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SCALED VISUAL CURVATURE AND VISUAL FRENET

FRAME FOR SPACE CURVES

Myungjin Jeon

Abstract. In this paper we define scaled visual curvature and
visual Frenet frame that can be visually accepted for discrete space
curves. Scaled visual curvature is relatively simple compared to
multi-scale visual curvature and easy to control the influence of
noise. We adopt scaled minimizing directions of height functions
on each neighborhood. Minimizing direction at a point of a curve
is a direction that makes the point a local minimum. Minimizing
direction can be given by a small noise around the point. To reduce
this kind of influence of noise we exmine the direction whether it
makes the point minimum in a neighborhood of some size. If this
happens we call the direction scaled minimizing direction of C at
p ∈ C in a neighborhood Br(p).

Normal vector of a space curve is a second derivative of the curve
but we characterize the normal vector of a curve by an integration
of minimizing directions. Since integration is more robust to noise,
we can find more robust definition of discrete normal vector, visual
normal vector. On the other hand, the set of minimizing directions
span the normal plane in the case of smooth curve. So we can find
the tangent vector from minimizing directions. This lead to the
definition of visual tangent vector which is orthogonal to the visual
normal vector. By the cross product of visual tangent vector and
visual normal vector, we can define visual binormal vector and form
a Frenet frame.

We examine these concepts to some discrete curve with noise
and can see that the scaled visual curvature and visual Frenet frame
approximate the original geometric invariants.
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1. Introduction

There have been many attempts to find discrete curvature of space
curves inherited from smooth curve. Several method was proposed such
as curve fitting [6], osculating circle [4], angular defect [2], three point
approximation [1].

There are some ways to define discrete Frenet frame for discrete
curves. Simple method is to use the forward differences. For example,
we can define Frenet frame for a discrete curve(ploygon).[8]

C = [· · · , pk−1, pk, pk+1, · · · ]

tk =
∆pk
||∆pk||

bk =
tk−1 × tk
||tk−1 × tk||

nk = bk × tk
where ∆pk is the forward difference ∆pk = pk+1 − pk.(ref. [8]) This can
be an approximation to the Frame frame of a smooth curve. In other
words, if the points of the polygon C are on the smooth curve β and
||∆pk|| → 0, then the discrete Frenet frame {tk, nk, bk} the polygon C
converges to the (original) Frenet frame {T,N,B} of β in the order 1.

The weakness of this definition is that it assumes an interpolation
curve which passes the vertices of the given polygon. But in many ap-
plications, the original curve may not be an interpolation of the polygon.
For example, if C is a data obtained by a 3-dimensional scan then the
point data are not on the original 3D curve but near the original curve.
So this simple definition of discrete Frenet frame can not be applied to
this kind of discrete curves and we need some other definition of Frenet
apperatus which can be applied to the approximation curve data.

Most of these method do not pay much attention to the noise in the
discrete curve. The noise can be added to a discrete curve in the process
of sampling. So the method to reduce the influence of noise is needed.
One of the ways to reduce the influence of noises and errors in the anal-
ysis of discrete curve is to redefine the geometric invariants by averaging
the behavior of nearby points and nearby data. An attempt was made
in [7] by using height functions and multi-scale visual curvature.

In this article we use the height functions defined by directions to
define geometric invariants of curves. The difference compared to the
other method is that it uses a kind of integration to define differential
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geometric invariants. So it can have advantages in dealing with noisy
data to calculate the geometric invariants such as curvature, torsion
and Frenet frame. The purpose of this article is to define a robust
discrete curvature and Frenet frame(tangent vector, normal vector and
binormal vector) using height functions. In [5] and [7], multi-scale visual
curvature was defined to reduce the influence of noises in a complex way.
In this paper we introduce a simple way of scaling. We define a scaled
minimizing direction and scaled visual curvature that can reduce the
influence of noises by the choice of minimizing direction which can make
the point minimum in a neighborhood of fixed radius. We also define
the visual Frenet frame by using the scaled minimizing directions. And
we apply these notions to some discrete curve with noise and we can see
that how much the influence of the noise can be reduced by the scaled
visual curvature and visual Frenet frame.

2. Curvature and Frenet frame of smooth curves

We introduce some concepts on space curves needed to study the
discrete version of the geometry of space curves.(ref. [3])

Let β be a unit speed smooth curve in E3 with parameter s. Tangent
vector T (s) of the curve β at β(s) is defined by the velocity of β

T (s) = β′(s)

The rate of change of the tangent vector T ′(s) have two kinds of geomet-
ric significance. If T ′(s) 6= 0, the direction of T ′(s) is a normal direction
where the curve bent and we call it the normal vector

N(s) =
T ′(s)

||T ′(s)||
The norm ||T ′(s)|| measure the amount of rate of change of the direction
of the curve and we call it the curvature κ(s)

κ(s) = ||T ′(s)||

At a point p = β(s) on β, the tangent vector T (s) and normal vector
N(s) of β at p spans the osculating plane Πo(s) of β at p and form the
Frenet frame T (s), N(s), B(s) with the binormal vector B(s) of β at p.

B(s) = T (s)×N(s)

The plane ΠN (s) spanned by N(s) and B(s) is called the normal
plane of β. The following suggests a geometric meaning of these planes.
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• Osculating plane Πo(s) is the plane on which the curve β almost
live near the point β(s).
• Normal plane Πn(s) is the plane normal to the curve β at β(s)

Since T (s), N(s), B(s) forms a frame at β(s), Πo(s) is normal to B(s)
and Πn(s) is normal to T (s).

Note 2.1. For convenience we can abbreviate the parameter s or
insert p instead of s if it is not confusing.

T, T (s), T (p)

3. Scaled visual curvature

Let C be a space curve. For a direction α ∈ S2 where S2 is the unit
sphere in 3-dimensional Euclidean space, the height function Hα on
C in the direction α is defined by

Hα(s) = α · C(s)

For a point x ∈ C, the set of minimizing directions of x is defined
by

A(x) = {α ∈ S2 | x is a strict local minimum point of Hα}
For small r > 0, the turning angle of C at p ∈ C is defined by

θr(p) =
1

2
area

(
∪x∈C∩Br(p)A(x)

)
where Br(p) ⊂ E3 is the open ball of radius r centerd at p.

The following theorem was proved in [5] to find an approximation of
the curvature of space curves.

Theorem 3.1. (ref. [5]) For a smooth curve C, we have

κ(p) = lim
r→0

θr(p)

2r

for every p ∈ C where κ(p) is the curvature of C at p.

In view of this theorem, curvature κ(p) can be approximated by

κ(p) ∼=
θr(p)

2r
for sufficiently small r. This leads to the definition of visual curvature
of space curves.

For discrete curves there may be noises. So when we consider the
minimizing directions, the micrescopic minimizing direction may not be
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with noise.png

with noise1-1.png

Figure 1. left: close look on the vertical, right: 1-1 ratio

a local minimizing direction due to the noises. For example, Figure 1 is a
line and line with noise. (Be sure to checkout the scale. In the left figure,
the vertical axis is almost 500 times the horizontal axis. The figure in
the right is in the 1-1 scale.) Blue dashed polygon is the original line
segment and the red solid polygon is a variation of this line by noise.
In the red polygon, for the direction ~u = (0, 1, 0) the fifth point is a
local minimum if the neighborhood is consisted of three points. But its
is not a local minimum in the neighborhood including five point before
and after this point. In this case, three points are not enough as a
neighborhood for a discrete curve with noise.

In the computation of discrete geometric invariants such as discrete
curvature, too small neighborhood can be much influenced by the noises.



42 Myungjin Jeon

Hence if we want to reduce the influence of noise in the study of discrete
curves, we need to calculate geometric objects on a neighborhood of
some size.

Discrete analogue of 3-dimensional directions S2 is given by the ver-
tices Vn of the polyhedron Λn = (Vn, En, Fn) constructed through the
subdivision of icosahedron inscribed in the unit sphere.(ref. [5]) Using
the set of directions Vn which consist of almost uniformly distributed
unit vectors in E3, we can define the set of visual minimizing directions.

Definition 3.2. Let C be a discrete space curve, then the set of
scaled minimizing directions at x ∈ C in the neighborhood Br(x)
with respect to the polyhedra Λn = (Vn, En, Fn) is defined by

An,r(x) = {α ∈ Vn|x is a strict minimum of Hα in Br(x)}

for n, r > 0.

Note that

An,r(x) ⊂ Vn ∩A(x)

and An,r(x) can be a proper subset of Vn ∩A(x).

The local union SMn,r(p) at p ∈ C of scaled minimizing directions is
related to many geometric invariants.

SMn,r(p) = ∪x∈C∩Br(p)An,r(x)

for some small r > 0 and large n > 0.

With this scaled minimizing directions, we can define the scaled turn-
ing angle and scaled visual curvature.

Definition 3.3. For a discrete space curve C, scaled turning angle
θn,r(p) and scaled visual curvature κn,r(p) at p ∈ C are defined by
the followings:

θn,r(p) =
2π| SMn,r(p)|

|Vn|

κn,r(p) =
θn,r(p)

2r

It can be shown that the scaled visual curvature κn,r(p) tends to the
curvature κ(p) as n → ∞, r → 0. So the scaled visual curvature κn,r
can be used as an approximation of the curvature κ for sufficiently small
r > 0 and large n. The main benefit of scaled visual curvature is that it
can reduce the influence of the noises for an appropriate r.
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4. Characterization of Frenet frame in terms of height func-
tions

In this section we provide a characterization of the Frenet frame of a
smooth space curve given by height functions that can be used to define
a discrete Frenet frame.

4.1. Normal vector

Normal vector of a smooth space curve is a kind of second derivative,
but we can characterize the normal vector by an integration by the
following lemma proved in [5] for smooth space curves.

Lemma 4.1. Let C be a smooth space curve and let κx be the cur-
vature of C at x ∈ C. If κx 6= 0, then for each ϕ ∈ (−π/2, π/2), x is
a local minimum of the height function Hu on C defined by the vector
u = cosϕ · Nx + sinϕ · Bx where Nx, Bx are the principal normal and
binormal vectors of C at x, respectively.

So in the situation of Lemma 4.1, the set of minimizing direction
A(x) of x ∈ C is given by

A(x) =
{

cosϕ ·Nx + sinϕ ·Bx | −
π

2
< ϕ <

π

2

}
The normal vector of a smooth curve can be expressed by the sum of

minimal directions.

Theorem 4.2. Let p be a point on a smooth space curve C and the
curvature κp of C at p is not zero, then the (principal) normal vector
Np of C at p is given by the average of minimizing directions of p.

(4.1) Np =
1

2

∫
u∈A(p)

u

where A(p) is the set of minimizing directions of p.

Proof. By the Lemma 4.1 we have

1

2

∫
u∈A(p)

u =
1

2

∫ π
2

−π
2

u(ϕ)dϕ

=
1

2

∫ π
2

−π
2

(cosϕ ·Np + sinϕ ·Bp) dϕ

= Np

where Np, Bp are the principal normal and binormal vectors of C at p,
respectively.
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Note that the normal vector of a curve is defined by a second derivative
(for arclength parametrized curves), but the equation (4.1) on normal
vectors do not use differentiation but integration. This can lead to a
descretization of normal vectors.

4.2. Tangent vector

The tangent vector of a smooth curve is normal to the normal plane
Πn(p) at p spanned by principal normal vector and binormal vector.
For a smooth curve C, the set of minimizing directions A(p) at a point
p ∈ C is lying in the normal plane Πn(p). So the tangent vector of a
curve can be given by the normal vector to the plane spanned by A(p).
But the unit normal vector of a plane is not unique and this depends on
the parametrization of the curve.

We can characterize tangent vector of a smooth curve by the mini-
mizing directions as follows.

Theorem 4.3. Let C be a smooth space curve defined on some open
interval containing 0 with parameter t and the curvature κ0 at t = 0 is
not zero, then we have

T = sign(~d · ~σ)~σ

where ~σ is a unit normal vector of the plane spanned by A(p), ~d is a

displacement vector ~d = C(t) − C(0) for sufficiently small t > 0 and
sign(a) = a

|a| for a nonzero real number a.

4.3. Frenet frame

Now we can characterize the Frenet frame for a smooth space curve
without differentiation and by using height functions and averaging by
integration.

Theorem 4.4. Let C be a smooth space curve defined on an open
interval containing 0 and A(p) is the set of minimizing directions at
p = C(0), then the Frenet frame T,N,B at p is given by the followings:

T = sign(~d · ~σ)~σ

N =
1

2

∫
u∈A(x)

u

B = T ×N

where ~σ is a unit normal vector to the plane spanned by A(x) and ~d is

the displacement vector ~d = C(t)− C(0) for sufficiently small t > 0.
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5. Visual Frenet frame

5.1. Visual normal vector

The first vector of Frenet frame we can define is the normal vector of
a curve. In the expression of visual curvature using height function, we
measure the amount of minimizing directions near a point.

To define a discrete geometric invariants such as discrete normal vec-
tor which can be applied to discrete or digital curves, we need an averag-
ing near the point because of the possible errors. Theorem 4.4 suggests
the following discrete version of principal normal vector of a space curve.

The normalized local average of the minimizing directions may be an
approximation of the principal normal vector at a point.

Definition 5.1. Let C be a space curve, the visual normal vector
Nn,r(p) of C at p ∈ C is defined by

Nn,r(p) =

∑
u∈ SMn,r(p)

u

‖
∑

u∈SMn,r(p)
u‖

for some small r > 0 and large n > 0.

Note that we approximate the integration by a sum in the equation
(4.1).

5.2. Visual tangent vector and Frenet frame

For a smooth curve C, the set of minimizing directions A(x) at a
point x ∈ C spans the normal plane of C at x which is orthogonal to
the tangent vector of C at x. So the tangent vector can be characterized
as the normal vector of the plane spanned by the set of minimizing
directions A(x). Threrfore we can think about the average of the cross
products u × v for u, v ∈ A(x) as a normal vector. But this is zero
because of the skew symmetry of the cross product.

We need a suitable criterion which have to be choson for the well
oriented normal vector between u× v and v × u.

Definition 5.2. For a smooth curve C, the direction ~d of C at a
point C(t) is given by the displacement vector

~d = C(t+ h)− C(t)

for small h > 0.
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For a discrete space curve C given by a sequence of points {pk} and
pk ∈ C, the direction of C at a point pk ∈ C is given by the average

~d =

ν∑
i=1

(pk+i − pk)

for some ν > 0

For a non-smooth curve, discrete curve or digital curve, the minimiz-
ing directions may not lie in a plane. So the plausible candidate for
the approximation of tangent vector is the average of the perpendicular
vectors of every pairs of vectors in the set of minimizing directions.

Let us use the sign function on real numbers and define some function
and sets.

sign(a) =


1, a > 0

0, a = 0

−1, a < 0

For u, v ∈ SMn,r(p), we define the orientation of (u, v) with respect to
~d by

σ(u, v) = sign(~d · u× v)

According to the Theorem 4.3, we can define a discrete tangent vector
of a discrete space curve.

Definition 5.3. For a discrete space curve C, the visual tangent
vector Tn,r of C at p ∈ C is defined by

Tn,r(p) =

∑
v∈SMn,r(p)

σ(N, v)N × v
‖
∑

v∈SMn,r(p)
σ(N, v)N × v‖

for some small r > 0 and large n > 0.

Obviously visual tangent vector is orthogonal to the visual normal
vector.

Tn,r(p)⊥Nn,r(p)

Remark 5.4. The first candidate of a normal plane of a discrete
space curve is the average of the planes spaned by every pair of minimal
directions u, v ∈ SMn,r(p).

Span{u, v} = {au+ bv|a, b ∈ R}
But we can not gaurantee that this plane contains the visual normal
vector Nn,r(p). So we choose the plane containing Nn,r(p) as a normal
plane which is almost normal to the curve.
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It is natural to define visual binormal vector Bn,r by

Bn,r(p) = Tn,r(p)×Nn,r(p)

for some small r > 0 and large n > 0.
Now we have visual Frenet frame.

Definition 5.5. Let C be a space curve, the visual Frenet frame
Tn,r(p), Nn,r(p), Bn,r(p) of C at p ∈ C is defined by

Nn,r(p) =

∑
u∈ SMn,r(p)

u

‖
∑

u∈SMn,r(p)
u‖

Tn,r(p) =

∑
v∈SMn,r(p)

σ(Nn,r(p), v)Nn,r(p)× v
‖
∑

v∈SMn,r(p)
σ(Nn,r(p), v)Nn,r(p)× v‖

Bn,r(p) = Tn,r(p)×Nn,r(p)

Obviously Tn,r(p), Nn,r(p), Bn,r(p) are orthonormal and forms a
frame at p ∈ C.

6. Implementations

The number of the set of vertex Vn of the polyhedron Λn is as follows:

|V1| = 12, |V2| = 42, |V3| = 162, |V4| = 642, |V5| = 2562, · · ·
We can try to use V4 to compute the visual Frenet apperatus.

Remark 6.1. It is not difficult to compute the number of the ver-
tices, edges, faces of the polyhedron Λn = (Vn, En, Fn) according to the
algorithm of the subdivision.

|Vn| = 10 · 4n−1 + 2

|En| = 30 · 4n−1

|Fn| = 20 · 4n−1

Let C : [−π, 2π]→ R3 be a space curve defined by

C(t) = (2 cos t, sin t, sin 2t)

and Figure 2 is the graph of C
For the comparison of cuavature and scaled visual curvature, Frenet

frame and visual Frenet frame, we discretize in two ways. Discrete curve
dc consists of 160 equally spaced sampling point on the curve C.

dc[k] = C

(
2π

160
k

)
, k = 0, · · · , 160
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Figure 2. graph of C

Discrete curve dcN is generated from dc with random noise.

dcN [k] = (dc[k]x + roll(), dc[k]y + roll(), dc[k]z + roll())

where roll() is a random number function with range [−0.01, 0.01]. The

ratio of the noise relative to the length of the segment dc[k − 1]dc[k] is

||dc[k]− dcN [k]||
||dc[k]− dc[k − 1]||

: 0.1 ∼ 0.2

So the noise are more than 10% the length of the segment and it is not
so small.

6.1. Comparison of scaled visual curvature

Figure 4 is the graph of the curvature κ of C. κ has minimum κ(π2 ) '
0.125 and maximum κ(34π) ' 1.678(t = π

2 corresponds to k = 40 and

t = 3
4π to k = 60). So let’s estimate scaled visual curvature on these

extreme points.

The radius r of the neighborhood Br(p) is an important factor to
reduce the errors from discretization and noise. So we estimate the
scaled visual curvature for various r.

Figure 5, 6, 7, 8 are the result for the scaled visual curvature of dc
and dcN with respect to the direction set V4 and V5. In each case,
we can think that r = 0.3 to r = 0.5 may be a reasonable choice for
computation that is about 10% of the diameter of C.
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Figure 3. the graph of dc(blue) and dcN(red) from k =
50 to k = 70

Figure 4. the curvature of C

r 0.2 0.3 0.4 0.5 0.6
dc 0.171 0.179 0.184 0.186 0.155
dcN 1.639 0.424 0.208 0.147 0.147

Figure 5. visual curvature of dc and dcN at t = π
2 for

r = 0.2, · · · , 0.6 with respect to the direction V4

6.2. Comparison of visual Frenet frame

The following tables are the estimation of the differences between
Frenet frame of C and visual Frenet frame of discrete curves dc and
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r 0.2 0.3 0.4 0.5 0.6
dc 0.129 0.135 0.156 0.164 0.157
dcN 1.58 0.466 0.224 0.135 0.143

Figure 6. visual curvature of dc and dcN at t = π
2 for

r = 0.2, · · · , 0.6 with respect to the direction V5

r 0.2 0.3 0.4 0.5 0.6
dc 1.737 1.403 1.395 1.439 1.272
dcN 1.908 1.419 1.346 1.439 1.305

Figure 7. visual curvature of dc and dcN at t = 3
4π for

r = 0.2, · · · , 0.6 with respect to the direction V4

r 0.2 0.3 0.4 0.5 0.6
dc 1.711 1.435 1.413 1.420 1.275
dcN 1.950 1.447 1.343 1.405 1.306

Figure 8. visual curvature of dc and dcN at t = 3
4π for

r = 0.2, · · · , 0.6 with respect to the direction V5

r ||Tn,r − T || ||Nn,r −N || ||Bn,r −B||
0.2 0.0063737209 0.0362489706 0.0367926590
0.3 0.0207083988 0.0292804505 0.0339332541
0.4 0.0141485989 0.1143342159 0.1151618310
0.5 0.0150711665 0.1240141067 0.1249176469
0.6 0.0275783098 0.1501893212 0.1502312866

Figure 9. Errors of visual Frenet frame of dc at t = 3
4π

for r = 0.2, · · · , 0.6 with respect to the direction V4

dcN on the highly curved point C(3π4 ). We can see that the errors are
very small. Especially the visual binormal vector is almost the same
as the binormal vector. Even for the curve with noise dcN , if we use
the direction set V5 then the errors are reduced. This is a good sign to
compute the torsion from visual binormal vectors.

Figure 13 is a comparison of Frenet frames and visual Frenet frame
computed at t = π

2 for r = 0.3. Green arrows are the original Frenet
frame and red arrows are the visual Frenet frame. The first figure is for
the discrete curve without noise and the second one is for the discrete
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r ||Tn,r − T || ||Nn,r −N || ||Bn,r −B||
0.2 0.0280021748 0.0298417961 0.0104300432
0.3 0.0427893425 0.0431578939 0.0105569488
0.4 0.1073525604 0.1077334445 0.0092225186
0.5 0.1243922458 0.1250471759 0.0153994104
0.6 0.1386756479 0.1386534343 0.0193921373

Figure 10. Errors of visual Frenet frame of dc at t = 3
4π

for r = 0.2, · · · , 0.6 with respect to the direction V5

r ||Tn,r − T || ||Nn,r −N || ||Bn,r −B||
0.2 0.0383752660 0.0815392371 0.0838795553
0.3 0.0973243114 0.1241313283 0.1577155270
0.4 0.0448558156 0.1201997691 0.1260177116
0.5 0.0312664971 0.1277844949 0.1308688386
0.6 0.0467746360 0.1734211681 0.1739159952

Figure 11. Errors of visual Frenet frame of dcN at t =
3
4π for r = 0.2, · · · , 0.6 with respect to the direction V4

r ||Tn,r − T || ||Nn,r −N || ||Bn,r −B||
0.2 0.0721382400 0.0358854178 0.0628570149
0.3 0.0807831468 0.1534088629 0.1314660284
0.4 0.1114275744 0.1152796563 0.0334638656
0.5 0.1327347162 0.1343683176 0.0256676292
0.6 0.1602286246 0.1655283115 0.0553901561

Figure 12. Errors of visual Frenet frame of dcN at t =
3
4π for r = 0.2, · · · , 0.6 with respect to the direction V5

curve with noise. We can see that the visual Frenet frame of the dis-
crete curve without noise is almost same and the visual Frenet frame of
discrete curve with noise is slightly different but not that much.

Figures 14 is the visual Frenet frames at t = 3
4π.

7. Conclusion

The visual curvature and multi-scale visual curvature suggested in
[7], [5] is intended to design to reflect the human visual perception. But
the multi-scale visual curvature is very complicated and not easy to use.
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Figure 13. visual Frenet frame at t = 1
2π for r = 0.3

with respect to the direction V4. left: dc, right: dcN

Figure 14. visual Frenet frame at t = 3
4π for r = 0.3

with respect to the direction V4. left: dc, right: dcN

In this article, we suggest a simple way to adopt the scale and define
the scaled minimal directions. With this scaled minimal direction scaled
visual curvature and visual Frenet frame is defined in a natural way. We
can find that the visual Frenet frame is a good approximation to the
original Frenet frame even under the noisy situation. Using the visual
binormal vector field we may find a multi-level approximation of the
torsion of the original curve which is robust under noise.
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