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THREE POINT BOUNDARY VALUE PROBLEMS FOR
THIRD ORDER FUZZY DIFFERENTIAL EQUATIONS

M.S.N. MURTY* AND G. SURESH KUMAR**

ABSTRACT. In this paper, we develop existence and uniqueness cri-
teria to certain class of three point boundary value problems asso-
ciated with third order nonlinear fuzzy differential equations, with
the help of Green’s functions and contraction mapping principle.

1. Introduction

The study of initial and boundary value problems for Fuzzy differen-
tial equations is an interesting area of current research.

Recently many authors [2]-[5] and [7] have studied initial and bound-
ary value problems associated with first and second order Fuzzy differ-
ential equations on the metric space (E™, D) of normal fuzzy convex sets
with the distance D given by the supremum of the Hausdorff distance
between the corresponding « - level sets.

In this direction existence and uniqueness theorem for initial value
problems associated with first order fuzzy differential equation y/(t) =
f(t,y(t)) was obtained by O.Kaleva[2] under usual assumptions of con-
tinuous and Lipschitz condition on f. Further J.J. Nieto [7] obtained a
version of the Peano’s existence theorem for fuzzy differential equations
if f is continuous and bounded.

Recently Lakshmikantham, Murty and Turner [4] obtained criteria
for the existence and uniqueness solutions to two point boundary value
problems associated with second order nonlinear fuzzy differential equa-
tions with the help of Greens functions and an application of Banach
fixed point theorem.
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In this paper we present sufficient conditions for the existence and
uniqueness of solutions of three point boundary value problems associ-
ated with a third order nonlinear fuzzy differential equations by using
appropriate Greens function for the associated boundary value prob-
lems and by defining a contraction mapping that yields an interval over
which a unique solution exists. Here we choose a suitable three point
boundary value problem, where the signs of the Greens function and its
partial derivatives over the different intervals can be established. This
paper extended the results of V.Lakshmikantham etc. [4] developed for
two point boundary value problems associated with second order fuzzy
differential equations to three point boundary value problems for third
order fuzzy differential equations.

2. Preliminaries

Let Pr(R™) denotes the family of all nonempty compact convex sub-
sets of R™. Define the addition and scalar multiplication in Py(R"™) as
usual. Radstrom[9] states that Py(R™) is a commutative semigroup un-
der addition, which satisfies the cancellation law. Moreover, if o, 6 € R
and A, B € Py(R") then

a(A+B)=aA+aB, «afA)=(apf)A, 1A=A

and if o, 8 > 0, then (a+ 3)A = aA+ BA. The distance between A and
B is defined by the Hausdorff metric

d(A,B) =inf{e: A C N(B,¢),B C N(4,¢)},
where
N(A,e)={z € R" : ||z —y|| <¢, for some y € A}.
Let I = [a,b] C R be a compact interval and denote
E" ={u:R" — [0,1]/u satisfies (i) — (iv) below}

where
(i) w is normal, i.e there exists an xg € R™ such that u(xg) = 1;
(ii) w is fuzzy convex, i.e for z,y € R™ and 0 < A <1,

w(Az + (1 = A)y) = minfu(z), u(y)];

(iii) u is upper semicontinuous;
(iv)[u]® = cl{x € R"/u(x) > 0} is compact.
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For 0 < a < 1, the a-level set is denoted and defined by [u]® = {x €
R"/u(x) > a}. Then from (i)-(iv) it follows that [u]* € Py (R™) for all
0<a<l.

Define D : E™ x E™ — [0,00) by the equation

D(u,v) = sup{d([u]”, [v]*) /e € 0, 1]},

where d is the Hausdorff metric defined in Py(R™). It is easy to show
that D is a metric in E™ and using results of [[1], [8]], we see that (E", D)
is a complete metric space, but not locally compact. Moreover it has
a linear structure in the sense that for all u,v,w € E™, A € R we have
that
D(u+w,v+w) = D(u,v), D(Au, \v) = |A\D(u,v).

We note that (E™, D) is not a vector space. But it can be imbedded
isomorphically as a cone in a Banach space[9]. We define 0 € E™ as
0(z) = 1 if z = 0 and O(z) = 0 if z # 0. We state some theorems and
lemmas which are useful for later discussion.

THEOREM 2.1. ([2]) Let F' : I — E™ be continuous. Then for all
¢
t € I the integral G(t) = [ F(t)dt is differentiable and G'(t) = F(t).

THEOREM 2.2. ([2]) Let F : I — E™ be continuously differentiable
on I. Then

D(F(b),F(a)) < (b—a)sup{D(F'(t),0)/t € I}.

THEOREM 2.3. (Ascoli’s theorem) Let X be a compact metric space
and Y any metric space. A subset ® of the space C(X,Y") of continuous
mappings of X into Y is totally bounded in the metric of uniform conver-
gence if and only if ® is equicontinuous on X and ®(z) = {¢(z)/¢ € P}
is a totally bounded subset of Y for each x € X.

3. First and second order fuzzy differential equations

In this section we briefly state the existence and uniqueness results
for initial and boundary value problems associated with first and second
order fuzzy differential equations.

Let I =[a,b] C R and f: I x E™ — E™ be continuous. A mapping
¢ : I — E" is a solution of the initial value problem

(1) y = f(t,y), yla)=1yo
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if and only if ¢ is a solution of the integral equation

(2) y(t) = o + / f(s,y(s))ds

THEOREM 3.1. ([7]) Suppose that f : I x E™ — E™ is continuous and
bounded i.e there exists r > 0 such that

(3) D(f(t,y),0) <r, tel, yeE".

Then the initial value problem (3.1) possesses at least one solution on
the interval I.

Consider the non-linear fuzzy differential equation of second order

(4) y' = f(t,y,y)
satisfying
(5) ya)=y1 y'(a)=m

where f: I x E™ x E™ — E"™ is continuous.
If ¢ is a solution of (3.4) satisfying (3.5) if and only if ¢ is a solution
of the integral equation
t

© s =mrmt-a+ [ (6= 976u6).v(6)ds

a

THEOREM 3.2. ([4]) Suppose that f : I x E™ x E™ — E" is continuous
and suppose there exists an M > 0 such that D(f(t,y,y'),0) < M.
Then the initial value problem (3.4) satisfying (3.5) possesses at least
one solution on the interval I.

THEOREM 3.3 (4). Let f € C(I x E™ x E", E™) and satisfy
D[f(t,u,u’), f(t,v,v")] < KD(u,v) + LD(u',v")

and assume that

(b—a)?® (b—a)
=K L 1.
o} 3 + 5 <
Then the two- point fuzzy boundary value problem
(7) y' = fty.y)
(8) y(a) =y y(b) = o

has one and only one solution.
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4. Third order fuzzy differential equations

Let J = [0,c] be a closed subinterval of R and assume that f :
J X E"x E" x E™ — E" is continuous. we consider the non-linear fuzzy
differential equation of third order

(9) y" = flt.y, v y")
satisfying three point boundary condition
(10) yO0) =y yb) =y2, y'(c) =ys.

Denote by C?(J, E™) the set of all continuous twice differentiable map-
pings from J to E". We define for any ¢,v € C?(.J, E") by

H($,v) = K max D($(0) $(t))+L max D¢/ (1), /() +M max D6 (1), 4" (1)

Then (C?(J, E™), H) is a complete metric space. For any ¢ € C?(J, E™)
define F'¢ € C%(J, E™) by

Fe)(t) = / G(t, 5)f (5, 6(s), &/ (5), 6" (s))ds, ¥ t € J.
0

Where G(t,s) is the Green’s function for the homogeneous boundary
value problem. Hence ¢ € C?%(J, E") is a solution of (4.1) satisfying
(4.2) if and only if ¢ is a fixed point of F.

We know that, if ¢ € C?(J, E™) is a solution of the initial value
problem

(11) y" = [ty y")

(12) y(0) =y, ¥(0)=m, y"(0)=my
if and only if ¢ is a solution of the integral equation

t—s

)2
2 f(s,9(s),9'(s),y" (s))ds.

t
t2
(1) o) =+ e+ "2 [
0

On the other hand, if we set y”” = 2 then (4.3) and (4.4) becomes

(14) 7= ft,yy, 2)

(15) y(0) =y1, ¢(0)=m1, 2(0)=mao.
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If 4 is a solution of (4.6) satisfying (4.7), then 9 is a solution of

(16) 2(t) = ma + / £(5,9(5),9/(5), 2(5))ds.

Now define for any ¢, € C(J, E™) by

H(¢,v) = sup{D(¢(t),9(t))/t € J}.
For any ¢ € C(J, E™) define Ty as

(17) TY)(t) = ma + / £(5,4(5), 4/ (5), 2(s))ds.

LEMMA 4.1. Suppose that there exists N > 0 such that
(18) D(f(t,y,y',y"),0) <N, ¥V telJ, yy,y €E"

Then T is compact. i.e T transforms bounded sets into relatively com-
pact sets.

Proof. Let B be a bounded set in C(J, E™). The set TB = {Ty/y €
B} is totally bounded if and only if it is equicontinuous and for every
t € J the set

[TB)(t) = {[Tyl(t)/t € T}
is totally bounded subset of E™. For any tg,t; € J with ¢y < ¢; and
y € B we have
D(Tyl(to), [Ty)(t1)) < It1 — tol sup{D(F(t,y(t), ' (1), Z(1)),0)/1t € T}
— [ty — tol sup{ D(F(E y(1), ' (1), (), 0) /1 € T}
< |ty — to|N.
Thus T'B is equicontinuous. Now for any fixed ¢ we have that
D([Ty)(t), [Ty)(t')) < [t — ¥'| sup{ D(F(t,y(1), ¥/ (2), y" (1)), 0) /2 € T}
<|t—t|N
for every t' € J,y € B.
Hence we see that {[T'y|(t)/t € J,y € B} is bounded in E™. By Ascoli’s
theorem we conclude that T'B is a relatively compact subset of C'(.J, E™).
This completes the proof of the lemma.
Theorem 4.1 Suppose that f:J x E™ x E"™ x E™ — E" is continuous
and bounded, i.e., f satisfies (4.10). Then the initial value problem (4.3)
satisfies (4.4) possesses at least one solution on the interval J.
Proof. Consider the ball B = {¢) € C(J,E")/H(1,0) < N;} where
Ni = ¢N in the metric space (C(J, E"),H). lf ye TB,TB = {T¢/¢ €
B}, then y = T'¢ for some ¢ € B. Consider
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D([T¢](t), [T$)(0)) = D([T¢](t),0) A
< [t — 0| sup{D(f(t, p(t), (), ¢"(t),0)/t € J}
<tN <e¢N = Nj.
Defining 0: J — E™, 0(t) =0, t € J, we have
H(T6,T0) = sup{ D((T@)(t), [T0](1))/t € .}
< N;.
Therefore, T'¢p € B and thus T'B C B. By lemma 4.1, T is compact and
in consequence, it has a fixed point ¢ € B, which is a solution of (4.6)
satisfying (4.7). Hence the theorem.
Theorem 4.2 Let f € C[J x E™ x E™ x E™, E"] and satisfy
(19)
D[f(t,u,u,u"), f(t,v,v",v")] < KD(u,v) + LD(u',v") + M D(u",v")

and assume that
b%(3c — b) 2

(20) B=K—= —|—L%+Mc<1.
Then the three point fuzzy boundary value problem
(21) y" = flt.y, 9 y")

(22) yO0) =y yb) =y y'(c)=ys

has one and only one solution.

Proof. Clearly the homogeneous boundary value problem has only the
trivial solution. Hence the three point boundary value problem (4.13)
satisfying the boundary condition

(23) y'(0)=0 yb)=0, y"(c)=0.

has a unique solution given by
) = [ Gt (5.5(5):5/(5).0/ (5)) s,
0

where

s(2b—s)—t? .
sc[0,0] s(b—t) if s<t

b2—t2 .
G(t,s):{ if tss

2
b2 2 .
s€lbye] % —ts. if s<t
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The signs of the Green’s function and its partial derivatives are given
below over different intervals.

Function t <s<b, t<b<s, b<t<s, s<t<b s<b<t, b<s<t

G(t,s) nn nn — nn np —
Gi(t, s) np np - np np -
Gtt (t, 8) — — — 0 0 0

where nn:non-negative, np:non-positive.
It can be easily shown by elementary methods that

/ b2(3¢ — b)
< -7
(24) e [ [G(t.s)lds < T,
0
C 02
(25) Org%xc/ |Gt (t,s)|ds < 5
0
and
<
(26) ()Hgl?gxc/ |G (t,s)|ds < c.

0

Now we define F : C2(J, E™) — C?(J, E™) by
(27) [Ful(t) = /G(t, s)f(s,u(s),u'(s),u”"(s))ds
0

for all u € C%(J,E™), t € J =0, c].
Using the bounds on G,G; and Gy given by (4.16),(4.17) and (4.18),
the definition of F'u and from (4.11) we have

D([Fu](t), [Fo](1)) < / |G (¢, $)|[KD(u(s), v(s)) + LD(u(s), v'(s))
0

. +MD(u"(s),v"(s))]ds
< H(u, v)of|G(t, s)|ds

< b%(3c — b)

< 5 H(u,v),
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c

D([Fu]'(t), [Fo]' (1)) S/|Gt(t,8)\[KD(U(S),U(S))+LD(U'(S),U'(S))
0
+MD(u"(s),v"(s))]ds

Cc 62
(29) < H(u,v)/|Gt(t, $)lds < & H(u,v),
0

and
C

D([Fu]"(t), [Fv]"(t) < /|Gtt(t7 s)|[KD(u(s),v(s)) + LD(u'(s),'(s))
0
+MD(u"(s),v"(s))]ds
(30) < H(u,v) / |G1(t, 8)|ds < cH (u,v).
0

Together with (4.20), (4.21) and (4.22) we have

b2(3c — b 2
H(Fu, Fv) < [K(?’%) + L% + M H (u,v)
< BH(u,v).
From (4.12) g = K@ + L% + Mc < 1. It follows that F is a

contraction mapping in the complete metric space C2((J, E"), H). By

contraction mapping theorem F' has a unique fixed point u, which is a

unique solution of the boundary value problem (4.13) satisfying (4.15).
By applying the above procedure to the boundary value problem

y" = f(t,y(t) +pt),y' () +p'(t),y"(t) + " (1))

y(0)=0 yb)=0, 3'(c)=0
where p is a polynomial of second degree such that p'(a) = y1, p(b) = ya,
p"(¢) = y3 a unique solution y (t) is constructed. Let y(t) = y1(¢) +p(t).
Then it is easily seen that y is a solution of the boundary value problem
(4.13) and (4.14). Hence the theorem.
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