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THE EXTENDIBILITY OF DIOPHANTINE PAIRS
WITH FIBONACCI NUMBERS AND SOME
CONDITIONS

JINSEO PARK

ABSTRACT. A set {ai,a2, - ,am} of positive integers is called a
Diophantine m-tuple if a;a; + 1 is a perfect square for all 1 < i <
j < m. Let F,, be the nth Fibonacci number which is defined by
Fo=0,F1y =1 and F,4+2 = Fp41 + F,,. In this paper, we find the
extendibility of Diophantine pairs {Fsg, b} with some conditions.

1. Introduction

A Diophantine m-tuple is a set which consists of m distinct positive
integers satisfy the property that the product of any two of them is one
less than a perfect square. If the set which consists of rational num-
bers satisfies the same property then we called rational Diophantine
m-tuple. Diophantus found the first rational Diophantine quadruple
{1/16,33/16,17/4,105/16}. However, the first set of four positive inte-
gers with the property {1, 3, 8,120} was found by Fermat. Many famous
mathematicians made lots of results related to the problems of Diophan-
tine m-tuple, but still there are many open problems. Especially, the
most famous problem is the extendibility of Diophantine m-tuple.

For any Diophantine triple {a, b, ¢} with a < b < ¢, the set {a,b,c,d+}
is a Diophantine quadruple, where

d+ =a+ b+ c+ 2abc £ 2rst
and r, s,t are the positive integers satisfying

ab+1=7r% ac+1=5s% be+1=1t%
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A folklore conjecture is that there does not exist a Diophantine quin-
tuple. Recently, the conjecture has been proved by B. He, A. Togbé
and V. Ziegler[12]. The stronger version of this conjecture states that if
{a, b, c,d} is a Diophantine quadruple and d > max{a, b, c} then d = d...
These Diophantine quadruples are called regular.

We can find the importance of the extendiblity of Diophantine m-
tuples in relation to the elliptic curves. We have to solve the equations

ax+1=0,bzx+1=0, cx+1=01

to extend the Diophantine triple {a, b, c} to the Diophantine quadruple.
Then we have the equation

E:y* = (ax +1)(bx + 1)(cx + 1),

which is the elliptic curve by the product of three equations. We always
have the integer points

(0,£1), (dy,£(at+rs)(bs+rt)(cr+st)), (d—, £((at—rs)(bs—rt)(cr—st))),

and also (—1,0) if 1 € {a,b,c} on E. For example, A. Dujella[3] proved
that the elliptic curve

Er:v*=(k—Dz+1)((k+ 1Dz +1)(4ks +1)
has four integer points
(0, 1), (16k> — 4k, +(128k5 — 112k* — 20k% — 1))

under assumption that rank(Ej(Q)) = 1. Similar results like [5] and [11]
were proved for the equation

y* = (Fogz + 1) (Farroz + 1) (Foppa + 1)

and
y2 = (ngHx + 1)(F2k+3a: + 1)(F2k+5 + 1),

respectively, where Fj, is the n-th Fibonacci number, which is defined
by F() = 0,F1 =1 and Fn+2 = Fn+1 +Fn

In 1977, Hoggatt and Bergum conjectured that if { For, Fogro, Forta,d}
is a Diophantine quadruple then d is a unique[13]. In 1999, A. Dujella
proved this conjecture[2]. Furthermore, A. Filipin, Y. Fujita and A.
Togbé proved that Diophantine pairs {Fhk, Fopio} can be extended to
Diophantine quintuples[9]. Recently, the extendibility of Diophantine
pairs { Fo, For14} was proved by the author[14]. The Diophantine pairs
{Fo, Fo14} has the ideal lower bound which is used in the Theorem of
Baker and Wiistholz, since For + Fogi1q = 3Fok40, that is a +b = 3r.
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In this paper, we prove the extendibility of Diophantine pairs { Fy, b},
where r is a divisor of a4+ b and b < 8a. More precisely, the Diophantine
triple { Fk, b, ¢ } can be extended only to regular.

2. Preliminaries

2.1. The bounds of each elements of Diophantine triple

We can find the lower bounds of second element of the Diophantine
triple {a, b, ¢} with a < b using the following lemma.

LEMMA 2.1. [9, Lemma 1.3] Suppose that {a, b, c,d} is a Diophantine
quadruple with a < b < ¢ < dy < d.

1. If b < 2a, then b > 2.1-10%.
2. If 2a < b < 8a, then b > 1.3 -10°.
3. If b > 8a, then b > 2-10°.

Let {a, b, ¢} be a Diophantine triple, and r, s, t be the positive integers
satisfying ab +1 =12, ac+ 1 = 52, bc + 1 = t>. Then we have

at?> —bs®> =a —b.
We easily find the form of solutions of the equation above is
(tva + svVb) = (tov/a + soVb)(r + Vbe).

If (to,s0) belongs to the same class as either of the solutions (£1,1)
then s can be expressed as s = s, where 7 € {£+1} and

so =5y =1, s] =r+7Ta, s,,9=2rs,,1— 5.

Define ¢, = ((s7)? — 1)/a. Then, we obtain

1
c=c,=—/[(a+b+x2Vab)(2ab+ 1+ 2rvab)”
a

+(a +bT 2Vab)(2ab + 1 — 2rVab)” — 2(a + b)].

First, we have the form of third element ¢ in the Diophantine triple
{a, b, c} by the following theorem.

LEMMA 2.2. [8, Lemma 4.1] Let {a,b,c} be a Diophantine triple.
Assume that a < b < 8a. Then c = ¢], for some v and 7.

Next, the following theorem gives us the bound of third element ¢ in
the Diophantine triple {a, b, c}.
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THEOREM 2.3. [8, Theorem 1.2] Let {a,b,c} be a Diophantine triple
with a < b. Suppose that {a,b,c,d} is a Diophantine quadruple with
d > dy and that {a,b,c,c} is not a Diophantine quadruple for any ¢
with 0 < ¢ < d_, where d; and d_ are defined by

d+ =a+ b+ c+ 2abc £ 2rst,

respectively.
1. If b < 2a, then ¢ < b°.
2. If 2a < b < 8a, then ¢ < 9.5b%.
3. Ifb > 8a, then ¢ < b°.

If ¢ = ¢], then we can find the upper bound of ¢ more specific by the
following theorem.

THEOREM 2.4. [9, Theorem 1.4] Suppose that {a,b,c],d} is a Dio-
phantine quadruple with d > ¢}, and that {a,b,c,c}} is not a Dio-
phantine quadruple for any ¢ with 0 < ¢ < ¢_;.

1. If b < 2a, then ¢ < c}f.

2. If 2a < b < 8a, then ¢ < c;.
2.2. The Properties of solutions of Pell equation
We have to solve the system

ad+1=22 bd+1=19y% cd+1=2>

to extend the Diophantine triple {a, b, c} to the Diophantine quadruple
{a,b,c,d}. One can eliminate d to obtain the following system of Pell
equations

(2.1) ay? — bz =a —b,
(2.2) az? —cx® = a—c,
(2.3) bz —cy’ =b—c.

LEMMA 2.5. [4, Lemma 1] There exist positive integers ig,jo and
integers z(()l), x(()z), z?),yy),i =1,...,i0,7 = 1,...,jo, with the following
properties:

1 (z(i) m(i)) and (z(j) (j)) luti f (2.2) and (2.3 -

N EARE 1, yy’) are solutions of (2.2) and (2.3), respec
tively.

2. z(()i)wgi), zgj ),ygj ) satisfy the following inequalities

(i) < a(c—a) s+1 .
0 <z —”2(3—1)<‘/ 5 < Vac,
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0<y1

0 < o) (t — 1)(c b)< / <

3. If (z,x) and (z,y) are positive integers of (2.2) and (2.3), respec-
tively then there exist i € {1,...,ig}, j € {1,...,jo} and integers
m,n > 0 such that

(2.4) wVat+ae = () va+a{Ve)(s + Vaor
(2.5) Vht+yve = (ZDVh+ Vet + Vi),

From now on, we omit the superscripts (i) and (j). By (2.4), we may
write z = v,,, where

(2.6) vy = 20, V1 = $20 + CTO, Um+2 = 28Um+1 — Um,

and by (2.5), we may write z = w,,, where

(2.7) wo = 21, w1 = tz1 + cy1, Wpro = 2twpp1 — Wy
LEMMA 2.6. [6, Lemma 3] If v, = wy, thenn —1 <m < 2n+ 1.
2.3. Congruence relation between solutions of Pell equations

In this section, we give the congruence relations between v, and w,,,
and properties of initial terms of (2.6) and (2.7).

LEMMA 2.7. [4, Lemma 4] We have the following properties of vy,
and w,.
Vom = 20 + 20[az0m2 + szom] (mod 802),
Vama1 = S20 + ¢[2aszgm(m + 1) + z9(2m +1)]  (mod 4¢?),
Wwon = 21 + 2c[bzin® + ty1n]  (mod 8c?),
Want1 = tz1 + ¢2btzin(n+ 1) +y1(2n+ 1)]  (mod 402).
We have a question such that when does v,, = w, have a solution

and if there exists a solution of v,, = w, then which values are possible
for the solution. The following lemma gives us the answer.

LEMMA 2.8. [6, Lemma 8] We have the following results.

1. If the equation vs,, = ws, has a solution then zg = z1. Further-
more, |29| = 1 or |z| = er—st or |zg| < min{0.869a°/14%/14,0.972603c07}.
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2. If the equation va,;,+1 = way, has a solution then |zg| = t,|z1| =
cr — st and zpz1 < 0.
3. If the equation vg,, = wan4+1 has a solution then |zg| = cr —

st,|z1| = s and z9z; < 0.
4. If the equation vo,,+1 = wap+1 has a solution then |z = t, |z1| = s
and zgz1 > 0.

Furthermore, the solution of v, = w,, is more specific when ¢ = ¢], <
c5 by the following lemma.

LEMMA 2.9. [9, Lemma 3.1] Assume that a < b < 8a.

1. Assume that b < 3a. In the case of ¢ = ¢; , we have Vo, 41 7# Wap,
Vom # Wopt1 and vomi1 # Wopy1. Moreover, if va,, = ws, then
20 — 21 — 1.

2. In the case of ¢ = cf, we have Vom+1 # Wap, V2m # Wopt1 and
Vomt1 # Wapt1. Moreover, if vo,, = way, then zy = 21 and |zg| = 1.

3. In the case of ¢ = ¢;, we have Vop+1 # Wap and Vo1 7# Want1-
Moreover, we have the following:
(a) If voy, = way, then zp = z; and |z9| =1 or cr — st.
(b) If va, = wap41 then |zp| = cr — st and |z1| = s with zpz1 < 0.
Furthermore, (b) occurs if and only if (a) with |zg| = cr— st occurs.

4. In the case of ¢ € {c;, s, c;{}, we have voym11 # way and vy, #
Waon+1- Moreover, we get the following:
(a) If voy, = way, then zg = z1 and |zp| = 1.
(b) If vapm41 = wan41 then |zg| =t and |z1| = s with zpz; > 0.

2.4. Some theorems for applying the reduction method

From (2.4), (2.5) and sum of their conjugate, respectively, we get
Um = 2\1/5[(Zox/5+ 20V/e)(s + Vae)" + (20v/a — zov/e)(s = v/ae)"],
wy = 21¢gkzl¢5+ V)t +Voe)" + (21Vh — yV/e) (t = Vo).

Hence, we transform the equation v, = w,, into the following inequality.

LEMMA 2.10. [4, Lemma 5] Assume that ¢ > 4b. If v, = w, and
m,n # 0 then

Vb(zov/e+ 20/a)
Va(y1v/c+ z1v/b)

0 < mlog(s++/ac)—nlog(t+vbc)+log < gac(s—i-\/@)_zm.
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We use the following theorem and lemma to obtain the upper bound
for m.

THEOREM 2.11. [1, p.20] For a linear form
A=plogas +---+ Brlogay #0
in logarithms of | algebraic numbers a1, as,...,q; with rational coeffi-
cients 51, Bo, ..., B, we have
log |A| > —18(1 + 1)'1'1(32d) 2R (1) - - - W (ay) log(21d) log 3,
where 5 := max{|B1],..., |0}, d := [Q(a1, - , ;) : Q] and

B (a) = %max{h(a), logal, 1}

with the standard logarithmic Weil height h(«) of a.

LEMMA 2.12. [7, Lemma 5] Suppose that M is a positive integer. Let
p/q be the convergent of the continued fraction expansion of k such that
q > 6M and let € = ||uq|| — M - ||kq||, where || - | denotes the distance
from the nearest integer.

1. If € > 0 then there is no solution of the inequality
(2.8) O<mrk—n+p<AB™™
in integers m and n with
log(Ag/€) <m< M.
logB — —

2. Let v = |pq + %J If p — q+ r = 0 then there is no solution of
inequality (2.8) in integers m and n with

ax M,l <m< M.
log B

3. The extendibility of {5, b} with some conditions

Let a denote a Fy, and we use this notation in the rest of the pa-
per. In this section, we consider the extendibility of Diophantine triple
{a,b,c{}, where b < 8a and r is a divisor of a +b. Let a+b = p-r,
where p is an integer. Then we get a bound of p such that 1 < p < 8,
since a < r and b < 8r.

e If p =1 then it is possible only for a = 1. However, it means that
b = 0, which is a contradiction.
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o If p =2 then we get b = a + 2, and this case was proved by Fujita

[10].
o If p = 3 then it is the case of b = Fyy4 which was proved in [14].

Hence, we may assume that p > 4.

3.1. Bounds for m and k
LEMMA 3.1. Suppose that m,n > 2. Then

VvV2a+1—-1

>
m= 2

Proof. For the case of cf, we have
sf=a+r=a (modr) and ¢ =b+r=0>b (modr).
Using the Lemma 2.7, we have
+am? + am = £bn® + bn (mod ).
Since r is a divisor of a + b and ged(a,r) = 1, we have
m*4+n*+m+n=0 (modr).
However, 2m? + 2m > m? +n? £ m £ n > 0. Hence, we have

20m%+m) >r > a.

We have the following inequality for linear form in logarithms.

LEMMA 3.2. If vy, = wo, with cf and m,n # 0 then

Vo(y/e £ Va)
0 < 2mlog(s + vac) — 2nlog(t + Vbe) + log m

< 3.08(s + vac) 4™,
Proof. Put

P = \}a(a:m/é—i— 20v/a)(s + Vac)™, Q = 1b(y1\/5+zlx/6)(t+ Voe)™.

Then
_ a(xor/c — zpv/a o NG c—21Vb n
Plzf( Oz/za Of)(s_ﬁ) . Q 1_ (yl\c/;b 1 )(t—\/%)
Therefore, the relation v,, = w, becomes
P—C_aP_le—C;bQ_l.
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Since P > 0, @ > 0 and
c—a

P-Q>"=2Q-PPIQ,
it follows that P > Q). Furthermore, we have
P—-Q c—a__, 1 1
—_— P < —.
P "4 < a(c—a) ~— 39
Hence,
P P—-qQ 40 c—a, _,
0<log—=—-log(l — —) < — P
%% 5 og( 5 ) <390 )
40 —
70 (s 4 Vao)rm,

<39 (Ve va)y

Since ¢ = cf =a+ b+ 2r > 4a, we have ﬁf% < 3. Hence, we obtain
the result. O

According to Lemma 2.10, Lemma 3.2 and Theorem 2.11, we have
l=3,d=4,8=2m,

_ _ ~ (VetVa)v
o1 = s+ ace, ay=t+ Ve, ag_—(\ﬁi\/l;)\/&'

Let of and «f be the conjugates of a3 whose absolute values are greater
than one. Then

1 1 1 1
W(a1) = 5 log(a) < 5 log(2s), W(az) = 5 log(az) < log(21),
1
h(as) < Z{log(GQ(C —b)?) + log(azazaf)}

= i{log(b\/%(ﬁ +Va)(ve+Vb) (e —a))} < log(1.42¢)

and
1 1
log |A] > —18-4! 34(32.4)55 log (2s); log(2t) log(1.42c)-log(24) - log (2m).
Since S
log(gac(s + Vac) ™™y < (=2m + 1) log(4ac)
and
log(3.08(s + vac)™*™) < (—2m + 1) log(4ac),
¢ < 15a imply the following inequality
2m —1
log(2m)

(3.1) < 9.556 - 10 log(30a) log(21.3a).
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By the lower bound of m and (3.1), we get a < 9.35 - 10%° and ¢ <
1.41-10%2. Since (1.618)%* < o?* < @?* +/5-(9.35-10%0), we get k < 98.
Also, from (3.1) and the upper bound of a, we obtain m < 2.17 - 10%.

3.2. The reduction method

We can obtain an upper bound of m using the Lemma 2.12 with the
inequalities
0<mik—ny+ 1 < A3B™,
where mq := 2m, n; := 2n and

1 1 3.08
K= Ogal’ n1 = Oga3a A3:77 B:Oé%
log avg log an log an

We apply the Lemma 2.12 to the logarithmic inequalities with M :=
2m < 4.34-10%°. We have to examine 10 - 98 = 980 cases. The program
was developed in PARI/GP running with 70 digits. For the computa-
tions, if the first convergent such that ¢ > 6M; with ¢ = 1,2 does not
satisfy the condition € > 0 then we use the next convergent until we find
the one that satisfies the conditions. Then we have the following Table
1 as results.

TABLE 1. Results from PARI/GP running

Case of p Initial values Use the next convergent

4 zp=2z21=1 0 case

z0=2z =—1 80 cases (k=19,...,98)
5 zp=2z1=1 0 case

zo0 =21 =—1 81 cases (k=18,...,98)
6 zp=2z1=1 0 case

20 =21 =—1 81 cases (k=18,...,98)
7 zp=21=1 0 case

20 =21 =—1 81 cases (k=18,...,98)
8 zp=21=1 0 case

20=2=—1 82cases (k=17,...,98)

However, in all cases except the case of p = 4, we get m < 6. Hence,
we take M = 12, and run the program again, then we obtain m < 1.
When the case of p = 4, we get m < 7, so we take M = 14. Then also
we obtain m < 1. Therefore, we have the following theorem.
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THEOREM 3.3. Let a = Fy, a < b < 8a and {a,b,ci,d} be a Dio-

phantine quadruple with cf <d. Ifr is a divisor of a + b then d = c;.

1]

(11]
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