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CMC SURFACES WITH CONSTANT CONTACT ANGLE

ALONG A CIRCLE

Sung-Hong Min*

Abstract. In this paper, we give a characterization of a Delaunay
surface in R3. Let Σ be a CMC-H surface in R3 with H 6= 0. If Σ
meets a plane with constant contact angle along a circle, then it is
rotationally symmetric, i.e., Σ is part of a Delaunay surface.

1. Introduction

Björling first considered the problem to find a minimal surface con-
taining a given real-analytic curve in its interior with the prescribed
tangent planes. Known as the Björling problem, this was proved explic-
itly by Schwarz. Specifically, let γ : J → R3 be a regular real-analytic
curve defined on an interval J and n : J → R3 be a real-analytic vector
field along γ with ||n|| = 1 and 〈γ′, n〉 = 0. Then there is a simply con-
nected domain D containing J , on which the unique analytic extension
γ̃ (resp. ñ) : D → R3 of γ (resp. n) exists, such that a map X : D → R3

defined by

X(u, v) = Re

(
γ(z)− i

∫ z

z0

ñ(w)× γ̃′(w) dw

)
,(1.1)

where z = u+ iv ∈ D, z0 ∈ J , represents the unique minimal immersion
such that X|J = γ and n ⊥ X along γ. Using (1.1), Schwarz obtained
symmetry principles for a minimal surface Σ as follows: (a) If Σ in-
tersects a plane orthogonally, then there is a reflection symmetry with
respect to the plane. (b) If Σ contains a straight line, then there is a
rotation symmetry with respect to the straight line. The formula (1.1)
has long been used to find examples of minimal surfaces. On the other
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hand, Pyo [6] obtained a characterization of a catenoid by using (1.1)
as follows.

Theorem ([6]). Let Σ be an immersed minimal surface in R3. If Σ
meets a plane with constant contact angle along a circle, then it is part
of a catenoid.

The holomorphicity of the Gauss map plays an important role in the
Weierstrass representation formula for a minimal surface and hence in
the formula (1.1). Although the Gauss map of a non-minimal CMC sur-
face is just harmonic, Dorfmeister-Pedit-Wu [3] obtained a Weierstrass
type representation formula for CMC surfaces in R3, which is called the
DPW method. Any immersion in R3 with the constant mean curvature
can be constructed from a Lie(ΛSL(2,C))-valued holomorphic 1-form

ξ̂ =
∞∑

j=−1

Ajλ
jdz,

where ΛSL(2,C) is the loop group of maps φ : S1 → SL(2,C) with a
twisting condition and Lie(ΛSL(2,C)) is the Lie algebra of the loop group
ΛSL(2,C). Motivated from Schwarz’s result, for given real-analytic
Björling data {γ, ν}, and a non-zero constant H, Brander-Dorfmeister
[2] proved the Björling problem for non-minimal CMC surfaces by using
the DPW method.

Theorem ([2]). Let γ : J → R3 be a regular real-analytic curve and
ν : J → R3 be a non-vanishing real-analytic vector field along γ such
that 〈ν, γ′〉 = 0 along γ. Let H be a non-zero real number.

There is a CMC-H immersion X : D → R3, where D is some open
subset of C containing J , such that the restriction X|J coincides with γ,
and such that the tangent planes to the immersion along γ are spanned
by ν and γ′.

Moreover, the surface X is unique in the following sense: If X̃ is any
other solution, then, for every point x0 ∈ J , there exists a neighborhood
N = (x0 − ε, x0 + ε) × (−δ, δ) ⊂ C of z0 = (x0, 0) ∈ D such that

X|N = X̃|N .

In this paper, we deal with a characterization of a Delaunay surface
in R3 analogous to the result obtained by Pyo [6]. Let Σ be a surface in
R3 with the constant mean curvature H 6= 0. Suppose that Σ meets a
plane with constant contact angle along a circle. Then we can compute
the extended frame for Σ by using the method in [2], and hence we have
the following result.
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Theorem 1.1. Let Σ be a CMC-H surface in R3 with H 6= 0. If
Σ meets a plane with constant contact angle along a circle, then it is
rotationally symmetric, i.e., Σ is part of a Delaunay surface.

2. Preliminaries

In this section, we give some basic notions and briefly introduce the
construction of a CMC surface via integrable system method. We mainly
refer to [1, 2, 4].

Let D be a simply connected domain in R2. Let Σ be a surface in R3

and X : D → R3 be a conformal immersion of Σ with the metric ds2 =
4e2ϕ(du2 + dv2). Let z = u+ iv be the canonical complex coordinate on
D ⊂ C ' R2. Then

〈Xz, Xz〉 = 〈Xz̄, Xz̄〉 = 0 and 〈Xz, Xz̄〉 = 2e2ϕ.(2.1)

The mean curvature of Σ is defined by

H =
1

2
(κ1 + κ2),

where κ1 and κ2 are principal curvatures of Σ. A surface Σ is said to
be a constant mean curvature surface if H is constant, simply we call
it a CMC surface, or a CMC-H surface when we emphasize the value
H. Denote the unit normal vector field of Σ by n = Xu×Xv

|Xu×Xv | . It is well

known that 4ΣX = 2Hn, and hence

H =
1

8
e−2ϕ〈Xzz̄, n〉.

Define the Hopf differential Q as

Q = 〈Xzz, n〉.

From these, we can compute that

Xzz = 2ϕzXz +Qn, Xz̄z̄ = 2ϕz̄Xz̄ + Q̄n, Xzz̄ = 2He2ϕn.(2.2)

The Lie group SU(2) is a matrix group consists of all 2 × 2 unitary
matrices

SU(2) = {A ∈ GL(2,C)| AAH = I, detA = 1}

=

{(
a b
−b̄ ā

) ∣∣∣ a, b ∈ C, |a|2 + |b|2 = 1

}
,
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where AH = ĀT is the conjugate transpose of A. Denoted by su(2) the
Lie algebra of SU(2). It is a 3-dimensional real vector space consists of
2× 2 traceless skew-Hermitian complex matrices:

su(2) =
{
σ ∈ gl(2,C)

∣∣∣ σ + σH = 0, trσ = 0
}
.

As a basis, take the following three matrices:

σ1 =

(
0 −i
−i 0

)
, σ2 =

(
0 1
−1 0

)
, σ3 =

(
i 0
0 −i

)
.

There is an isometry between R3 and su(2) that maps (x, y, z) ∈ R3 to
the following matrix in su(2)

xσ1 + yσ2 + zσ3 =

(
iz y − ix

−y − ix −iz

)
,(2.3)

with the metric 〈σ, τ〉 = −1
2tr(στ) for any σ, τ ∈ su(2). In particular,

〈σj , σk〉 = δjk for all j, k. From now on, we identify R3 with su(2).

Note that {Xu, Xv,n} forms an orthogonal frame of Σ ⊂ R3 ' su(2).
Denote a SU(2)-valued frame by F : D → SU(2) such that

Fσ1F
−1 =

Xu

|Xu|
, Fσ2F

−1 =
Xv

|Xv|
, Fσ3F

−1 = n.(2.4)

It yields that

Xz = −2ieϕF

(
0 1
0 0

)
F−1, Xz̄ = −2ieϕF

(
0 0
1 0

)
F−1.

By choosing coordinates in R3, we may assume that F (z0) = I for a
fixed point z0 ∈ D. Differentiating Xz and Xz̄, with the equations in
(2.2), the su(2)-valued Maurer-Cartan form for F ,

ω = F−1dF = Udz + V dz̄,

can be computed as follows (see [1, 2, 4]):

U = F−1Fz =
1

2

(
ϕz −2eϕH
e−ϕQ −ϕz

)
,

V = F−1Fz̄ =
1

2

(
−ϕz̄ −e−ϕQ̄
2eϕH ϕz̄

)
.(2.5)
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The compatibility condition Uz̄ −Vz − [U, V ] = 0, which is equivalent to
the Maurer-Cartan equation dω + ω ∧ ω = 0, can be written as

ϕzz̄ + e2ϕH2 − 1

4
e−2ϕ|Q|2 = 0; (Gauss equation)

Qz̄ = 2e2ϕHz, (Codazzi equation)(2.6)

where [U, V ] = UV − V U .

Let λ ∈ S1 be a spectral parameter. Denoted by ΛSU(2) the loop
group of maps φ : S1 → SU(2) with a twisting condition φ(−λ) =
σ3φ(λ)σ3: φ is an even (resp. odd) function in λ on its diagonal (resp.
off-diagonal). Let Lie(ΛSU(2)) be the Lie algebra of ΛSU(2). Define a
Lie(ΛSU(2))-valued 1-form ω̂, by adding a spectral parameter λ to ω,
as follows.

ω̂ = Ûdz + V̂ dz̄,

where

Û =
1

2

(
ϕz −2eϕHλ−1

e−ϕQλ−1 −ϕz

)
, V̂ =

1

2

(
−ϕz̄ −e−ϕQ̄λ

2eϕHλ ϕz̄

)
.(2.7)

Then ω̂ satisfies the Maurer-Cartan equation for all λ ∈ S1 if and only if
Σ is a CMC surface in R3. More precisely, the following theorem holds.

Theorem ([2, 4]). Let X : D → R3 be a conformal immersion. Then
the mean curvature H is constant if and only if there is an extended
frame F̂ and the Maurer-Cartan 1-form ω̂ = F̂−1dF̂ such that dω̂+ ω̂ ∧
ω̂ = 0 for λ ∈ S1.

Here, F̂ : D → ΛSU(2) is said to be an extended frame for a CMC sur-

face if it is obtained by integrating ω̂ with the initial condition F̂ (z0) = I

for λ ∈ S1, and F̂ |λ=1 = F .

Bobenko gave the expression for a CMC immersion in terms of an
extended frame. For H 6= 0 and λ ∈ S1, the Sym-Bobenko formula is
given by

Sλ(F̂ ) = − 1

2H

(
F̂ σ3F̂

−1 + 2iλ(∂λF̂ )F̂−1

)
.

Theorem ([1, 2, 4]). Let X : D → R3 be a CMC-H immersion. Let

F̂ : D → ΛSU(2) be an extended frame described as above. Then the
immersion X can be written as

X(z) = S1(F̂ (z))−S1(F̂ (z0)) +X(z0).
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Conversely, for any ϕ and Q satisfying (2.6), if F̂ ∈ ΛSU(2) is a solution

of the system F̂−1F̂z = Û and F̂−1F̂z̄ = V̂ , where Û and V̂ are given as in
(2.7), with detF̂ = 1, then the Sym-Bobenko formula Sλ(F̂ ) describes a
conformal CMC-H immersion into R3 with metric ds2 = 4e2ϕ(du2 +dv2)
and the Hopf differential λ−2Q.

Dorfmeister-Pedit-Wu [3] obtained a Weierstrass type representation for-
mula for CMC surfaces in R3: Any CMC immersion in R3 can be con-
structed from a Lie(ΛSL(2,C))-valued holomorphic 1-form

ξ̂ =
∞∑

j=−1

Ajλ
jdz with A−1 =

(
0 a−1

b−1 0

)
, a−1 6= 0.

where ΛSL(2,C) is the loop group of maps φ : S1 → SL(2,C) with
a twisting condition and Lie(ΛSL(2,C)) is the Lie algebra of the loop

group ΛSL(2,C). We call ξ̂ a holomorphic potential.

In this regard, Brander-Dorfmeister [2] proved the Björling problem
for non-minimal CMC surfaces via DPW method. If a solution of the
Björling problem exists, then the extension F of F0 satisfies (2.1), (2.4)
and (2.5). Therefore we use the conditions (2.1), (2.4) and (2.5) as

necessary conditions for the existence of the extended frame F̂0 along J .
We summarize the construction in [2] as the following five steps:

1. Translate given real-analytic Björling data {γ, ν} in terms of su(2);
2. Let F0 be a frame on an interval J . Determine the conformal

metric ϕ on J by using (2.1) and (2.4);

3. Construct the extended frame F̂0, a solution of F̂−1

0 dF̂0 = ω̂0 with
the initial condition along J , where (2.5) determines ω̂0;

4. Find a holomorphic extension ω̂, which is called the boundary po-
tential, of ω̂0 on a simply connected domain D containing J ;

5. Apply the DPW method.

3. Proof of Theorem 1.1

Definition 3.1. Let P ⊂ R3 be a plane normal to nP . We say that
a surface Σ meets P with constant contact angle β along a curve γ if
γ = Σ ∩ P and 〈n,nP 〉 = cosβ is constant along γ.

Proof of Theorem 1.1. Let P be a plane normal to nP = (0, sinβ, cosβ)
passing through the origin in R3, that is,

P = {(x, y, z) ∈ R3| y sinβ + z cosβ = 0}.
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Denoted by γ a circle of radius r centered at the origin that lies in P .
Parametrize γ as follows.

γ(u) = r

(
sin

2u

r
, cosβ cos

2u

r
,− sinβ cos

2u

r

)
, u ∈ J,

where J is an open interval such that 0 ∈ J . Without loss of generality,
we may assume that Σ meets a plane P with constant contact angle β
along γ, by a rigid motion of R3. The conormal vector field ν of Σ along
γ satisfies that

〈ν, γ′〉 = 0, 〈ν, nP 〉 = sinβ.

Since {γ, γ′,nP} are mutually orthogonal along γ, we have

ν = cosβ
γ

|γ|
+ sinβnP

=

(
cosβ sin

2u

r
, sin2 β + cos2 β cos

2u

r
, cosβ sinβ(1− cos

2u

r
)

)
.

Note that γ and ν are both real analytic. We claim that the solution of
the Björling problem with respect to the analytic data {γ, ν} described
above and H 6= 0 is a Delaunay surface. If the claim holds, then the
conclusion follows by the maximum principle for CMC surfaces (or by
the uniqueness theorem of [2]).

From (2.3), we identify γ′ and ν with matrices in su(2) as follows.

γ′(u) = 2

(
i sinβ sin 2u

r − cosβ sin 2u
r − i cos 2u

r

cosβ sin 2u
r − i cos 2u

r −i sinβ sin 2u
r

)
,

ν(u) =


i cosβ sinβ(1− cos 2u

r )
sin2 β + cos2 β cos 2u

r

−i cosβ sin 2u
r

− sin2 β − cos2 β cos 2u
r

−i cosβ sin 2u
r

−i cosβ sinβ(1− cos 2u
r )

 .

If there is a solution of the Björling problem, then there is a SU(2)-frame
F satisfies (2.1) and (2.4). Thus, we let F0 to be a frame along J such
that

F0σ1F
−1

0 =
1

2eϕ
γ′(u),

F0σ2F
−1

0 = ν(u),(3.1)

where the second equality follows from the necessary condition Xv =
2eϕν to make X to be a solution of the Björling problem. Taking the
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determinant to the first equality in (3.1) along J , we have

ϕ = log

(
1

2

√
det(γ′(u))

)
= 0.(3.2)

Put F0 =

(
A B
−B̄ Ā

)
∈ SU(2). Then

F0σ1F
−1

0 =

(
−2iRe(AB̄) −i(A2 −B2)
−i(Ā2 − B̄2) 2iRe(AB̄)

)
,

F0σ2F
−1

0 =

(
2iIm(AB̄) A2 +B2

−Ā2 − B̄2 −2iIm(AB̄)

)
.

The equations (3.1) and (3.2) yield that

2Re(AB̄) = − sinβ sin
2u

r
,

2Im(AB̄) = cosβ sinβ

(
1− cos

2u

r

)
,

A2 −B2 = cos
2u

r
− i cosβ sin

2u

r
,

A2 +B2 = sin2 β + cos2 β cos
2u

r
− i cosβ sin

2u

r
.

With the initial condition F0(0) = I, the unique SU(2) frame F0 is
determined to be

F0 =

(
cos ur − i cosβ sin u

r − sinβ sin u
r

sinβ sin u
r cos ur + i cosβ sin u

r

)
,

along J . Differentiating the frame F0 with respect to u, we have

F−1

0 (F0)u =
1

r

(
−i cosβ − sinβ

sinβ i cosβ

)
.

For an extension F of F0 satisfies (2.5),

F−1Fu = U + V =
1

2

(
ϕz − ϕz̄ −2eϕH − e−ϕQ̄

2eϕH + e−ϕQ −ϕz + ϕz̄

)
and F−1Fu = F−1

0 (F0)u along J . Comparing these two values directly,
along J ,

ϕz = − i
r

cosβ,

Q =
2

r
sinβ − 2H,
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because ϕu = ϕz + ϕz̄ = 0 along J . By (2.7), along J ,

ω̂0 =
1

2

{(
− i
r cosβ −2Hλ−1

(2
r sinβ − 2H)λ−1 i

r cosβ

)
+

(
− i
r cosβ (−2

r sinβ + 2H)λ
2Hλ i

r cosβ

)}
du,

and hence the extended frame F̂0 can be determined by integrating ω̂0

along J . Extend ω̂0 holomorphically, we obtain the boundary potential
as follows.

ω̂ =

(
− i
r cosβ (H − 1

r sinβ)λ−Hλ−1

Hλ− (H − 1
r sinβ)λ−1 i

r cosβ

)
dz.

By Kilian [5], ω̂ coincides with the holomorphic potential of a Delaunay
surface for any r > 0, β, and H 6= 0. This proves the claim.
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