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FUNDAMENTAL TONE OF COMPLETE WEAKLY
STABLE CONSTANT MEAN CURVATURE
HYPERSURFACES IN HYPERBOLIC SPACE

Sunc-HoNGg MIN*

ABSTRACT. In this paper, we give an upper bound for the funda-
mental tone of stable constant mean curvature hypersurfaces in hy-
perbolic space. Let M be an n-dimensional complete non-compact
constant mean curvature hypersurface with finite L?-norm of the
traceless second fundamental form. If M is weakly stable, then
A1(M) is bounded above by n? + O(n***) for arbitrary s > 0.

1. Introduction

Let M be a complete non-compact Riemannian manifold. The fun-
damental tone \y(M) of M is defined as
AL(M) =inf{\(2) : Q@ C M, Qis compact}.

It can be characterized variationally as

S VP
Jar I
To find A1 (M) or to estimate A;(M) is a very important and interesting

problem in differential geometry. McKean [12] showed the following
famous theorem.

(1.1) A (M) = inf{ L 04 f € W(}’?(M)}.

THEOREM (McKean [12]). Let M be a complete simply connected
Riemannian manifold with sectional curvature bounded above by a con-

stant —k2 < 0. Then M (M) > W'

Received August 18, 2021; Accepted October 12, 2021.

2010 Mathematics Subject Classification: Primary 53C40; Secondary 53C42.

Key words and phrases: constant mean curvature hypersurface, stable, hyperbolic
space, fundamental tone.

*This research was supported by Basic Science Research Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Education
(Grant Number: 2017R1D1A1B03036369).



370 Sung-Hong Min

Let H™ be an m-dimensional hyperbolic space with constant curvature
—1. For a complete submanifold in hyperbolic space, Cheung and Leung
[7] obtained the following theorem.

THEOREM (Cheung and Leung [7]). Let M be an n-dimensional com-
plete non-compact submanifold in H™ with the mean curvature vector
H.If |[H <a<n-—1, then
(n—1—a)?

4

There are also upper bound estimates for the fundamental tone of a
complete submanifold in hyperbolic space.

AM(M) >

THEOREM (Candel [5]). Let M be a stable simply connected minimal

surface in H3. Then ) A
- < M(M) < -

g s <3
THEOREM (Seo [13]). Let M be a complete stable minimal hypersur-

face in H"*! with [, |A]* < co. Then
(n— 1)
4

Seo [14] also generalized his result to a complete minimal hypersurface
in H"*! with finite index. For a cmc-H submanifold in hyperbolic space,
Fu and Tao [11] showed the following.

< A\ (M) <n?

THEOREM (Fu and Tao [11]). Let M be an n-dimensional complete

non-compact orientable submanifold with parallel mean curvature vector
in H"*P. If [, |®|? < oo for ¢ > n, then
—1)?(1— |HJ?
mo) < U HED)
where ® is the traceless second fundamental form of M.

In particular, if M is an n(< 5)-dimensional complete non-compact
weakly stable cme-H hypersurface in H**! with [, |®|? < oo for d =

1,2,3, then Ay (M) < (n=020=1A)

Meanwhile, Barbosa and do Carmo [2] proved that any compact cmc-
H, H # 0, hypersurface in R"*! is weakly stable if and only if it is a
round sphere. This result was extended by Barbosa, do Carmo, and
Eschenburg [3] to a compact cme-H hypersurface in space forms. Da
Silveira [15] studied complete non-compact weakly stable cme-H sur-
faces in R® and H3. In R3, he generalized do Carmo and Peng [6],
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Fischer-Colbrie and Schoen [9] as follows: Any complete non-compact
cme-H surface is weakly stable if and only if it is totally geodesic. In
H3, the situation turns out differently: If |[H| > 1, then any complete
non-compact weakly stable cme-H surface in H? is a horosphere. How-
ever, there exists at least one one-parameter family of weakly stable
non-umbilic cme-H embeddings if |[H| < 1. Later, Cheung and Zhou [§]
proved that a complete non-compact weakly stable cmc-H hypersurface
in H"*t!, n = 3,4,5, with |H| > 1 is a compact geodesic sphere if the L2-
norm of the traceless second fundamental form is bounded. Not much is
known about complete non-compact weakly stable cmc-H hypersurfaces
for higher dimensions.

In this paper, we obtain an upper bound for the fundamental tone
of a complete non-compact weakly stable cmc-H hypersurface in H*+!
with finite L?-norm of the traceless second fundamental form.

THEOREM (Theorem 3.2). Let M be an n-dimensional complete non-
compact orientable cme-H hypersurface in H"! with [ Y |®]? < oo.
Assume that M is not a totally umbilical cmc-H hypersurface. Let
s > 0. If M is weakly stable, then

)\I(M) S TL2 + C47

where Cy is a constant with Cy = O(n?*%). In particular, if n = 2, then
)\1(M2) S n2 =4.

Note that there is no dimension restriction on M in the above theorem.

2. Preliminaries

Let M be an n-dimensional immersed orientable hypersurface in an
(n + 1)-dimensional Riemannian manifold N. Denote by V and V the
Levi-Civita connections of N and M, respectively. The second funda-
mental form of M is defined by, for all tangent vector fields X, Y,

(AX,Y) = (VxY,v),

where v is the unit normal vector field of M. The (normalized) mean
curvature of M is defined as

1
H = —trA.
n

An immersed hypersurface M in N is said to be a constant mean cur-
vature hypersurface if H is constant on M. Simply, we call M a cme-H
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hypersurface. In particular, M is said to be a minimal hypersurface if
H=0.

REMARK 2.1. If M is a cmc-H hypersurface with nonzero H, then
M is orientable. We may assume that H > 0 by choosing the suitable
orientation.

DEFINITION 2.2. An n-dimensional cme-H hypersurface M in an (n+
1)-dimensional Riemannian manifold N is called strongly stable if for all

f e Wy (M),
(2.1 [ AIVAP = (Rictvr) + |AP) £2} 2 0,
M

where Ric is the Ricci curvature of N and |A|? is the squared norm of
the second fundamental form of M in N.
M is said to be weakly stable if (2.1) holds for all f € Wol’2(M)

satisfying
| £=o
M

A minimal hypersurface M is stable if it is strongly stable.

Remark that, for a cme-H hypersurface, weak stability is more natu-
ral than other stability conditions because a cmc-H hypersurface can
be viewed as a critical point of area-functional for volume-preserving
variations (see [4]). From the definition, a strongly stable cme-H hy-
persurface is weakly stable. However, the converse does not hold: For
example, a totally geodesic S? isometrically immersed in S? is weakly
stable, but is not strongly stable.

To work with a cmc-H hypersurface M C N, the traceless second
fundamental form is more useful than the second fundamental form.
The traceless second fundamental form, denoted by ®, is defined by

(I) == A _— H . ng’
where ¢,, is the metric on M. By a simple computation, we have
AP = [ + nH,

and hence, for cme-H hypersurface, (2.1) becomes

/ {IVfP = (Ric(v,v) + |®[? +nH?) f2} > 0
M

For later use, we recall the famous Simons’ inequality for a cme-H
hypersurface in a space form.
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THEOREM 2.3 (Simons’ inequality [1, 8]). Let M be a cmc-H hyper-
surface in a space form N"*!(c) with constant curvature c. If H > 0,
then

n(n —2)

vn(n—1)

2
(2:2) [@|A|D] > ~|V[@[* - ||* - H|®> +n(H? + c)|@f.

3. Fundamental tone

_ Let M be a weakly stable cme-H hypersurface in H"™. In H™H!,
Ric(v,v) = —n, thus we write (2.1) as follows.

(3.1) /M{|ny2— (|®|* + nH? —n) f2} > 0.

Fix a point p € M. Let r(z) = dist(p, z) and B(p,r) ={x € M | r(x) <
r} be a distance function from p to z in M and a geodesic ball of
radius r centered at p, respectively. For any R > 0, define a function
vr(z) € [-1,1] on M as follows.

1 on B(p, R);
2" on B(p,3R) \ B(p, R);

er(z) =4 -1 on B(p, kR) \ B(p,3R);
—(k+1)+ "2 on B(p, (k+1)R) \ B(p, kR);
0 on M\ B(p,(k+1)R).

Here, we can choose an integer k£ > 0 to make fM vr < 0since pg(xz) >0
if and only if r(z) < 2R, and the volume of M is infinite (see [10]). For
0 <t < R, define a one-parameter family of functions ¢ ,(z) to be

1 on B(p, R);
2 — rx) on B(p,2R +t) \ B(p, R);

Yri(z) = —% on B(p,(k+1)R —1t)\ B(p,2R + t);
~(k+1)+ "2 on B(p, (k+1)R)\ B(p, (k + )R — t);
0 on M\ B(p, (k+1)R).

Since [, ¢r,o > 0, there exists tg € (0, R) such that [,, ¢r,, = 0. We
take g () € [-1,1] as a cut-off function on M. For the sake of con-
venience, we simply write it as ¢(x). The following lemma is originally
proved in [8]. Here, we analyze the order of constants.
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LEMMA 3.1. Let M be an n(> 3)-dimensional complete non-compact
orientable cme-H hypersurface in H" with [,,|®|* < co. Let s >
0. If M is weakly stable, then there exist a constant C3 = O(n'T9)
independent of R and a constant Rs > 0 such that

/ B3 < O / 2P,
M M

Proof. Multiplying 2 on both sides of (2.2), and integrating on M,

for all R > Rs.

we have
[ isieig+ [ it ar [ |ap?
M M M
2
> 2 [ vielpe + [ (u? - wlePy?
M M
where a = &% The divergence theorem can be applied such that

/ V]| 2% / 1B (V|B|, Vo) + / D1 + aH / B3

2
z/ VB % +/<nH2—n>|<1>|2¢2.
n Ju M
Since M is stable, (3.1) becomes
/ B2 + / (nH? — n) |0
M M
< / V(|®|p)?

M

(33 = / V[®][262 + / B2V + 2 / 1B o(V|D], V).
M M M

Applying Cauchy-Schwarz inequality,

/ B2 + / (nH? — n) |3 ]?

(3.4) <2 / V|20 +2 [ B2Vl
M



Fundamental tone of cmc-H hypersurfaces 375

Combining (3.2) and (3.3),

oH / B + / B2V
M M
2
(3.5) >2 / V|22 + 2 / (nH? — )| B[22,
nJm M

Multiplying % to (3.4), and then combining with (3.5), we have

ot [ |0+ [ [oP|veP
M M
1 2
(36) >1 / B2 + (20 + 1)(H? — 1) / B2~ 2 / B2Vl
nJu M n Ju

. . . 2 2
Note that a # 0 if n > 3. From the Young’s inequality, zy < <~ + £,
we have the following estimate:

€1 1
(37) [rope <5 [ joite o [ jope,
M M €1 Jm

where the constant €; > 0 will be chosen later. From (3.6) and (3.7), we

get
1 aHeg
(5-52) [ et
n 2 o

H 2
< <a —(2n+1)(H? - 1)) / |®|%p? + (1 + > / |B?| V|2
261 M n M

Let A=1—afla p—all (3 41)(H? 1), and C =1+ 2. We

can choose €; sufficiently small such that A, B,C > 0. Moreover, if we
let €, = On—2% for some # > 0, then constants C;,Cy can be obtained
by choosing sufficiently small 6 such that % < C1 = O(n?**?%) and

% < C9 = O(n). Therefore

/Iq’!4902§01/ |<1>|2s02+02/ B2Vl
M M M

Note that € and Cy are independent of R. By using the Cauchy-
Schwarz inequality,

1 1
/ <1>|3¢2§( / |‘1>|2802>2-< / |<I>!4902>2
M M M
) :
s( / |‘1>\2<P2> -(cl [1ereve [ @FW?) .
M M M
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Note that ¢ is a function of R. For every € > 0, there is Ry > 0 such
that [, |®*Vy|* < eif R > Ry. As € goes to 0, [, |®|?¢? converges
to [, |®|2, which is positive unless M is totally umbilical. For every
positive e < £ [ |®|%, thereis Ry > 0 such that —e+ [, |®> < [ [®[*¢?
if R > Ry. Put Ry = max{R;, Ra}. Then, for all R > Rs,

/ B3 < O / B[22
M M

where Cs is a constant such that (C7 + CQ)% < C3 = O(n'™®). O

Now we give an upper bound for the fundamental tone of a complete
non-compact weakly stable cmc-H hypersurface in H? 1.

THEOREM 3.2. Let M be an n-dimensional complete non-compact
orientable cme-H hypersurface in H""! with [, |®|* < oco. Assume
that M is not a totally umbilical cmc-H hypersurface. Let s > 0. If M
is weakly stable, then

M (M) <n?+Cy,
where Cj is a constant with Cy = O(n?**). In particular, if n = 2, then
A1 (M?) < n? =4,

Proof. Putting f = |®|p in (1.1), we have

M) / L
< / V(|2[p)[?

/Wlfbll /|f1>r |W|2+2/ 1Bl (V|B], V)

=(1+) [ 1901+ ) [ jovel
€2 M M

In the last equality, we use the Cauchy-Schwarz and the Young’s in-
equality. The constant e > 0 will be determined later. By remark 2.1,
we may assume that H > 0. The inequality (3.5) still holds, and thus

we have
2
AR
n Ju

(38)  <aH / B2 + / B2Vl + 2n / B[22
M M M

Note with \(M) > 0 if H < o < -2 by Cheung and Leung [7].
However, it is not known whether it is usually positive. Here, what we
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want to get is an upper bound so that, without loss of generality, we
may assume Aj(M) > 0. Applying Lemma 3.1 to (3.8) for n > 3, if
R > Rg, then

2 (2n+C3)(1+2)
- ) [ vl
e e

For a sufficiently large €3 > 0, the right hand side of (3.9) converges
to zero as R goes to infinity because a complete non-compact stable
cme-H hypersurface in hyperbolic space has infinite volume. If % >
(2n+03)(1+£) 9 _ . .
— x> then |[V|®||* =0 on M, and thus M is a totally umbilical

cme-H hypersurface. This is a contradiction. Therefore we get
A (M) < n? 4 O0(n*Te).
If n = 2, then a = 0. Similarly, we get A\ (M?) < n? = 4. O
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