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SERIES RELATIONS COMING FROM CERTAIN

FUNCTIONS RELATED TO GENERALIZED

NON-HOLOMORPHIC EISENSTEIN SERIES

Sung Geun Lim

Abstract. Using a modular transformation formula for a class of
functions related to generalized non-holomorphic Eisenstein series,
we find a new class of infinite series about identities, some of which
include generalized formulae of several Berndt’s results.

1. Introduction

In [4], the author proved a modular transformation formula for a class
of functions which stem from generalized non-holomorphic Eisenstein
series. Using this formula, we found a few class of new infinite series
identities [5, 6]. In fact, these works were motivated by the works of B.
C. Berndt who established many relations between various infinite series
[2, 3]. He used a transformation formula for a large class of functions
that comes from a more general class of Eisenstein series. He says the
flavor of his results is much like those infinite series identities found in
Ramanujan’s Notebooks [7]. We hereby state three identities of Berndt’s
results in [3], of which generalized formulae will be given in this paper.
For α, β > 0 with αβ = π2,

α

∞∑
m=0

sech2
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=
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∞∑
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He obtained (1.1) and (1.3) by differentiation of the transformation for-
mulae for the theta-functions. We see that if α = β = π in (1.1), then
(1.2) follows. Berndt [3] says that several other authors have proved (1.2)
by their own methods earlier than his work. In this paper, we continue
the study made in [5, 6]. We derive a few class of infinite series identi-
ties. Some of these results give elegant types of generalization of (1.1),
(1.2) and (1.3). In particular, it is interesting to see that our generalized
formulae of (1.1) and (1.2) look quite different(Corollary 3.3, Corollary
3.4) in consideration of the fact that (1.2) easily comes from (1.1). We
derive these identities directly from only one source, our transformation
formula without differentiation of the transformation formula. It is also
noteworthy that most of our results appear to be new.

2. Notation

In this section, we introduce the necessary notation and shall state
the principal theorem which we use to obtain our results. Let Z and C
be the set of integers and the set of complex numbers, respectively. For
z ∈ C, we choose the branch of the argument defined by −π ≤ arg z < π.
Let Γ(s) denote the Gamma function. For any non-negative integer n,
the rising factorial (x)n is defined by

(x)n = x(x+ 1) · · · (x+ n− 1) for n > 0, (x)0 = 1.

It is easy to see that

(x)n =
Γ(x+ n)

Γ(x)
.(2.1)

The confluent hypergeometric function of the first kind 1F1(α;β; z) is
defined by

1F1(α;β; z) =
∞∑
n=0

(α)n
(β)nn!

zn

and the confluent hypergeometric function of the second kind U(α, β, z)
is defined to be

U(α, β, z) =
Γ(1− β)

Γ(1 + α− β)
1F1(α;β; z) +

Γ(β − 1)

Γ(α)
z1−β 1F1(1 + α− β; 2− β; z).

The function U(α, β, z) can be analytically continued to all values of
α, β and z real or complex [8]. Let H = {τ ∈ C | Im(τ) > 0}, the upper
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half-plane. For real rk and hk(k = 1, 2), let r = (r1, r2) and h = (h1, h2).
Let e(x) = e2πix. For τ ∈ H and s1, s2 ∈ C with s = s1 + s2, define

A(τ, s1, s2; r, h) =
∑

m+r1>0

∑
n−h2>0

e (mh1 + ((m+ r1)τ + r2)(n− h2))

(n− h2)1−s

×U(s2; s; 4π(m+ r1)(n− h2)Im(τ))

and

Ā(τ, s1, s2; r, h) =
∑

m+r1>0

∑
n+h2>0

e (mh1 − ((m+ r1)τ̄ + r2)(n+ h2))

(n+ h2)1−s

× U(s1; s; 4π(m+ r1)(n+ h2)Im(τ)).

Let

H(τ, s1, s2; r, h) = A(τ, s1, s2; r, h) + eπisA(τ, s1, s2;−r,−h)

and

H̄(τ, s1, s2; r, h) = Ā(τ, s1, s2; r, h) + eπisĀ(τ, s1, s2;−r,−h).

Let

H(τ, τ̄ , s1, s2; r, h) =
1

Γ(s1)
H(τ, s1, s2; r, h) +

1

Γ(s2)
H̄(τ, s1, s2; r, h).

For real x, α and t ∈ C with Re t > 1, let

ψ(x, α, t) =
∑

n+α>0

e(nx)

(n+ α)t

and

Ψ(x, α, t) = ψ(x, α, t) + eπitψ(−x,−α, t),
Ψ−1(x, α, t) = ψ(x, α, t− 1) + eπitψ(−x,−α, t− 1).

The characteristic function of the integers is defined by λ. For a real
number x, [x] denotes the greatest integer less than or equal to x and
{x} = x− [x]. Let

V τ =
aτ + b

cτ + d
denote a modular transformation with c > 0 for τ ∈ C. Let

R = (R1, R2) = (ar1 + cr2, br1 + dr2)

and

H = (H1, H2) = (dh1 − bh2,−ch1 + ah2).

We now can state the principal theorem.
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Theorem 2.1. [5]. Let Q = {τ ∈ H | Re τ > −d/c} and % =
c{R2} − d{R1}. Let s1, s2 ∈ C with s = s1 + s2 and assume that s is
not an integer less than or equal to 1. Then, for τ ∈ Q,

z−s1 z̄−s2H(V τ, V τ̄ , s1, s2; r, h) = H(τ, τ̄ , s1, s2;R,H)
+λ(R1)e(−R1H1)(2πi)−se−πis2Ψ(−H2,−R2, s)
−λ(r1)e(−r1h1)(2πi)−seπis1z−s1 z̄−s2Ψ(h2, r2, s)

+λ(H2)(4πIm(τ))1−s Γ(s− 1)

Γ(s1)Γ(s2)
Ψ−1(H1, R1, s)

−λ(h2)(4πIm(τ))1−s Γ(s− 1)

Γ(s1)Γ(s2)
zs2−1z̄s1−1Ψ−1(h1, r1, s)

+
(2πi)−se−πis2

Γ(s1)Γ(s2)
L(τ, τ̄ , s1, s2;R,H),

where z = cτ + d and

L(τ, τ̄ , s1, s2;R,H)

=
c∑
j=1

e(−H1(j + [R1]− c)−H2([R2] + 1 + [(jd+ %)/c]− d))

×
∫ 1

0
vs1−1(1− v)s2−1

∫
C
us−1 e−(zv+z̄(1−v))(j−{R1})u/c

e−(zv+z̄(1−v))u − e(cH1 + dH2)

× e{(jd+%)/c}u

eu − e(−H2)
dudv,

where C is a loop beginning at +∞, proceeding in the upper half-plane,
encircling the origin in the positive direction so that u = 0 is the only
zero of

(e−(zv+z̄(1−v))u − e(cH1 + dH2))(eu − e(−H2))

lying inside the loop, and then returning to +∞ in the lower half plane.
Here, we choose the branch of us with 0 < arg u < 2π.

Let Bn(x) denote the n-th Bernoulli polynomial defined by

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π).

The n-th Bernoulli number Bn, n ≥ 0, is defined by Bn = Bn(0). Put
B̄n(x) = Bn({x}), n ≥ 0. Let 2F1(α, β; γ; z) be a hypergeometric func-
tion defined by

2F1(α, β; γ; z) =

∞∑
n=0

(α)n(β)n
(γ)nn!

zn,
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which has the following integral representation. For Re(γ) > Re(α) > 0
and z ∈ C\[1,∞)([1], p. 65),

2F1(α, β; γ; z) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0
tα−1(1− t)γ−α−1(1− zt)−β dt.

Remark 2.2. Let s = s1 + s2 be an integer. Suppose H1 = H2 = 0.
By the residue theorem, we find that∫

C
us−1 e

−(zv+z̄(1−v))(j−{R1})u/c

e−(zv+z̄(1−v))u − 1

e{(%+jd)/c}u

eu − 1
dudv

= 2πi

−s+2∑
k=0

Bk((j − {R1})/c)B̄−s+2−k((%+ jd)/c)

k!(−s+ 2− k)!
(−z)k−1.

We see that if s > 2, then the above sum containing Bernoulli polyno-
mials vanishes and so 1

Γ(s1)(s2)L(τ, τ̄ , s1, s2;R,H) can be defined for all

τ ∈ H.
Furthermore, we have∫ 1

0
vs1−1(1− v)s2−1

∫
C
us−1 e

−(zv+z̄(1−v))(j−{R1})u/c

e−(zv+z̄(1−v))u − 1

e{(%+jd)/c}u

eu − 1
dudv

= 2πi
−s+2∑
k=0

Bk((j − {R1})/c)B̄−s+2−k((%+ jd)/c)

k!(−s+ 2− k)!
(−z)k−1

×
∫ 1

0
(1− v)s1−1vs2−1

(
1− z − z̄

z
v

)k−1

dv

= 2πi
Γ(s1)Γ(s2)

Γ(s)

−s+2∑
k=0

Bk((j − {R1})/c)B̄−s+2−k((%+ jd)/c)

k!(−s+ 2− k)!

×(−z)k−1
2F1

(
s2, 1− k; s;

z − z̄
z

)
.

Thus we see that 1
Γ(s1)(s2)L(τ, τ̄ , s1, s2;R,H) can be defined for all values

of s1 and s2 with s = s1 + s2 ∈ Z and c(τ−τ̄)
cτ+d ∈ C\[1,∞). If s2 is an

non-positive integer and s > 0, then it can be defined for all τ ∈ H.

3. A class of infinite series identities

In this section, we obtain a class of new infinite series identities using
Theorem 2.1. The Eulerian number E(n, j) is defined to be the number
of permutations of numbers from 1 to n such that exactly j numbers are
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greater than the previous elements. Note that E(n, j) = E(n, n− j−1).
For any integer n, the polylogarithm function Lin(z) is defined by

Lin(z) =

∞∑
k=1

zk

kn
,

where z ∈ C and |z| < 1. For n > 0, we see that

Li−n(z) =
1

(1− z)n+1

n−1∑
j=0

E(n, j)zn−j .

From now on, we set

V τ =
τ − 1

cτ − c+ 1
,

where c is an positive integer. For any integer k ≥ 1, let

µk =


1

2
, k odd,

0, even.

Theorem 3.1. Let α, β > 0 with αβ = π2. For any integers B ≥ 0
and N ≥ 1,

(−1)BαN
B∑
k=0

(
B

k

)
(−α/c)k

(2N + k − 1)!

N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

×
∞∑
m=0

cosh((2m+ 1)(j + µk)(α− iπ)/c)

(2m+ 1)−k sinh2N+k((2m+ 1)(α− iπ)/(2c))

= (−β)N
B∑
k=0

(
B

k

)
(−β/c)k

(2N + k − 1)!

N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

×
∞∑
m=0

cosh((2m+ 1)(j + µk)(β + iπ)/c)

(2m+ 1)−k sinh2N+k((2m+ 1)(β + iπ)/(2c))
− δN (B, c),

where ′ means that if k is even, then the term with j = 0 is multiplied
by 1

2 and

δN (B, c) =


c

4(B + 1)
(1 + (−1)B), N = 1,

0, N ≥ 2.

Proof. For A,B,N ∈ Z, let s1 = A ≥ 1, s2 = −B ≤ 0 and s = 2N ≥
2. Put (r1, r2) =

(
1
2 , 0
)
, (h1, h2) = (0, 0), cτ − c + 1 = π

α i in Theorem
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2.1. Employing V τ = 1
c + i αcπ , we see that

A(V τ,A,−B; r, h) =

∞∑
m=0

∞∑
n=1

e−(2m+1)n(α−iπ)/c

n1−2N
U(−B; 2N ; 2(2m+ 1)nα/c).

Note that 1
Γ(s2) = 1

Γ(−B) = 0. A direct calculation with (2.1) shows that

U(−B; 2N ; 2(2m+ 1)nα/c) = (−1)B(A− 1)!

B∑
k=0

(
B

k

)
(−2(2m+ 1)nα/c)k

(2N + k − 1)!
.

Thus we have

A(V τ,A,−B; r, h) = (−1)B(A− 1)!

B∑
k=0

(
B

k

)
(−2α/c)k

(2N + k − 1)!

×
∞∑
m=0

(2m+ 1)kLi−(2N+k−1)(e
−(2m+1)(α−iπ)/c).(3.1)

Apply E(2N + k− 1, j) = E(2N + k− 1, 2N + k− j − 2) to obtain that

Li−(2N+k−1)(e
−(2m+1)(α−iπ)/c) =

21−2N−k

sinh2N+k((2m+ 1)(α− iπ)/c)

×
N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

× cosh((2m+ 1)(j + µk)(α− iπ)/c)).

Using the above equation in (3.1), we find that

A(V τ,A,−B; r, h) =
(−1)B(A− 1)!

22N−1

B∑
k=0

(
B

k

)
(−α/c)k

(2N + k − 1)!

×
N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

× cosh((2m+ 1)(j + µk)(α− iπ)/c))

(2m+ 1)−k sinh2N+k((2m+ 1)(α− iπ)/c)
.

It is easy to see that

A(V τ,A,−B;−r, h) =

∞∑
m=0

∞∑
n=1

e−(2m+1)n(α−iπ)/c

n1−2N

×U(−B; 2N ; 2(2m+ 1)nα/c)
= A(V τ,A,−B; r, h).
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Now recalling 1
Γ(s2) = 1

Γ(−B) = 0, we obtain that

H(V τ, V τ̄ ;A,−B; r, h) =
2

(A− 1)!
A(V τ,A,−B; r, h)

=
(−1)B

22N−2

B∑
k=0

(
B

k

)
(−α/c)k

(2N + k − 1)!

×
N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

× cosh((2m+ 1)(j + µk)(α− iπ)/c))

(2m+ 1)−k sinh2N+k((2m+ 1)(α− iπ)/c)
.

Note that (R1, R2) = (1
2 ,−

1
2), H = (0, 0) and τ = 1 − 1

c + i πcα . By the
same way to calculate A(V τ,A,−B; r, h), we find

A(τ,A,−B;R,H) =

∞∑
m=0

∞∑
n=1

e−(2m+1)n(β−iπ)/c

n1−2N
U(−B; 2N ; 2(2m+ 1)nβ/c)

=
(−1)B(A− 1)!

22N−1

B∑
k=0

(
B

k

)
(−β/c)k

(2N + k − 1)!

×
N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

× cosh((2m+ 1)(j + µk)(β + iπ)/c))

(2m+ 1)−k sinh2N+k((2m+ 1)(β + iπ)/c)
.

We also see that A(τ,A,−B;R,H) = A(τ,A,−B;−R,−H). Thus

H(τ, τ̄ ;A,−B;R,H) =
2

(A− 1)!
A(τ,A,−B;R,H)

=
(−1)B

22N−2

B∑
k=0

(
B

k

)
(−β/c)k

(2N + k − 1)!

×
N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

× cosh((2m+ 1)(j + µk)(β + iπ)/c))

(2m+ 1)−k sinh2N+k((2m+ 1)(β + iπ)/c)
.

The other parts of Theorem 2.1 are calculated as follows. It is easy to
see that

(cτ + d)−s1(cτ̄ + d)−s2 =
(π
α
i
)−A (

−π
α
i
)B

= (−1)BαN (−β)−N .
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Since λ(R1) = λ(1
2) = 0 and λ(r1) = λ(1

2) = 0, the equations with

λ(R1) and λ(r1) vanish. Applying 1
Γ(s2) = 1

Γ(−B) = 0, we also see that

the equations with λ(H2) and λ(h2) are equal to 0. Using Remark 2.2,
we find

(2πi)−se−πis2

Γ(s1)Γ(s2)
L(τ, τ̄ , s1, s2, ;R,H)

=
(−1)B(2πi)1−2N

Γ(2N)

c∑
`=1

−2N+2∑
k=0

Bk((`− 1/2)/c)B̄−2N+2−k((`− 1/2)/c)

k!(−2N + 2− k)!

×
(
−π
α
i
)k−1

2F1(−B, 1− k; 2N ; 2).

Note that, in the above equation, the sum for the Bernoulli polynomials
is valid only for N = 1. A short calculation shows that

2F1(−B, 1; 2; 2) =

B∑
n=0

(
B

n

)
(−2)n

n+ 1
=

(−1)B + 1

2(B + 1)
.

Finally, combining all the above results, we complete the proof.

Corollary 3.2. Let α, β > 0 with αβ = π2. For any integer N ≥ 1,

α2N

2N−1∑′

j=0

(−1)jE(4N − 1, 2N − 1− j)
∞∑
m=0

cosh((2m+ 1)jα)

cosh4N ((2m+ 1)α/2)

= β2N

2N−1∑′

j=0

(−1)jE(4N − 1, 2N − 1− j)
∞∑
m=0

cosh((2m+ 1)jβ)

cosh4N ((2m+ 1)β/2)
,

where ′ means that the term with j = 0 is multiplied by 1
2 .

Proof. Let B = 0 and c = 1 in Theorem 3.1. We have

cosh(((2m+ 1)j(α± iπ)) = (−1)j cosh((2m+ 1)jα)

and

sinh2N

(
1

2
(2m+ 1)(α± iπ)

)
= (−1)N cosh2N

(
1

2
(2m+ 1)α

)
.

Replace N by 2N to obtain the desired result.

Corollary 3.2 shows an elegant symmetric identity for α and β. Let
N = 1 in Corollary 3.2. Using

coshx = 2 cosh2
(x

2

)
− 1

2
,
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we find

α2
∞∑
m=0

sech2

(
1

2
(2m+ 1)α

)
− 5

4
α2

∞∑
m=0

sech4

(
1

2
(2m+ 1)α

)
= β2

∞∑
m=0

sech2

(
1

2
(2m+ 1)β

)
− 5

4
β2

∞∑
m=0

sech4

(
1

2
(2m+ 1)β

)
,

which is able to be compared with (1.1).

Corollary 3.3. For any integer N ≥ 1,

2N−2∑′

j=0

(−1)jE(4N − 3, 2N − 2− j)
∞∑
m=0

cosh((2m+ 1)jπ)

cosh4N−2((2m+ 1)π/2)

=


1

4π
, N = 1,

0, N > 1,

where ′ means that the term with j = 0 is multiplied by 1
2 .

Proof. Let B = 0, c = 1 and α = β = π in Theorem 3.1. Apply

cosh((2m+ 1)j(π − iπ)) = (−1)j cosh((2m+ 1)jπ),

sinh

(
1

2
(2m+ 1)(π − iπ)

)
= (−1)m+1i cosh

(
1

2
(2m+ 1)π

)
.

Replace N by 2N − 1 and the desired result follows.

Corollary 3.3 gives a generalization of (1.2). If N = 1 in Corollary 3.3,
then we have (1.2).

Corollary 3.4. Let α, β > 0 with αβ = π2. For any integer c ≥ 1,

α

∞∑
m=0

csch2

(
1

2c
(2m+ 1)(α− iπ)

)
+ β

∞∑
m=0

csch2

(
1

2c
(2m+ 1)(β + iπ)

)
= c.

Proof. Let B = 0, N = 1 in Theorem 3.1.

Corollary 3.4 shows a generalized type of formula (1.1). If c = 1 in
Corollary 3.4, then we have (1.1). Actually (1.2) simply comes from
(1.1) when α = β = π. By the way, generalized formulae of them, i.e.,
Corollary 3.3 and Corollary 3.4 look like quite different formulae.

Now we find another form of infinite series identity. Let ζ(s) be the
Riemann zeta function. Let {x}∗ = 1−{x}. For k, u ∈ Z and t, v ∈ C,
Let

gk(t, u, v) =

{
(−1)[k/2]+u sinh(t(u+ 1

2)v), k odd,

(−1)[k/2]+u cosh(tuv), k even.
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Theorem 3.5. Let α, β > 0 with αβ = π2. For any integers B ≥ 0
and N ≥ 1,

(−1)BαN
B∑
k=0

(
B

k

)
(2α/c)k

(2N + k − 1)!

N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

×
∞∑
m=1

gk(2m, j, (α− iπ)/c)

m−k cosh2N+k(m(α− iπ)/c)

= (−β)N
B∑
k=0

(
B

k

)
(2β/c)k

(2N + k − 1)!

N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

×
∞∑
m=0

gk(2(m+ {c/2}∗), j, (β + iπ)/c)

(m+ {c/2}∗)−k cosh2N+k((m+ {c/2}∗)(β + iπ)/c)

+(−1)B(2−1 − 22N−1)(λ(c/2)(−1)Bα−N − (−1)Nβ−N )ζ(2N) + δN (B, c),

where ′ means that if k is even, then the term with j = 0 is multiplied
by 1

2 .

Proof. Let s1 = A ≥ 1, s2 = −B ≤ 0 and s = 2N ≥ 2 in Theorem
2.1. Here A,B and N are integers. Put (r1, r2) = (0, 1

2), (h1, h2) = (0, 0)
and cτ − c+ 1 = π

α i. Note that

V τ =
1

c
+ i

α

cπ
and

1

Γ(s2)
=

1

Γ(−B) = 0
.

The direct calculations show that

e2πi((mV τ+ 1
2

)n) = e2πimn(1+iα
π

)/c+iπn = (−1)ne−2mn(α−iπ)/c

and

U(−B; 2N ; 4πmnIm(V τ)) = (−1)B(A− 1)!

B∑
k=0

(
B

k

)
(−4mnα/c)k

(2N + k − 1)!
.

Thus

A(V τ,A,B; r, h)

=

∞∑
m=1

∞∑
n=1

e((mV τ + 1/2)n)

n1−2N
U(−B; 2N ; 4πmnImV (τ))

= (−1)B(A− 1)!

B∑
k=0

(
B

k

)
(−4α/c)k

(2N + k − 1)!

∞∑
m=1

mk
∞∑
n=1

(−1)ne−2mn(α−iπ)/c

n1−2N−k

= (−1)B(A− 1)!

B∑
k=0

(
B

k

)
(−4α/c)k

(2N + k − 1)!

∞∑
m=1

Li−(2N+k−1)
(
−e−2m(α−iπ)/c)
m−k

.
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Put w = m(α− iπ)1
c . Using E(k, j) = E(k, k− j− 1) and reversing the

summation order over j, we find that

Li−(2N+k−1)(−e−2w)

=
1

(1 + e−2w)2N+k

2N+k−2∑
j=0

E(2N + k − 1, j)(−e−2w)2N+k−1−j

=
ew(2N+k)

(ew + e−w)2N+k

2N+k−2∑
j=0

(−1)k+j+1E(2N + k − 1, j)ew(−4N−2k+2+2j)

=
(−1)k2−2N−k

cosh2N+k(w)

2N+k−2∑
j=0

(−1)j+1E(2N + k − 1, j)e−2w(N−k/2−j−1)

=
(−1)N+k21−2N−k

cosh2N+k(w)

N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− 1− j)

×gk(2m, j, (α− iπ)/c),

where ′ means that if k is even, then the term with j = 0 is multiplied
by 1

2 . Hence we obtain

A(V τ,A,−B; r, h) = (−1)B+N (A− 1)!

22N−1

B∑
k=0

(
B

k

)
(2α/c)k

(2N + k − 1)!

×
N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− 1− j)

×
∞∑
m=1

mkgk(2m, j, (α− iπ)/c)

cosh2N+k(m(α− iπ)/c)
.

Note that A(V τ,A,−B;−r,−h) = A(V τ,A,−B; r, h) for (r1, r2) =
(0, 1

2) and (h1, h2) = (0, 0). Then

H(V τ,A,−B; r, h) = 2A(V τ,A,−B; r, h).

Recalling 1
Γ(s2) = 1

Γ(−B) = 0, we find that

H(V τ, V τ̄ , A,−B; r, h) =
1

(A− 1)!
H(V τ,A,−B; r, h)

=
2

(A− 1)!
A(V τ,A,−B; r, h)

=
(−1)B+N

22N−2

B∑
k=0

(
B

k

)
(2α/c)k

(2N + k − 1)!
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×
N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− 1− j)

×
∞∑
m=1

mkgk(2m, j, (α− iπ)/c)

cosh2N+k(m(α− iπ)/c)
.

Next, we examine H(τ, τ̄ , A,−B;R,H). Note that

(R1, R2) =

(
c

2
,
1− c

2

)
, (H1, H2) = (0, 0), τ = 1− 1

c
+ i

π

cα
.

Replacing m by m+ [− c
2 ] + 1 and using c

2 + [− c
2 ] + 1 = { c2}

∗, we have

A(τ,A,−B;R,H) =

∞∑
m=0

∞∑
n=1

e(((m+ {c/2}∗)τ + (1− c)/2)n)

n1−2N

×U
(
−B; 2N ; 4

(
m+

{ c
2

}∗) nβ
c

)
.

Observe that

e(((m+ {c/2}∗)τ + (1− c)/2)n) = (−1)ne−2(m+{c/2}∗)n(β+iπ)/c

and

U

(
−B; 2N ; 4

(
m+

{ c
2

}∗) nβ
c

)
= (−1)B(A− 1)!

B∑
k=0

(
B

k

)
(−4(m+ {c/2}∗)nβ/c)k

(2N + k − 1)!
.

Thus, applying the same method to compute A(τ,A,−B; r, h), we find

A(τ,A,−B;R,H)

= (−1)B(A− 1)!

B∑
k=0

(
B

k

)
(−4β/c)k

(2N + k − 1)!

∞∑
m=0

(
m+

{ c
2

}∗)k
×Li−(2N+k−1)(−e−2(m+{c/2}∗)(β+iπ)/c)

= (−1)B+N (A− 1)!

22N−1

B∑
k=0

(
B

k

)
(2β/c)k

(2N + k − 1)!

×
N+[k/2]−1∑′

j=1

E(2N + k − 1, N + [k/2]− 1− j)

×
∞∑
m=0

(m+ {c/2}∗)kgk(2(m+ {c/2}∗), j, (β + iπ)/c)

cosh2N+k(2(m+ {c/2}∗)(β + iπ)/c)
.
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Employing A(τ,A,−B;−R,−H) = A(τ,A,−B;R,H) and 1
Γ(−B) = 0,

we finally have

H(τ, τ̄ ;A,−B;R,H) =
2

(A− 1)!
A(τ,A,−B;R,H)

=
(−1)B+N

22N−2

B∑
k=0

(
B

k

)
(2β/c)k

(2N + k − 1)!

×
N+[k/2]−1∑′

j=1

E(2N + k − 1, N + [k/2]− 1− j)

×
∞∑
m=0

(m+ {c/2}∗)kgk(2(m+ {c/2}∗), j, (β + iπ)/c)

cosh2N+k(2(m+ {c/2}∗)(β + iπ)/c)
.

The term with λ(R1) = λ( c2) is valid only when c is even. For c even,

Ψ(−H2, R2, 2N) = 2ψ(0, (c− 1)/2, 2N)

= 2
∑

n+(c−1)/2>0

1

(n+ (c− 1)/2)2N

= 2
∞∑
n=0

1

(n+ 1/2)2N
= 2(22N − 1)ζ(2N).

Similarly we have

Ψ(h2, r2, 2N) = Ψ(0, 1/2, 2N) = 2(22N − 1)ζ(2N).

The terms with λ(H2) and λ(h2) are nullified by using 1
Γ(−B) = 0. Lastly,

it is easy to see that L(τ, τ̄ , A,−B;R,H) has the same evaluation in the
proof of Theorem 3.1. Using all the above results, we arrive at the
desired result.

Let c = 1 in Theorem 3.5. Short calculations show that

sinh(m(2j + 1)(α− iπ)) = (−1)m sinh(m(2j + 1)α),
cosh(2mj(α− iπ)) = cosh(2mjα),

cosh2N+k(m(α− iπ)) = (−1)mk cosh2N+k(mα)(3.2)

and

cosh((2m+ 1)j(β + iπ)) = (−1)j cosh((2m+ 1)jβ),
sinh((2m+ 1)(j + 1/2)(β + iπ)) = (−1)m+ji cosh((2m+ 1)(j + 1/2)β),

cosh2N+k((m+ 1/2)(β + iπ)) = (−1)N+mkik sinh2N+k((m+ 1/2)β).(3.3)

Now we obtain identities with only real values.
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Corollary 3.6. Let α, β > 0 with αβ = π2. For any integers B ≥ 0
and N ≥ 1 with B ≡ N (mod 2),

αN
B∑
k=0

(
B

k

)
(2α)k

(2N + k − 1)!

N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

×
∞∑
m=1

gk(2m, j, α)

m−k cosh2N+k(mα)

= βN
B∑
k=0

(
B

k

)
βk

(2N + k − 1)!

N+[k/2]−1∑′

j=0

E(2N + k − 1, N + [k/2]− j − 1)

×
∞∑
m=0

cosh((2m+ 1)(j + µk)β)

(2m+ 1)−k sinh2N+k((2m+ 1)β/2)

+(22N−1 − 2−1)(−β)−Nζ(2N).

Proof. Put c = 1 in Theorem 3.5. Employing (3.2), (3.3), we have

gk(2m, j, α− iπ)

cosh2N+k(m(α− iπ))
=

gk(2m, j, α)

cosh2N+k(mα)

and

gk(2(m+ {1/2}∗), j, β + iπ)

cosh2N+k((m+ {1/2}∗)(β + iπ))
= (−1)N

cosh((2m+ 1)(j + µk)β)

sinh2N+k((m+ 1/2)β)
.

Use the above calculations to obtain the desired result.

Corollary 3.7. Let α, β > 0 with αβ = π2. For any integer N ≥ 1,

αN
N−1∑′

j=0

(−1)jE(2N − 1, N − 1− j)
∞∑
m=1

cosh(2mjα)

cosh2N (mα)

= βN
N−1∑′

j=0

E(2N − 1, N − 1− j)
∞∑
m=0

cosh((2m+ 1)jβ)

sinh2N ((2m+ 1)β/2)

+(−β)−N (2N − 1)!(22N−1 − 2−1)ζ(2N) + εN ,

where ′ means that the term with j = 0 is multiplied by 1
2 and

εN =

{
1
2 , N = 1,

0, N ≥ 2.

Proof. Put B = 0 and c = 1 in Theorem 3.5 and apply (3.2), (3.3).

Corollary 3.7 is a generalization of (1.3). If N = 1 in Corollary 3.7, then
we find (1.3).
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Corollary 3.8. Let α, β > 0 with αβ = π2. For any integer B ≥ 0,

(−1)Bα

B∑
k=1

(
B

k

)
(2α)k

(k + 1)!

[k/2]∑′

j=0

E(k + 1, [k/2]− j)
∞∑
m=1

gk(2m, j, α)

m−k coshk+2(mα)

+(−1)B
α

2

∞∑
m=1

sech2(mα) + (−1)B
α

4

= β
B∑
k=1

(
B

k

)
βk

(k + 1)!

[k/2]∑′

j=0

E(k + 1, [k/2]− j)

×
∞∑
m=1

cosh((2m+ 1)(j + µk)β)

(2m+ 1)−k sinhk+2((2m+ 1)β/2)

+
β

2

∞∑
m=0

csch2

(
1

2
(2m+ 1)β

)
+

1 + (−1)B

4(B + 1)
,

where ′ means that if k is even, then the term with j = 0 is multiplied
by 1

2 .

Proof. Put N = 1 and c = 1 in Theorem 3.5 and use (3.2), (3.3).

We also see that Corollary 3.8 includes (1.3). We may obtain more new
types of infinite series identities using Theorem 2.1 as B. C. Berndt has
done in [2, 3].
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