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GENERALIZED QUASI-BANACH SPACES
AND QUASI-(2;p)-NORMED SPACES

CHOONKIL PARK*

ABSTRACT. In this paper, the notion of a generalized quasi-normed space
is introduced and its completion is investigated.

We introduce quasi-2-normed spaces and quasi-(2; p)-normed spaces, and
investigate the properties of quasi-2-normed spaces and quasi-(2; p)-normed
spaces.

1. Introduction and preliminaries

It is well-known that the rational line Q is not complete but can be
enlarged to the real line R which is complete. And this completion R of Q is
such that Q is dense in R. It is quite important that an arbitrary incomplete
normed space can be completed in a similar fashion.

Banach spaces play an important role in many branches of mathematics
and its applications ([4], [5], [6], [8], [9])-

We recall some basic facts concerning quasi-Banach spaces and some pre-

liminary results.

DErFINITION 1. ([1, 7]) Let X be a linear space. A quasi-norm is a real-

valued function on X satisfying the following:

(1) ||z|| > 0 for all x € X and ||z|| = 0 if and only if x = 0.
(2) ||IAz]| = |A| - ||z|| for all A € R and all z € X.
(3) There is a constant K > 1 such that ||z + y|| < K(||z|| + ||y||) for
all z,y € X.
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The pair (X, || - ||) is called a quasi-normed space if || - || is a quasi-norm on
X.
A quasi-Banach space is a complete quasi-normed space.

A quasi-norm || - || is called a p-norm (0 < p < 1) if
[l +yll” < llz[I” + llyll”

for all ,y € X. In this case, a quasi-Banach space is called a p-Banach

space.

Given a p-norm, the formula d(z,y) := ||z — y||P gives us a translation
invariant metric on X. By the Aoki-Rolewicz theorem [7] (see also [1]), each
quasi-norm is equivalent to some p-norm. Since it is much easier to work
with p-norms than quasi-norms, henceforth we restrict our attention mainly
to p-norms.

In [2], Cho et al. defined linear 2-normed spaces and investigated the

properties of linear 2-normed spaces.

DEFINITION 2 [2]. Let X be a real linear space with dim X > 2 and ||, || :

X? — [0,00) a function. Then (X, ||-,-]|) is called a linear 2-normed space if
(2N1) ||z,y|| = 0 <= x and y are linearly dependent,
(2N2) [z, yll = lly, =[],
(2N3) [laz, yl| = |aflz, ],
(2N4) |z +y, 2l < Iz, 2l + lly, 2]l
for all @ € R and all z,y,z € X. The function |-, | is called a 2-norm on
X.

In [3], Chu et al. defined the notion of 2-isometry and proved the Rassias
and Semrl’s theorem in linear 2-normed spaces.

In this paper, we introduce the notion of generalized quasi-normed spaces,
quasi-2-normed spaces and quasi-(2; p)-normed spaces, and investigate the
properties of generalized quasi-normed spaces, quasi-2-normed spaces and

quasi-(2; p)-normed spaces.
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2. Completion of generalized quasi-normed spaces
In this section, we generalize the concept of quasi-normed spaces and

investigate the completion of the generalized quasi-normed space.

DEFINITION 3. Let X be a linear space. A generalized quasi-norm is a

real-valued function on X satisfying the following:

(1) |lz|| > 0 for all x € X and ||z|| = 0 if and only if z = 0.
(2) || Ax| =|A| - ||z|| for all A € R and all x € X.
(3) There is a constant K > 1 such that || 3372, x| < 3272, K|l for
all 21,20, -- € X with Z;’il zj € X.
The pair (X, || - ||) is called a generalized quasi-normed space if || - || is a
generalized quasi-norm on X.
A generalized quasi-Banach space is a complete generalized quasi-normed
space.
A generalized quasi-norm || - || is called a generalized p-norm (0 < p < 1)
if
[+ ylI” < [l + lly[|”

for all z,y € X. In this case, a generalized quasi-Banach space is called a

generalized p-Banach space.

DEFINITION 4. Let (X, || -|x) and (Y,]| - ||y) be generalized quasi-normed

spaces.

(1) A mapping L : X — Y is said to be isometric or an isometry if for

all z,y e X
ILz = Lylly = [l =yl x-
(2) The space X is said to be isometric with the space Y if there exists

a bijective isometry of X onto Y. The spaces X and Y are called

1sometric spaces.

THEOREM 1. Let X = (X, || - ||x) be a generalized quasi-normed space.

Assume that the generalized quasi-norm || - || is a p-norm. Then there exist
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a generalized quasi-Banach space X and an isometry L from X onto a

subspace Y of X which is dense in X. The space X is unique up to isometry.

Proof. We divide the proof into four steps.
Step I. We construct a generalized quasi-Banach space (X, || - | <)
Let {z,} and {z],} be Cauchy sequences in X. Define {z,} to be equiv-

alent to {z/,}, written {z,} ~ {2/ }, if
(2.1) limn—onxn - w;zHX =0.

Let X be the set of all equivalence classes of Cauchy sequences. We write
{zn} € T to mean {z,} is a member of T and a representative of the class
Z.

We must make X into a vector space. To define on X the two algebraic
operations of a vector space, we consider any 7,7 € X and representatives
{z,} € 7 and {y,} € y. We set 2z, = z,, + yn. Then {z,} is Cauchy in X

since

||Zn - ZmHX = ||37n + Yn — (xm + ym)HX < KHxn - ‘TmHX + KHyn - ymHX

We define the sum z = Z+ ¥ of Z and ¥y to be the equivalence class for which
{zn} is a representative, i.e., {z,} € Z. This definition is independent of
the particular choice of Cauchy sequences belonging to Z and 7. In fact, the
equality (2.1) shows that if {z,,} ~ {z] } and {y,} ~ {y,,}, then {z, +y,} ~
{z, + y.,} because

n + yn = (@), + yp)llx < Kllzn — 20[lx + Kllyn = ypllx-

Similarly, we define the product aZ € X of a scalar @ and 7 to be the
equivalence class for which {ax,,} is a representative. Again, this definition
is independent of the particular choice of a representative of . The zero
clement of X is the equivalence class containing all Cauchy sequences which
converge to zero. It is not difficult to see that those two algebraic operations

have all the properties required by the definition, so that X is a vector space.
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We now set
(2.2) 17 =yl g = limn—oolln = ynllx,
where {z,,} €  and {y,} € y. We show that this limit exists. We have
lzn = ynlk < llen = 2mlli + l2m = yml% + lym = ynllk-

So

lzn = ynlk = l2m = ymlk < ll2n — 2l + lym — onl,
and a similar inequality with m and n interchanged, i.e.,

12m = ymll% = ll2n — vnllx < llon = 2ml% + lym — yall-
Hence
2:3) |l =yl = llom = ymll5| < lzn =zl + [1ym — ynll%-

Since {z,} and {y,} are Cauchy, we can make the right side as small as we
please. This implies that the limit in (2.2) exists since R is complete.

We must show that the limit in (2.2) is independent of the particular
choice of representatives. If {x,,} ~ {z/,} and {y,} ~ {y/,}, then by (2.1)

lln = ynll% = 2% =yl | < llon — 20 % + llyn =l
which tends to zero as n — oco. This implies the assertion
m ||z, —ynlx = lim 27, — ypllx.
n—oo n—oo

Now we prove that || - || ¢ in (2.2) is a generalized quasi-norm on X.
Obviously, || - || satisfies Definition 3 (1) and (2). Furthermore, since

|||l x is a generalized quasi-norm on X, there is a constant K > 1 such that

o0 o0
1Y " willx < Kllaglx
j=1 j=1
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for all 1,29, - € X. Thus
o0 o0
1Y gl <> Kl 5
j=1 j=1

fOI‘ au aaaa'” E)? SO || : H)?

Note that the inequality (2.2) implies that the generalized quasi-norm

is a generalized quasi-norm on X.

| - | is equivalent to a generalized p-norm.

Step II. We construct an isometry L : X — Y C X.

With each b € X we associate the class b € X which contains the constant
Cauchy sequence (b,b---). This defines a mapping L : X — Y onto the
subspace Y = L(X) C X. The mapping L is given by b — b= Lb, where
(b,b,---) € b. We see that L is an isometry since (2.2) becomes simply

16 =cllg =116 —clx-

Here ¢ is the class of {y,} where y,, = c for all n € N. Any isometry is
injective, and L : X — Y is surjective since L(X) =Y. Hence Y and X are
isometric.

From the definition it follows that on Y the operations of vector induced
from X agree with those induced from X by means of L.

We show that Y is dense in X. We consider any 7 € X. Let {z,} € Z.
For every € > 0 there is an N € N such that
€
2
for all n > N. Let (zn,zn, - +) € Zy. Then zy € Y. By (2.2),

[z —zN|lx <

~ —~ . €
Iz - 2nlg = lim flzn —2nllx < 5 <e

This shows that every e-neighborhood of the arbitrary z € X contains an
element of Y. Hence Y is dense in X.

Step III. We prove the completeness of X.

Let {z,} be any Cauchy sequence in X. Since Y is dense in X, for every
Z, there is a z,, € Y such that

— 1
(2.4) 18 - Zlg < =
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Hence by Definition 3 (3),

12m = Znllg < Kl[Zm = Zmllg + Kl|Zm = Znll g + KllZm - Zll%
<K Kl - malg +
and this is less than any given € > 0 for sufficiently large m and n because
{Z,} is a Cauchy sequence. Hence {Zz,} is a Cauchy sequence. Since L :
X — Y is isometric and z, € Y, the sequence {z,}, where 2, = L™1(z,),
is a Cauchy sequence in X. Let Z € X be the class to which {z,} belongs.
We show that Z is the limit of {Z,}. By Definition 3 (3) and (2.4),

1Zn — 2l g < KllZn — Zall g + KllzZa — 2l

K .
(2.5) <~ + K% - dllg.

Since {z,} € T and z,, € Y, so that (zm, 2Zm, Zm, "+ ) € Zm, the inequality
(2.5) becomes

N K )
|Tn — 2|l < — + K lim ||z, — zn||x
n m—o0

and the right side is smaller than any given € > 0 for sufficiently large n.
Hence the arbitrary Cauchy sequence {Z,} in X has the limit 7 € X , and
X is complete.

Step IV. We show the uniqueness of X up to isometry.

If ()~( .|l %) is another complete metric space with a subspace Z dense in
X and isometric with X , then for any z,y € X we have sequences {Z, }, {yn }

in Z such that z,, — 7 and y,, — ¥. So
&~ llx = lim |17 — 55
follows from
17 = 312 — 17 — Gall%] < I — Fll% + 7 — Fal% — 0.

Here the inequality is similar to (2.3). Since Z is isometric with Y C X and
Y=X , the norms on X and X must be the same. Hence X and X are

isometric. n
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COROLLARY 2. Let X = (X, ||-||x) be a quasi-normed space. Then there
exist a quasi-Banach space X and an isometry L from X onto a subspace

Y of X which is dense in X. The space X is unique up to isometry.

3. Quasi-(2; p)-normed spaces
In this section, we introduce the concept of quasi-2-normed spaces and
quasi-(2; p)-normed spaces. and investigate the properties of quasi-2-normed

spaces and quasi-(2; p)-normed spaces.

DEFINITION 5. Let X be a linear space. A quasi-2-norm is a real-valued
function on X x X satisfying Definition 2 (2N7), (2N2), (2N3) and the
following: There is a constant K > 1 such that ||z+y, z|| < K|z, 2|+ K ||y, z||
for all z,y,z € X. The pair (X,|-,]|) is called a quasi-2-normed space if
|-, -|l is & quasi-2-norm on X. The smallest possible K is called the modulus
of concavity of ||-,-|.
A quasi-2-norm ||-, -|| is called a quasi-p-norm (0 < p < 1) if
2 +y, 2P <, 2P + [ly, 2[”

for all z,y,2z € X.

THEOREM 3. Let (X, |-, -||) be a quasi-2-normed space. There is ap (0 <

p < 1) and an equivalent quasi-2-norm |||-, ||| on X satisfying
2+, 21" < [, 2|[" + [lly, 2"
for all x,y,z € X.

Proof. Let K be the modulus of concavity of |-, ]| and r a real number

such that 2+ = 2K. Let z € X be fixed and define a new quasi-2-norm by

2, 2l[] = mf{ (D g ") 7 2= ay).

It is obvious that |||ax, z||| = || |||z, 2|||, that |||z, z||| < ||z, 2|, and that

||, ||| satisfies the required inequality. We are going to show that

n n
1 1
(3.1) 1D 22l <47 Ny, 2ll7)
j=1 j=1
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for all {z;}”?_,. This implies that ||z, z| < 47 |||z, z||| and concludes the
proof. For every x € X put N,(x) = 2%, where the integer m is chosen so
that 27 < |z, 2| < 2%. With this notation, the inequality (3.1) follows
once we show that

n

(3.2) 1D w52l <27 (3 Nalwy)") 7

Jj=1

If there are two x;’s, say x1 and x, such that N,(z;) = N,(x2) = 27, then
J

we can replace the pair 1,29 in the proof of (3.2) by their sum. Indeed,

m—+1

21 4 2, 2| < K||z1, 2| + K||20, 2|| < 2K - 27 =27+
by the choice of r. Thus
Nz(fbl + .%‘Q)T S 2m+1 = NZ(.%l)r + Nz(m‘g)r.

Using this remark and rearranging the x;’s, we may assume that the se-

n

quence {N(z;)}7_, is strictly decreasing. So

j—1
|2, 2] < N2(a5) <277 Na(a1)

forall j (1 <j<n).
Repeated use of the definition of the concavity modulus and the definition
of r give

1D a2l < Kl 2l + K22z, 2] + -+ + K[l 2]

Jj=1
<3 N.(z)K727 T =2 N(21) Y277
j=1 j=1
<27 N, (21) <27 (D Nalz))")7,
j=1

as desired. O
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DEFINITION 6. Let X be a quasi-2-normed space.

(1) Asequence {z,} in X is called a Cauchy sequence if lim,, p— o0 ||Zm—
T, z|| =0 for all z € X.

(2) A sequence {z,} in X is called a convergent sequence if there is an
z € X such that lim,, . ||z, —x, z|| =0 for all z € X.

(3) A quasi-2-normed space in which every Cauchy sequence converges

is called complete.

Problem. Construct a completion of a quasi-2-normed space.
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