € SPan{Pri1,-- -, Prtm}

such that
sup I(u) < inf I(u).
uEHker ueH}i‘+m$Ek+m
Hulll=pPk+m >Pl4m—0 ert+mESran{dp 1, Sktn o llulll=Re 4

PROOF OF THEOREM 1.1. AND THEOREM 1.2.
By Lemma 4.5, there exists pr > 0 such that
sup I(u) < inf I(z —oey),

uwEH) z€S(—e1, Hib)
Hulll=pg

where X(—e1, H) = {z € H{|||2lll € R} U {z — oe1lz € Hi-, o0 >
0,|||z—oei1l||| = Rk}, with Ry > p. By Lemma 4.7, there exists pgqm, >
0 such that

sup  I(u) < inf I(2),
w€Hp |y 2€X(entm,Hik )
lelll=pp g

where 2(€k+m7Hlﬁ_+m) ={we Hli_—‘,—mHHw‘H < Rigpm} U{w + o€pim|w €
H,f+m,a > 0,|||w + oekiml|l| = Ritm} with Rgipm > pram and Ry >
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Ryt m. Thus by linking scale theorem 2.1., (1.1) has at least three solu-

tions.

(1]
2]
B8l

(4]

(5]

(6]

(7]

(8]

(9]
(10]

(11]

(12]

[13]
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