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CMC SURFACES WITH CONSTANT CONTACT ANGLE
ALONG A CIRCLE

SuNGg-HoNG MIN*

ABSTRACT. In this paper, we give a characterization of a Delaunay
surface in R®. Let ¥ be a CMC-H surface in R® with H # 0. If &
meets a plane with constant contact angle along a circle, then it is
rotationally symmetric, i.e., ¥ is part of a Delaunay surface.

1. Introduction

Bjorling first considered the problem to find a minimal surface con-
taining a given real-analytic curve in its interior with the prescribed
tangent planes. Known as the Bjorling problem, this was proved explic-
itly by Schwarz. Specifically, let v : J — R3 be a regular real-analytic
curve defined on an interval J and n : J — R3 be a real-analytic vector
field along « with ||n|| =1 and (y/,n) = 0. Then there is a simply con-
nected domain D containing J, on which the unique analytic extension
7 (resp. ) : D — R3 of y (resp. n) exists, such that a map X : D — R3
defined by

(1.1) X(u,0) = Re <7(z) —i/z

0

z

i) x () dv).

where z = u+iv € D, z9 € J, represents the unique minimal immersion
such that X|; = v and n L X along v. Using (1.1), Schwarz obtained
symmetry principles for a minimal surface 3 as follows: (a) If ¥ in-
tersects a plane orthogonally, then there is a reflection symmetry with
respect to the plane. (b) If ¥ contains a straight line, then there is a
rotation symmetry with respect to the straight line. The formula (1.1)
has long been used to find examples of minimal surfaces. On the other
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hand, Pyo [6] obtained a characterization of a catenoid by using (1.1)
as follows.

TuEOREM ([6]). Let ¥ be an immersed minimal surface in R3. If &
meets a plane with constant contact angle along a circle, then it is part
of a catenoid.

The holomorphicity of the Gauss map plays an important role in the
Weierstrass representation formula for a minimal surface and hence in
the formula (1.1). Although the Gauss map of a non-minimal CMC sur-
face is just harmonic, Dorfmeister-Pedit-Wu [3] obtained a Weierstrass
type representation formula for CMC surfaces in R3, which is called the
DPW method. Any immersion in R? with the constant mean curvature
can be constructed from a Lie(ASL(2, C))-valued holomorphic 1-form

=Y ANdz,
j=—1
where ASL(2,C) is the loop group of maps ¢ : S! — SL(2,C) with a
twisting condition and Lie(ASL(2, C)) is the Lie algebra of the loop group
ASL(2,C). Motivated from Schwarz’s result, for given real-analytic
Bjorling data {~,r}, and a non-zero constant H, Brander-Dorfmeister

[2] proved the Bjorling problem for non-minimal CMC surfaces by using
the DPW method.

THEOREM ([2]). Let 7 : J — R3 be a regular real-analytic curve and
v : J — R3 be a non-vanishing real-analytic vector field along ~ such
that (v,~") =0 along v. Let H be a non-zero real number.

There is a CMC-H immersion X : D — R3, where D is some open
subset of C containing J, such that the restriction X|; coincides with -,
and such that the tangent planes to the immersion along v are spanned
by v and /. _

Moreover, the surface X is unique in the following sense: If X is any
other solution, then, for every point x¢ € J, there exists a neighborhood
N = (x0 — €,29 + €) x (—=06,0) C C of 29 = (20,0) € D such that
X|n = X|n.

In this paper, we deal with a characterization of a Delaunay surface
in R? analogous to the result obtained by Pyo [6]. Let ¥ be a surface in
R3 with the constant mean curvature H # 0. Suppose that ¥ meets a
plane with constant contact angle along a circle. Then we can compute
the extended frame for ¥ by using the method in [2], and hence we have
the following result.



CMC surfaces with constant contact angle along a circle 389

THEOREM 1.1. Let ¥ be a CMC-H surface in R® with H # 0. If
> meets a plane with constant contact angle along a circle, then it is
rotationally symmetric, i.e., ¥ is part of a Delaunay surface.

2. Preliminaries

In this section, we give some basic notions and briefly introduce the
construction of a CMC surface via integrable system method. We mainly
refer to [1, 2, 4].

Let D be a simply connected domain in R?. Let ¥ be a surface in R3
and X : D — R3 be a conformal immersion of ¥ with the metric ds? =
4e*(du® + dv?). Let z = u+ v be the canonical complex coordinate on
D C C ~ R?. Then

(2.1) (X., X,) = (Xz, X5) = 0 and (X, X) = 2¢%.

The mean curvature of ¥ is defined by
1
H = 5(&1 + Iig),

where k1 and kg are principal curvatures of 3. A surface ¥ is said to
be a constant mean curvature surface if H is constant, simply we call
it a CMC surface, or a CMC-H surface when we emphasize the value
H. Denote the unit normal vector field of ¥ by n = SwX&e Tt is well

[ XuXxXol|*
known that Ay X = 2Hn, and hence

H= ée’2“"<ng,n>.
Define the Hopf differential @) as
Q@ = (Xzz,m).
From these, we can compute that
(2.2) X.. =20. X, +0Qn, Xz; =20:X;+Qn, X,z =2He*n.

The Lie group SU(2) is a matrix group consists of all 2 x 2 unitary
matrices

SU(2) = {A € GL(2,C)| AA" = I, detA = 1}

~{( D evec i vpe=1},
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where A" = AT is the conjugate transpose of A. Denoted by su(2) the
Lie algebra of SU(2). It is a 3-dimensional real vector space consists of
2 x 2 traceless skew-Hermitian complex matrices:

su(2) = {O‘ € g[(2,©)’ o+oc" =0, tro = 0} .
As a basis, take the following three matrices:

0 —i 0 1 i 0
= (8) = (G 6 )

There is an isometry between R? and su(2) that maps (z,y,2) € R? to
the following matrix in su(2)

B 1z Y — 1T
(2.3) ro1 + Yoo + 203 = <—y—im ix ) ,
with the metric (o,7) = —itr(or) for any 0,7 € su(2). In particular,

(0j,0k) = dj for all j, k. From now on, we identify R? with su(2).
Note that {X,, X,,n} forms an orthogonal frame of ¥ C R? ~ su(2).
Denote a SU(2)-valued frame by F': D — SU(2) such that

Xu B Xy _
—_— F(7 F ! = FU F ! = 1.
|Xu’7 2 ) 3

(24) FO’1F71 =

It yields that

0 1 0 0
— _Dgp® -1 L _ 97, —1
X, = QZeF(O O)F , Xz = 216F<1 0>F .

By choosing coordinates in R3, we may assume that F(z) = I for a
fixed point 25 € D. Differentiating X, and Xz, with the equations in
(2.2), the su(2)-valued Maurer-Cartan form for F,

w=F"'dF =Udz+ Vdz,

can be computed as follows (see [1, 2, 4]):
1 —2e¥H
=F'F=_( %
v-rr-5 (% ).
1
2

A —Pz _e_SDQ
(2.5) V=F"F;= <2650H 0 > .
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The compatibility condition Uz — V, — [U, V] = 0, which is equivalent to
the Maurer-Cartan equation dw + w A w = 0, can be written as

1
P2z + ¥ H? — 16’2*”]Q|2 =0 (Gauss equation)
(2.6) Qz =2¢**H,, (Codazzi equation)
where [U, V] =UV —VU.

Let A € S! be a spectral parameter. Denoted by ASU(2) the loop
group of maps ¢ : S! — SU(2) with a twisting condition ¢(—\) =
o3p(N)os: ¢ is an even (resp. odd) function in A on its diagonal (resp.
off-diagonal). Let Lie(ASU(2)) be the Lie algebra of ASU(2). Define a
Lie(ASU(2))-valued 1-form @, by adding a spectral parameter A to w,
as follows.

& =Udz+ Vdz,
where

- 1 g, —2HAYY o 1( —ps  —e QA
(27) U — 5 <€¢Q)\l —p, > ’ V - 5 <2€¢H)\ Yz > .

Then @ satisfies the Maurer-Cartan equation for all A € S! if and only if
¥ is a CMC surface in R3. More precisely, the following theorem holds.

THEOREM ([2, 4]). Let X : D — R? be a conformal immersion. Then
the mean curvature H is constant if and only if there is an extended
frame F' and the Maurer-Cartan 1-form & = F~'dF such that d& + & A
& =0 for A € S'.

Here, F': D — ASU(2) is said to be an eztended frame for a CMC sur-
face if it is obtained by integrating w with the initial condition F'(z9) = I
for A € S!, and F|y=; = F.

Bobenko gave the expression for a CMC immersion in terms of an
extended frame. For H # 0 and A € S', the Sym-Bobenko formula is
given by

A(E) = _% (Fou = + 2iMOAF)F)

THEOREM ([1, 2, 4]). Let X : D — R? be a CMC-H immersion. Let
F : D — ASU(2) be an extended frame described as above. Then the
immersion X can be written as

X (2) = A(F(2)) = L(F(20)) + X (20).
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Conversely, for any ¢ and @ satlsfymg (2 6), if Fe ASU( ) is a solution
of the system F- 1FZ = U and F- ng = V where U and V are given as in
(2.7), with detF" = 1, then the Sym-Bobenko formula YA( 7 describes a
conformal CMC-H immersion into R? with metric ds? = 4€**(du? + dv?)
and the Hopf differential A=2Q).

Dorfmeister-Pedit-Wu [3] obtained a Weierstrass type representation for-
mula for CMC surfaces in R3: Any CMC immersion in R? can be con-
structed from a Lie(ASL(2, C))-valued holomorphic 1-form

- = ; . 0 a_;
£= Zl AjNdz with A_, = (b—l 0 > , a_y 0.
p
where ASL(2,C) is the loop group of maps ¢ : S' — SL(2,C) with
a twisting condition and Lie(ASL(2,C)) is the Lie algebra of the loop
group ASL(2,C). We call £ a holomorphic potential.

In this regard, Brander-Dorfmeister [2] proved the Bjorling problem
for non-minimal CMC surfaces via DPW method. If a solution of the
Bjorling problem exists, then the extension F' of Fj satisfies (2.1), (2.4)
and (2.5). Therefore we use the conditions (2.1), (2.4) and (2.5) as
necessary conditions for the existence of the extended frame Fy along J.
We summarize the construction in [2] as the following five steps:

1. Translate given real-analytic Bjorling data {7, v} in terms of su(2);

2. Let Fy be a frame on an interval J. Determine the conformal
metric ¢ on J by using (2.1) and (2.4);

3. Construct the extended frame Fo, a solution of F LdFy = & with
the initial condition along J, where (2.5) determmes @o;

4. Find a holomorphic extension w, which is called the boundary po-
tential, of &y on a simply connected domain D containing J;

5. Apply the DPW method.

3. Proof of Theorem 1.1

DEFINITION 3.1. Let P C R? be a plane normal to np. We say that
a surface ¥ meets P with constant contact angle 5 along a curve ~y if
v =X NP and (n,np) = cosf is constant along .

Proof of Theorem 1.1. Let P be a plane normal to np = (0, sin 3, cos )
passing through the origin in R3, that is,

P = {(x,y,z) € R®| ysinB + zcos f = 0}.
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Denoted by v a circle of radius r centered at the origin that lies in P.
Parametrize v as follows.

2 2 2
y(u) =7 <sinu,cos,6’cosu, —sin f cos u> , U E J,
r r r

where J is an open interval such that 0 € J. Without loss of generality,
we may assume that ¥ meets a plane P with constant contact angle 3
along v, by a rigid motion of R?. The conormal vector field v of ¥ along
~ satisfies that

(v,9y =0, (v,np) = sinf.
Since {7v,7/,np} are mutually orthogonal along ~, we have

e

kol

2 2 2
= <cosﬁsinu,sin25 + coszﬂcos—u,cosﬂsinﬁ(l — cos u)> )
r r r

v = cos B— 4+ sin fnp

Note that «v and v are both real analytic. We claim that the solution of
the Bjorling problem with respect to the analytic data {v,v} described
above and H # 0 is a Delaunay surface. If the claim holds, then the
conclusion follows by the maximum principle for CMC surfaces (or by
the uniqueness theorem of [2]).

From (2.3), we identify 7 and v with matrices in su(2) as follows.

) = 2 isinﬂsin%“ —cosﬁsin%“—icos%“
U cosﬁsm%“—zcos%“ —zsmﬁsm%" ’
102 2 2u
. ) 2 sin® 8 4 cos” 5 cos 2%

icos sin 3(1 — cos =) r

—icosﬂsin%“
v(u) = .2 2 2u
—sin® 3 — cos” B cos <*
2u
T

2u)

—icos Bsin 3(1 — cos =%

—icos fBsin
If there is a solution of the Bjorling problem, then there is a SU(2)-frame
F satisfies (2.1) and (2.4). Thus, we let Fy to be a frame along J such
that
-1 ]‘ /
FoorFy " = 5 (u),
(3.1) F()O’QFO_1 = l/(u),

where the second equality follows from the necessary condition X, =
2e?v to make X to be a solution of the Bjorling problem. Taking the
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determinant to the first equality in (3.1) along J, we have

(3.2) o = log <; det(y’(u))) 0.

Put Fy = (—AB g) € SU(2). Then

. { —2iRe(AB) —i(A%- B?)
Foouky™ = (—z’(/? ~ B’ 2Re(AB) )’
., (2ilm(AB) A?+ B?
Fooz by = (—A2 _ B2 —2ilm(AB))"
The equations (3.1) and (3.2) yield that

2Re(AB) = — sin Bsin 2—u,
r

_ 2
2Im(AB) = cos Bsin 3 (1 — cos u) ,
r
2 2
A2—B2:cos—u—icosﬁsin—u,
r r
2 2
A2—|—32:sin2B+COSQﬁcos—u—icosﬁsin—u.
r r

With the initial condition Fp(0) = I, the unique SU(2) frame Fp is
determined to be

[ cos ¢ —icosBsin —sin Bsin
0 sin 3 sin cos ¢ +icosfBsin )’

along J. Differentiating the frame Fy with respect to u, we have
_ 1 (—icosf3 —sinf
1 —
Fo (FO)“_T( sin 3 icosﬁ)‘
For an extension F' of Fy satisfies (2.5),
1 — @z —2e*H — e~ *(Q)
FF,=U+V =5, Y2 7
“ - 2 (26¢’H +erQ  —pat ez

and F~'F, = Fj'(Fp), along J. Comparing these two values directly,
along J,
)
p, = ——cosf3,
r

2
Q = Zsin B — 28,
T
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because ¢, = ¢, + ¢z = 0 along J. By (2.7), along J,

N 1 —Lcos 3 —2H\!
079 (2sinf —2H)A™'  Lcosf
—LcosB (—2sinf+2H)A

+< 2H)\ L cos B du,

and hence the extended frame Fy can be determined by integrating wq
along J. Extend @y holomorphically, we obtain the boundary potential
as follows.

_ _ 1. o -1
o rcolsﬁ B (H 7”s;nﬁ))\ H\ de.
HX— (H — 5 sin )\ +cos 3
By Kilian [5], @ coincides with the holomorphic potential of a Delaunay
surface for any » > 0, 5, and H # 0. This proves the claim. O
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