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THE EXTENDIBILITY OF DIOPHANTINE PAIRS

WITH FIBONACCI NUMBERS AND SOME

CONDITIONS

Jinseo Park

Abstract. A set {a1, a2, · · · , am} of positive integers is called a
Diophantine m-tuple if aiaj + 1 is a perfect square for all 1 ≤ i <
j ≤ m. Let Fn be the nth Fibonacci number which is defined by
F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn. In this paper, we find the
extendibility of Diophantine pairs {F2k, b} with some conditions.

1. Introduction

A Diophantine m-tuple is a set which consists of m distinct positive
integers satisfy the property that the product of any two of them is one
less than a perfect square. If the set which consists of rational num-
bers satisfies the same property then we called rational Diophantine
m-tuple. Diophantus found the first rational Diophantine quadruple
{1/16, 33/16, 17/4, 105/16}. However, the first set of four positive inte-
gers with the property {1, 3, 8, 120} was found by Fermat. Many famous
mathematicians made lots of results related to the problems of Diophan-
tine m-tuple, but still there are many open problems. Especially, the
most famous problem is the extendibility of Diophantine m-tuple.

For any Diophantine triple {a, b, c} with a < b < c, the set {a, b, c, d±}
is a Diophantine quadruple, where

d± = a+ b+ c+ 2abc± 2rst

and r, s, t are the positive integers satisfying

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.
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A folklore conjecture is that there does not exist a Diophantine quin-
tuple. Recently, the conjecture has been proved by B. He, A. Togbé
and V. Ziegler[12]. The stronger version of this conjecture states that if
{a, b, c, d} is a Diophantine quadruple and d > max{a, b, c} then d = d+.
These Diophantine quadruples are called regular.

We can find the importance of the extendiblity of Diophantine m-
tuples in relation to the elliptic curves. We have to solve the equations

ax+ 1 = �, bx+ 1 = �, cx+ 1 = �

to extend the Diophantine triple {a, b, c} to the Diophantine quadruple.
Then we have the equation

E : y2 = (ax+ 1)(bx+ 1)(cx+ 1),

which is the elliptic curve by the product of three equations. We always
have the integer points

(0,±1), (d+,±(at+rs)(bs+rt)(cr+st)), (d−,±((at−rs)(bs−rt)(cr−st))),

and also (−1, 0) if 1 ∈ {a, b, c} on E. For example, A. Dujella[3] proved
that the elliptic curve

Ek : y2 = ((k − 1)x+ 1)((k + 1)x+ 1)(4kx+ 1)

has four integer points

(0,±1), (16k3 − 4k,±(128k6 − 112k4 − 20k2 − 1))

under assumption that rank(Ek(Q)) = 1. Similar results like [5] and [11]
were proved for the equation

y2 = (F2kx+ 1)(F2k+2x+ 1)(F2k+4 + 1)

and

y2 = (F2k+1x+ 1)(F2k+3x+ 1)(F2k+5 + 1),

respectively, where Fn is the n-th Fibonacci number, which is defined
by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn.

In 1977, Hoggatt and Bergum conjectured that if {F2k, F2k+2, F2k+4, d}
is a Diophantine quadruple then d is a unique[13]. In 1999, A. Dujella
proved this conjecture[2]. Furthermore, A. Filipin, Y. Fujita and A.
Togbé proved that Diophantine pairs {F2k, F2k+2} can be extended to
Diophantine quintuples[9]. Recently, the extendibility of Diophantine
pairs {F2k, F2k+4} was proved by the author[14]. The Diophantine pairs
{F2k, F2k+4} has the ideal lower bound which is used in the Theorem of
Baker and Wüstholz, since F2k + F2k+4 = 3F2k+2, that is a+ b = 3r.
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In this paper, we prove the extendibility of Diophantine pairs {F2k, b},
where r is a divisor of a+ b and b ≤ 8a. More precisely, the Diophantine
triple {F2k, b, c

+
1 } can be extended only to regular.

2. Preliminaries

2.1. The bounds of each elements of Diophantine triple

We can find the lower bounds of second element of the Diophantine
triple {a, b, c} with a < b using the following lemma.

Lemma 2.1. [9, Lemma 1.3] Suppose that {a, b, c, d} is a Diophantine
quadruple with a < b < c < d+ < d.

1. If b < 2a, then b > 2.1 · 104.
2. If 2a ≤ b ≤ 8a, then b > 1.3 · 105.
3. If b > 8a, then b > 2 · 103.

Let {a, b, c} be a Diophantine triple, and r, s, t be the positive integers
satisfying ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2. Then we have

at2 − bs2 = a− b.

We easily find the form of solutions of the equation above is

(t
√
a+ s

√
b) = (t0

√
a+ s0

√
b)(r +

√
bc)ν .

If (t0, s0) belongs to the same class as either of the solutions (±1, 1)
then s can be expressed as s = sτν , where τ ∈ {±1} and

s0 = sτ0 = 1, sτ1 = r + τa, sτν+2 = 2rsτν+1 − sτν .

Define cτν = ((sτν)2 − 1)/a. Then, we obtain

c = cτν =
1

4ab
[(a+ b± 2

√
ab)(2ab+ 1 + 2r

√
ab)ν

+(a+ b∓ 2
√
ab)(2ab+ 1− 2r

√
ab)ν − 2(a+ b)].

First, we have the form of third element c in the Diophantine triple
{a, b, c} by the following theorem.

Lemma 2.2. [8, Lemma 4.1] Let {a, b, c} be a Diophantine triple.
Assume that a < b ≤ 8a. Then c = cτν for some ν and τ .

Next, the following theorem gives us the bound of third element c in
the Diophantine triple {a, b, c}.
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Theorem 2.3. [8, Theorem 1.2] Let {a, b, c} be a Diophantine triple
with a < b. Suppose that {a, b, c, d} is a Diophantine quadruple with
d > d+ and that {a, b, c′, c} is not a Diophantine quadruple for any c′

with 0 < c′ < d−, where d+ and d− are defined by

d± = a+ b+ c+ 2abc± 2rst,

respectively.

1. If b < 2a, then c < b6.
2. If 2a ≤ b ≤ 8a, then c < 9.5b4.
3. If b > 8a, then c < b5.

If c = cτν then we can find the upper bound of c more specific by the
following theorem.

Theorem 2.4. [9, Theorem 1.4] Suppose that {a, b, cτν , d} is a Dio-
phantine quadruple with d > cτν+1 and that {a, b, c′, cτν} is not a Dio-
phantine quadruple for any c′ with 0 < c′ < cτν−1.

1. If b < 2a, then c ≤ c+3 .
2. If 2a ≤ b ≤ 8a, then c ≤ c+2 .

2.2. The Properties of solutions of Pell equation

We have to solve the system

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2

to extend the Diophantine triple {a, b, c} to the Diophantine quadruple
{a, b, c, d}. One can eliminate d to obtain the following system of Pell
equations

ay2 − bx2 = a− b,(2.1)

az2 − cx2 = a− c,(2.2)

bz2 − cy2 = b− c.(2.3)

Lemma 2.5. [4, Lemma 1] There exist positive integers i0, j0 and

integers z
(i)
0 , x

(i)
0 , z

(j)
1 , y

(j)
1 , i = 1, . . . , i0, j = 1, . . . , j0, with the following

properties:

1. (z
(i)
0 , x

(i)
0 ) and (z

(j)
1 , y

(j)
1 ) are solutions of (2.2) and (2.3), respec-

tively.

2. z
(i)
0 , x

(i)
0 , z

(j)
1 , y

(j)
1 satisfy the following inequalities

0 < x
(i)
0 ≤

√
a(c− a)

2(s− 1)
<

√
s+ 1

2
< 4
√
ac,
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0 ≤ |z(i)0 | ≤
√

(s− 1)(c− a)

2a
<

√
c
√
c

2
√
a
<
c

2
,

0 < y
(j)
1 ≤

√
b(c− b)
2(t− 1)

<

√
t+ 1

2
<

4
√
bc,

0 ≤ |z(j)1 | ≤
√

(t− 1)(c− b)
2b

<

√
c
√
c

2
√
b
<
c

3
.

3. If (z, x) and (z, y) are positive integers of (2.2) and (2.3), respec-
tively then there exist i ∈ {1, . . . , i0}, j ∈ {1, . . . , j0} and integers
m,n ≥ 0 such that

z
√
a+ x

√
c = (z

(i)
0

√
a+ x

(i)
0

√
c)(s+

√
ac)m,(2.4)

z
√
b+ y

√
c = (z

(j)
1

√
b+ y

(j)
1

√
c)(t+

√
bc)n.(2.5)

From now on, we omit the superscripts (i) and (j). By (2.4), we may
write z = vm, where

(2.6) v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,
and by (2.5), we may write z = wn, where

(2.7) w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn.

Lemma 2.6. [6, Lemma 3] If vm = wn then n− 1 ≤ m ≤ 2n+ 1.

2.3. Congruence relation between solutions of Pell equations

In this section, we give the congruence relations between vm and wn,
and properties of initial terms of (2.6) and (2.7).

Lemma 2.7. [4, Lemma 4] We have the following properties of vm
and wn.

v2m ≡ z0 + 2c[az0m
2 + sx0m] (mod 8c2),

v2m+1 ≡ sz0 + c[2asz0m(m+ 1) + x0(2m+ 1)] (mod 4c2),

w2n ≡ z1 + 2c[bz1n
2 + ty1n] (mod 8c2),

w2n+1 ≡ tz1 + c[2btz1n(n+ 1) + y1(2n+ 1)] (mod 4c2).

We have a question such that when does vm = wn have a solution
and if there exists a solution of vm = wn then which values are possible
for the solution. The following lemma gives us the answer.

Lemma 2.8. [6, Lemma 8] We have the following results.

1. If the equation v2m = w2n has a solution then z0 = z1. Further-
more, |z0| = 1 or |z0| = cr−st or |z0| < min{0.869a−5/14c9/14, 0.972b−0.3c0.7}.
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2. If the equation v2m+1 = w2n has a solution then |z0| = t, |z1| =
cr − st and z0z1 < 0.

3. If the equation v2m = w2n+1 has a solution then |z0| = cr −
st, |z1| = s and z0z1 < 0.

4. If the equation v2m+1 = w2n+1 has a solution then |z0| = t, |z1| = s
and z0z1 > 0.

Furthermore, the solution of vm = wn is more specific when c = cτν ≤
c+3 by the following lemma.

Lemma 2.9. [9, Lemma 3.1] Assume that a < b ≤ 8a.

1. Assume that b < 3a. In the case of c = c−1 , we have v2m+1 6= w2n,
v2m 6= w2n+1 and v2m+1 6= w2n+1. Moreover, if v2m = w2n then
z0 = z1 = 1.

2. In the case of c = c+1 , we have v2m+1 6= w2n, v2m 6= w2n+1 and
v2m+1 6= w2n+1. Moreover, if v2m = w2n then z0 = z1 and |z0| = 1.

3. In the case of c = c−2 , we have v2m+1 6= w2n and v2m+1 6= w2n+1.
Moreover, we have the following:
(a) If v2m = w2n then z0 = z1 and |z0| = 1 or cr − st.
(b) If v2m = w2n+1 then |z0| = cr − st and |z1| = s with z0z1 < 0.
Furthermore, (b) occurs if and only if (a) with |z0| = cr−st occurs.

4. In the case of c ∈ {c+2 , c
−
3 , c

+
3 }, we have v2m+1 6= w2n and v2m 6=

w2n+1. Moreover, we get the following:
(a) If v2m = w2n then z0 = z1 and |z0| = 1.
(b) If v2m+1 = w2n+1 then |z0| = t and |z1| = s with z0z1 > 0.

2.4. Some theorems for applying the reduction method

From (2.4), (2.5) and sum of their conjugate, respectively, we get

vm =
1

2
√
a

[(z0
√
a+ x0

√
c)(s+

√
ac)m + (z0

√
a− x0

√
c)(s−

√
ac)m],

wn =
1

2
√
b
[(z1
√
b+ y1

√
c)(t+

√
bc)n + (z1

√
b− y1

√
c)(t−

√
bc)n].

Hence, we transform the equation vm = wn into the following inequality.

Lemma 2.10. [4, Lemma 5] Assume that c > 4b. If vm = wn and
m,n 6= 0 then

0 < m log(s+
√
ac)−n log(t+

√
bc)+log

√
b(x0
√
c+ z0

√
a)

√
a(y1
√
c+ z1

√
b)
<

8

3
ac(s+

√
ac)−2m.
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We use the following theorem and lemma to obtain the upper bound
for m.

Theorem 2.11. [1, p.20] For a linear form

Λ = β1 logα1 + · · ·+ βl logαl 6= 0

in logarithms of l algebraic numbers α1, α2, . . . , αl with rational coeffi-
cients β1, β2, . . . , βl, we have

log |Λ| ≥ −18(l + 1)!ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) log β,

where β := max{|β1|, . . . , |βl|}, d := [Q(α1, · · · , αl) : Q] and

h′(α) =
1

d
max{h(α), | logα|, 1}

with the standard logarithmic Weil height h(α) of α.

Lemma 2.12. [7, Lemma 5] Suppose that M is a positive integer. Let
p/q be the convergent of the continued fraction expansion of κ such that
q > 6M and let ε = ‖µq‖ −M · ‖κq‖, where ‖ · ‖ denotes the distance
from the nearest integer.

1. If ε > 0 then there is no solution of the inequality

(2.8) 0 < mκ− n+ µ < AB−m

in integers m and n with

log(Aq/ε)

logB
≤ m ≤M.

2. Let r = bµq + 1
2c. If p − q + r = 0 then there is no solution of

inequality (2.8) in integers m and n with

max

{
log(3Aq)

logB
, 1

}
< m ≤M.

3. The extendibility of {F2k, b} with some conditions

Let a denote a F2k, and we use this notation in the rest of the pa-
per. In this section, we consider the extendibility of Diophantine triple
{a, b, c+1 }, where b ≤ 8a and r is a divisor of a + b. Let a + b = ρ · r,
where ρ is an integer. Then we get a bound of ρ such that 1 ≤ ρ ≤ 8,
since a < r and b < 8r.

• If ρ = 1 then it is possible only for a = 1. However, it means that
b = 0, which is a contradiction.
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• If ρ = 2 then we get b = a+ 2, and this case was proved by Fujita
[10].
• If ρ = 3 then it is the case of b = F2k+4 which was proved in [14].

Hence, we may assume that ρ ≥ 4.

3.1. Bounds for m and k

Lemma 3.1. Suppose that m,n ≥ 2. Then

m ≥
√

2a+ 1− 1

2
.

Proof. For the case of c+1 , we have

s+1 = a+ r ≡ a (mod r) and t+1 = b+ r ≡ b (mod r).

Using the Lemma 2.7, we have

±am2 + am ≡ ±bn2 + bn (mod r).

Since r is a divisor of a+ b and gcd(a, r) = 1, we have

m2 + n2 ±m± n ≡ 0 (mod r).

However, 2m2 + 2m ≥ m2 + n2 ±m± n > 0. Hence, we have

2(m2 +m) ≥ r > a.

We have the following inequality for linear form in logarithms.

Lemma 3.2. If v2m = w2n with c+1 and m,n 6= 0 then

0 < 2m log(s+
√
ac)− 2n log(t+

√
bc) + log

√
b(
√
c±
√
a)

√
a(
√
c±
√
b)

< 3.08(s+
√
ac)−4m.

Proof. Put

P =
1√
a

(x0
√
c+ z0

√
a)(s+

√
ac)m, Q =

1√
b
(y1
√
c+ z1

√
b)(t+

√
bc)n.

Then

P−1 =

√
a(x0
√
c− z0

√
a)

c− a
(s−
√
ac)m, Q−1 =

√
b(y1
√
c− z1

√
b)

c− b
(t−
√
bc)n.

Therefore, the relation vm = wn becomes

P − c− a
a

P−1 = Q− c− b
b

Q−1.
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Since P > 0, Q > 0 and

P −Q >
c− a
a

(Q− P )P−1Q−1,

it follows that P > Q. Furthermore, we have

P −Q
P

<
c− a
a

P−2 <
1

a(c− a)
≤ 1

39
.

Hence,

0 < log
P

Q
= − log(1− P −Q

P
) <

40

39
(
c− a
a

)P−2

<
40

39

c− a
(
√
c−
√
a)2

(s+
√
ac)−2m.

Since c = c+1 = a+ b+ 2r > 4a, we have
√
c+
√
a√

c−
√
a
< 3. Hence, we obtain

the result.

According to Lemma 2.10, Lemma 3.2 and Theorem 2.11, we have
l = 3, d = 4, β = 2m,

α1 = s+
√
ac, α2 = t+

√
bc, α3 =

(
√
c±
√
a)
√
b

(
√
c±
√
b)
√
a
.

Let α′3 and α′′3 be the conjugates of α3 whose absolute values are greater
than one. Then

h′(α1) =
1

2
log(α1) <

1

2
log(2s), h′(α2) =

1

2
log(α2) <

1

2
log(2t),

h′(α3) ≤
1

4
{log(a2(c− b)2) + log(α3α

′
3α
′′
3)}

=
1

4
{log(b

√
ab(
√
c+
√
a)(
√
c+
√
b)(c− a))} < log(1.42c)

and

log |Λ| ≥ −18·4! 34(32·4)5
1

2
log(2s)

1

2
log(2t) log(1.42c)·log(24)·log(2m).

Since

log(
8

3
ac(s+

√
ac)−4m) < (−2m+ 1) log(4ac)

and

log(3.08(s+
√
ac)−4m) < (−2m+ 1) log(4ac),

c < 15a imply the following inequality

(3.1)
2m− 1

log(2m)
< 9.556 · 1014 log(30a) log(21.3a).
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By the lower bound of m and (3.1), we get a < 9.35 · 1040 and c <
1.41 ·1042. Since (1.618)2k < α2k < α2k+

√
5 ·(9.35 ·1040), we get k ≤ 98.

Also, from (3.1) and the upper bound of a, we obtain m < 2.17 · 1020.

3.2. The reduction method

We can obtain an upper bound of m using the Lemma 2.12 with the
inequalities

0 < m1κ− n1 + µ1 < A3B
m1 ,

where m1 := 2m, n1 := 2n and

κ =
logα1

logα2
, µ1 =

logα3

logα2
, A3 =

3.08

logα2
, B = α2

1.

We apply the Lemma 2.12 to the logarithmic inequalities with M :=
2m ≤ 4.34 · 1020. We have to examine 10 · 98 = 980 cases. The program
was developed in PARI/GP running with 70 digits. For the computa-
tions, if the first convergent such that q > 6Mi with i = 1, 2 does not
satisfy the condition ε > 0 then we use the next convergent until we find
the one that satisfies the conditions. Then we have the following Table
1 as results.

Table 1. Results from PARI/GP running

Case of ρ Initial values Use the next convergent

z0 = z1 = 1 0 case
4

z0 = z1 = −1 80 cases (k = 19, . . . , 98)

z0 = z1 = 1 0 case
5

z0 = z1 = −1 81 cases (k = 18, . . . , 98)

z0 = z1 = 1 0 case
6

z0 = z1 = −1 81 cases (k = 18, . . . , 98)

z0 = z1 = 1 0 case
7

z0 = z1 = −1 81 cases (k = 18, . . . , 98)

z0 = z1 = 1 0 case
8

z0 = z1 = −1 82 cases (k = 17, . . . , 98)

However, in all cases except the case of ρ = 4, we get m ≤ 6. Hence,
we take M = 12, and run the program again, then we obtain m ≤ 1.
When the case of ρ = 4, we get m ≤ 7, so we take M = 14. Then also
we obtain m ≤ 1. Therefore, we have the following theorem.
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Theorem 3.3. Let a = F2k, a < b ≤ 8a and {a, b, c+1 , d} be a Dio-
phantine quadruple with c+1 < d. If r is a divisor of a+ b then d = c+2 .
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