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ON FIBRED KAEHLERIAN SPACES

Jin Hyuk Choi *

Abstract. In this paper, we are to construct a new fibred Rie-
mannian space with almost complex structure from the lift of an
almost contact structures of the base space and that of each fibre.
Moreover, we deal with the fibred Riemannian space with various
Kaehlerian structure.

1. Introduction

Fibred Riemannian space was first considered by Y.Muto [5] and
treated by B.L. Reinhart [8] in the name of foliated Riemannian mani-
folds. B.O’Neill[7] called such a foliation a Riemannian submersion and
gave its structure equations and in the almost same time K.Yano and S.
Ishihara[11] developed an extensive theory of fibred Riemannian space.

M.Ako[1] and T.Okubo[6] studied fibred space with almost complex
or almost Hermitian structure.These work were synthetically reported
in S.Ishihara and M.Konishi’s monograph[3].

In connection with almost contact structures, S.Tanno[9] investigated
principal bundles over almost complex spaces having a 1-dimensional
structure group. Generalizing Calabi-Eikmann’s example, A.Morimoto[4]
defined an almost complex structure in the product of two almost contact
spaces and obtained a condition on the normality, and S. Ishihara and
K.Yano[11] researched similar properties for the product of two framed
manifolds. Y.Tashiro and B.H.Kim[10]have studied fibred Riemann-
ian spaces with almost Hermitian or almost contact metric structure.
They applied these results to the study of tangent bundle of Riemann-
ian spaces.
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In this point of view, we constructed a new almost complex struc-
ture on the fibred Riemannian space from the lift of an almost complex
structures of the base space and that each fibre. Moreover, we shall
deal with the fibred Riemannian space with almost Kaehlerian or nearly
Kaehlerian structure.

2. Fibred Riemannian space

Let {M , B, g̃, π} be a fibred Riemannian space,that is, M an m-
dimensional total space with projectable Riemannian metric g̃, B an n-
dimensional base space, and π : M → B a projection with maximal rank
n. The fibre passing through a point P̃ ∈ M is denoted by F (P̃ ) or gen-
erally F , which is a p-dimensional submanifold of M , where p = m− n.
Throughout this paper, manifolds, geometric objects and mappings are
supposed to be of C∞ class and manifolds are assumed to be connected.
Also, unless stated otherwise, the ranges of indices are as follows ;

A,B, C,D, E : 1, 2, · · · ,m,
h, i, j, k, l : 1, 2, · · · ,m,
a, b, c, d, e : 1, 2, · · · , n,
x, y, z, w, u : n + 1, · · · , n + p = m.

If we take coordinate neighborhoods (Ũ , zh) in M and (U , xa) in B

such that π(Ũ)=U , then the projection π is expressed by equations

(2.1) xa = xa(zh)

with Jacobian (∂xa

∂zh ) of maximum rank n. There is a local coordinate
system yx in F ∩ Ũ 6= ∅, (xa, yx) form a coordinate system in Ũ and
each fibre F (P̃ ) at P̃ in F ∩ Ũ is parametrized as zh = zh(xa, yx). Then
we can choose a local frame (Ea, Cx) and its dual frame (Ea, Cx) in Ũ ,
where the components of Ea and Cx are given by

(2.2) Ei
a =

∂xa

∂zi
and Cx

h =
∂yx

∂zh

The vector fields Ea span the horizontal distribution and Cx the tan-
gent space of each fibre. The metric tensor g in the base space B is given
by
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(2.3) gcb = g̃(Ec, Eb)

and the induced metric tensor ḡ in each fibre F by

(2.4) ḡxy = g̃(Cx, Cy).

We write (EB) for the frame (Eb, Cx) in all, if necessary. Let h =
(hxy

a) be components of the second fundamental tensor with respect to
the normal vector Ea and L = (Lcb

x) the nomal connection of each fibre
F . Then we have

(2.5) hxy
a = hyx

a and Lcb
x + Lbc

x = 0.

Denoting by ∇̃ the Riemannian connection of the total space M , we
have the following equations[3].

(2.6.1)∇̃jE
h

b = Γcb
aEj

cEh
a−Lcb

xEj
cCh

x+Lb
a
yCj

yEh
a−hy

x
bCj

yCh
x,

(2.6.2)∇̃jC
h

x = Lc
a
xEj

cEh
a − (hx

y
c − Pcx

y)Ej
cCh

y + hzx
aCj

zEh
a

+Γ̄zx
yCj

zCh
y,

(2.6.3)∇̃jEi
a = −Γcb

aEj
cEi

b−Lc
a
x(Ej

cCi
x + Cj

xEi
c)−hyx

aCj
yCi

x,

(2.6.4)∇̃jCi
x = Lcb

xEj
cEi

b + (hy
x
c − Pcy

x)Ej
cCi

y

+hz
x
bCj

zEi
bΓ̄zy

xCj
zCi

y,

where Γcb
a are connection coefficients of the projection ∇ = p∇̃ in B,

Γ̄zy
x those of the induced connection ∇̄ in F, Lc

a
y = Lcb

xgbaḡxy, hy
x
b =

hyz
aḡzxgba and Pcy

x are local functions in Ũ defined by [Eb, Cy] =
Pby

xCx.

From(2.6.1), we see that [Ec, Eb] = −2Lcb
xCx, and so the horizontal

distribution is integrable if and only if the structure tensor L vanishes
identically.

Let γ be a curve through a point P in the base space B and X be
the tangent vector field of γ. There is a unique curve γ̃ through a point
P̃ ∈ π−1(P ) such that the tangent vector field is the lift XL. The curve
γ̃ is called the horizontal lift of γ passing through P̃ . If a curve γ joins
points P and Q in B, then the horizontal lifts of γ through all points
of the fibre F (P ) define a fibre mapping Φγ : F (P ) → F (Q), called the
horizontal mapping covering γ.



420 Jin Hyuk Choi

If the horizontal mapping covering any curve in B is an isometry of
fibres, then {M, B, g̃, π} is called a fibred Riemannian space with isomet-
ric fibres. A necessary and sufficient condition for M to have isometric
fibres is (£XL g̃V )V = 0 for any vector field X in B, or equivalently
hxy

a = 0. Here and hereafter AH and AV indicate the horizontal and
vertical parts of A respectively. The model space of the fibred Rie-
mannian space with isometric fibre can be seen in [3]. If the horizontal
mapping covering any curve in B is conformal mapping of fibres, then
{M,B, g̃, π} is called a fibred Riemannian space with conformal fibres.
A condition for M to have conformal fibres is hxy

a = ḡxyA
a, where

A = AaEa is the mean curvature vector along each fibre in M. The
following theorem is well known[3].

Theorem 2.1. If the normal connection L = (Lcb
x) and second fun-

damental form h = (hxy
a) vanish identically in a fibred Riemannian

space, then the fibred space is locally the Riemannian product of the
base and a fibre.

The curvature tensor of a fibred Riemannian space M is defined by

(2.7) K̃(X̃, Ỹ )Z̃ = ∇̃X̃∇̃Ỹ Z̃ − ∇̃Ỹ ∇̃X̃Z̃ − ∇̃[X̃,Ỹ ]Z̃

for any vector fields X̃, Ỹ and Z̃ in M. We put

(2.8) K̃(ED, EC)EB = K̃DCB
AEA = K̃DCB

aEa + K̃DCB
xCx,

then K̃DCB
A are components of the curvature tensor with respect to

the basis (EB). Denoting by K̃kji
h components of the curvature tensor

in (Ũ , zh), we have the relations

(2.9) K̃DCB
A = K̃kji

hEk
DEj

CEi
BEh

A

Substituting (2.6.2) into the definition (2.7) of the curvature tensor,
we have the structure equations of a fibred Riemannian space as follows
[2,3,7,11]:

(2.10) K̃dcb
a = Kdcb

a − Ld
a
xLcb

x + Lc
a
xLdb

x + 2Ldc
xLb

a
x,

(2.11) K̃dcb
x = −∗∇dLcb

x +∗ ∇cLdb
x − 2Ldc

yhy
x
b,

(2.12) K̃dcy
x =∗ ∇chy

x
d −∗ ∇dhy

x
c + 2∗∗∇yLdc

x + Lde
x

Lc
e
y − Lce

xLd
e
y − hz

x
dhy

z
c + hz

x
chy

z
d,

(2.13) K̃dzb
a =∗ ∇dLb

a
z − Ld

a
xhz

x
b + Ldb

xhzx
a − Ld

a
xhz

x
d,
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(2.14) K̃dzb
x = −∗∇dhz

x
b +∗∗ ∇zLdb

x + Ld
e
zLeb

x + hz
y
dhy

x
b,

(2.15) K̃zyb
a = Lzyb

a + hz
x
bhyx

a − hy
x
bhzx

a,

(2.16) K̃zyx
a =∗∗ ∇zhyx

a −∗∗ ∇yhzx
a,

(2.17) K̃zyx
w = K̄zyx

w + hzx
ehy

w
e − hyx

ehz
w

e,

where we have put

(2.18) Kdcb
a = ∂dΓcb

a − ∂cΓdb
a + Γde

aΓcb
e − Γce

aΓdb
e,

(2.19) ∗∇dLcb
x = ∂dLcb

x − Γdc
eLeb

x − Γdb
eLce

x + Qdy
xLcb

y,

(2.20) ∗∇dLc
a
y = ∂dLc

a
y + Γde

aLc
e
y − Γdc

eLe
a
y −Qdy

zLc
a
z,

(2.21) ∗∇dhzy
a = ∂dhzy

a + Γde
ahzy

e −Qdz
xhxy

a −Qdy
xhzx

a,

(2.22) ∗∇dhy
x
b = ∂dhy

x
b − Γdb

ehy
x
e + Qdz

xhy
z
b −Qdy

zhz
x
b,

Qcy
x being defined by Qcy

x = Pcy
x − hy

x
c

and

(2.23) ∗∗∇yLcb
x = ∂yLcb

x + Γ̄yz
xLcb

z − Lc
e
yLeb

x − Lb
e
yLce

x,

(2.24) ∗∗∇yLb
a
x = ∂yLb

a
x − Γ̄yx

zLb
a
z + Le

a
yLb

e
x − Lb

e
yLe

ax,

(2.25) ∗∗∇zhyx
a = ∂zhyx

a − Γ̄zy
whwx

a − Γ̄zx
whyw

a + Le
a
zhyx

e,

(2.26) ∗∗∇zhy
x
b = ∂zhy

x
b + Γ̄zw

xhy
w

b − Γ̄zw
yhw

x
b − Lb

e
zhy

x
e,

(2.27) Lyxb
a = ∂yLb

a
x − ∂xLb

a
y + Le

a
wLb

e
x − Le

a
xLb

e
y,

(2.28) K̄zyx
w = ∂zΓ̄yx

w − ∂yΓ̄zx
w + Γ̄zu

wΓ̄yx
u − Γ̄yu

wΓ̄zx
u.

Among these, the functions Kdcb
a are projectable in Ũ and its pro-

jections, denoted by Kdcb
a too, are components of the curvature tensor

of the base space {B, g}. On each fibre F, the functions K̄zyx
w are com-

ponents of the curvature tensor of the induced Riemannian metric ḡ and
Lyxb

a those of the curvature tensor of the normal connection of F in M.

The components K̃DCB
A satisfy the same algebraic equations as those

K̃kji
h satisfy. Denote by K̃CB components of the Ricci tensor of {M, g̃}

with respect to the basis (EB) in Ũ , and by Kcb and K̄yx componets
of the Ricci tensors of the base space {B, g} in (U, xa) and each fibre
{F, ḡ} in (Ū , yx) respectively. Then we have

(2.29) K̃cb = Kcb−2Lce
xLb

e
x−hy

x
chx

y
b + 1

2(∗∇chx
x
b +∗∇bhx

x
c),

(2.30) K̃xb =∗∗ ∇xhy
y
b −∗∗ ∇yhx

y
b +∗ ∇eLb

e
x − 2hx

y
eLb

e
y,
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(2.31) K̃yx = K̄yx − hyx
ehz

z
e +∗ ∇ehyx

e − La
e
yLe

a
x,

Denoting by K̃, K and K̄ the scalar curvatures of M, B and each fibre
F respectively, we have the relation

(2.32) K̃ = KL + K̄−LcbzL
cbz−hyxeh

yxe−hy
y
ehu

ue +2∗∇ehz
ze.

3. Fibred Riemannian space with various Kaehlerian struc-
tures

In this chapter, we consider a fibred Riemannian space M such that
the base space B and each fibre F are almost contact spaces with al-
most contact structures (φb

a, ηb, ξ
a) and (φ̄x

y, η̄x, ξ̄y) respectively. The
structure (φ, η, ξ) satisfies

φ2 = −I + η ⊗ ξ, φ(ξ) = 0, η ⊗ φ = 0, η(ξ) = 1,

where I is the identity map. An almost contact metric structure (φ, η, ξ, g)
is said to be

(a) nearly cosymplectic if φ is killing
(b) almost cosymplectic if Φ and η are closed where Φ(X, Y ) =

g(φX, Y ). If we define

(3.1) Jj
i = φb

aEj
bEi

a − ηbξ̄
yEj

bCi
y + η̄xξaCj

xEi
a + φ̄x

yCj
xCi

y,

then we can easily see that J2 = −I and that we can construct almost
Hermitian structure with almost complex structure J on the total space
M , which will be called fibred almost Hermitian space. Thus we can
state

Theorem 3.1. Let B and F be an almost contact metric spaces.
Then the fibred Riemannian space M admits an almost Hermitian struc-
ture.

The equation (3.1) is rewritten as

(3.2) Jj
iEj

d = φd
aEi

a − ηdξ̄
yCi

y,

(3.3) Jj
iCj

z = η̄zξ
aEi

a + φ̄z
yCi

y.

Components of the covariant derivative ∇̃J with respect to the frame
(EB)=(Eb, Cy) are given by (∇̃jJih)Ej

CEi
BEh

A and we can obtain the
following expressions by means of (2.6), (3.2) and (3.3).

(3.4.1) (∇̃kJji)Ek
cE

j
dE

i
e = ∇cφde + Lcd

xη̄xηe − Lceyηdξ̄
y
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(3.4.2) (∇̃kJji)Ek
cE

j
dC

i
z = −(∇cηd)η̄z − ηd(∗∇cη̄z)

+Lcd
xφ̄xz − Lcazφd

a

(3.4.3) (∇̃kJji)Ek
cC

j
zE

i
d = (∗∇cη̄z)ηd + (∇cηd)η̄z

+Lcdyφ̄z
y − Lc

a
zφad

(3.4.4) (∇̃kJji)Ek
cC

j
zC

i
w =∗ ∇cφ̄zw − Lcawη̄zξ

a

+Lc
a
zηaη̄w + (∇z η̄w)ηc

(3.4.5) (∇̃kJji)Ck
zEj

dEi
e =∗∗ ∇zφde − ηdξ̄

yhzye + hz
y
dη̄yηe

(3.4.6) (∇̃kJji)Ck
zE

j
dC

i
w = −(∗∗∇zηd)η̄w − ηd∇̄z η̄w

+hz
y
dφ̄yw − hzwaφd

a

(3.4.7) (∇̃kJji)Ck
zC

j
xEi

c = (∇̄z η̄x)ηc + η̄x(∗∗∇zηc)

+hzycφ̄x
y − hzx

bφbc

(3.4.8) (∇̃kJji)Ck
zC

j
xCi

y = ∇̄zφ̄xy + hzx
bηbη̄y − hzybξ

bη̄x

From the equations (3.4.1)-(3.4.8), we get

(3.5.1) (∇̃kJji + ∇̃jJik + ∇̃iJkj)Ek
cE

j
dE

i
e

= ∇cφde +∇dφec +∇eφcd

+2(Lcd
xη̄xηe + Lec

xη̄xηd + Lde
xη̄xηc),

(3.5.2) (∇̃kJji + ∇̃jJik + ∇̃iJkj)Ek
cE

j
dC

i
z

= −(∇cηd)η̄z − ηd
∗∇cη̄z + 2Lcd

xφ̄xz −Lcazφd
a

+(∗∇dη̄z)ηc + (∇dηc)η̄z

−Ld
a
zφac +∗∗ ∇zφcd − ηcξ̄

yhzyd + hz
y
cη̄yηd,

(3.5.3) (∇̃kJji + ∇̃jJik + ∇̃iJkj)Ek
cC

j
zE

i
d

= (∗∇cη̄z)ηd + (∇cηd)η̄z + 2Lcdyφ̄z
y

−Lc
a
zφad +∗∗ ∇̄zφdc − ηdξ̄

yhzyc

+hz
y
dη̄yηc − (∇dηc)η̄z − η∗c∇dη̄z − Ldazφc

a,

(3.5.4) (∇̃kJji + ∇̃jJik + ∇̃iJkj)Ek
cC

j
zC

i
w

=∗ ∇cφ̄zw − Lcawη̄zη
a + Lc

a
zηaη̄w

+(∇z η̄w)η + η̄w(∗∗∇zηc) + hzycφ̄w
y

−(∗∗∇wηc)η̄z − ηcr∇wη̄z + hw
y
cφ̄yz,

(3.5.5) (∇̃kJji + ∇̃jJik + ∇̃iJkj)Ck
zE

j
dE

i
e
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=∗∗ ∇zφde − ηdξ̄
yhzye + hz

y
dη̄yηe

−(∇dηe)η̄z − η∗e∇dη̄z + 2Lde
xφ̄xz

−Ldazφe
a +(∗∇eη̄z)ηd +(∇eηd)η̄z−Le

a
zφad,

(3.5.6) (∇̃kJji + ∇̃jJik + ∇̃iJkj)Ck
zE

j
dC

i
w

= −(∗∗∇zηd)η̄w − ηd∇z η̄w + hz
y
dφ̄yw

−hzwaφd
a +∗ ∇dφ̄wz − Ldaz η̄wξa

+Ld
a
wηaη̄z+(∇wη̄z)ηd+η̄∗∗z ∇wηd+hwydφ̄z

y,

(3.5.7) (∇̃kJji + ∇̃jJik + ∇̃iJkj)Ck
zC

j
xEi

c

= (∇z η̄x)ηc + η̄∗∗x ∇zηc + hzycφ̄x
y

−(∗∗∇xηc)η̄z − ηc(∇xη̄z) + hx
y
cφ̄yz

+∗∇cφ̄zx − Lcaxη̄zξ
a + Lc

a
zηaη̄x,

(3.5.8) (∇̃kJji + ∇̃jJik + ∇̃iJkj)Ck
zC

j
xCi

y = ∇zφ̄xy

+∇xφ̄yz +∇yφ̄zx.

We suppose that the induced almost complex structure J on M is
almost Kaehlerian, that is dJ = 0, equivalently in component, ∇̃kJji +
∇̃jJik + ∇̃iJkj = 0. Then we have

(3.6.1)∇cφde+∇dφec+∇eφcd+2(Lcd
xη̄xηe+Lec

xη̄xηd+Lde
xη̄xηc) = 0,

(3.6.2) ∇xφ̄yz +∇yφ̄zx +∇zφ̄xy = 0,

(3.6.3) ∗∗∇zφdc + (∗∇cη̄z)ηd − (∗∇dη̄z)ηc + (∇cηd −∇dηc)η̄z

+(Ld
a
zφac − Lc

a
zφad) + (hz

y
dηc − hz

y
cηd)η̄y = 0

(3.6.4) ∗∇dφ̄wz + (∗∗∇wηd)η̄z − (∗∗∇zηd)η̄w + (∇wη̄z −∇z η̄w)ηd

+(Ld
a
wη̄z − Ld

a
z η̄w)ηa + (hz

y
dφ̄yw − hw

y
dφ̄yz) = 0

Transvecting (3.6.4) with ηd, we have

(3.7) ∗∇dφ̄wzη
d +∇wη̄z −∇z η̄w + (hz

y
dφ̄yw − hw

y
dφ̄yz)ηd = 0

From the equations (3.6.2) and (3.7), we obtain

Theorem 3.2. Let M is a fibred almost Kaehlerian manifold with
totally geodesic fibre. Then the manifold F is almost cosymplectic if
and only if ∗∇dφ̄wzη

d = 0.

By use of (3.4), we can calculate

(3.8.1) (∇̃kJji + ∇̃jJki)Ek
cE

j
dE

i
e = ∇cφde +∇dφce

−(Lce
yηd + Lde

yηc)η̄y
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(3.8.2) (∇̃kJji + ∇̃jJki)Ek
cE

j
dC

i
z = −(∇cηd)η̄z − η∗d∇cη̄z

−Lcazφd
a − (∇dηc)η̄z − η∗c∇dη̄z − Ldazφc

a

(3.8.3) (∇̃kJji + ∇̃jJki)Ek
cC

j
zE

i
d = (∗∇cη̄z)ηd + (∇cηd)η̄z

+Lcdyφ̄z
y − Lc

a
zφad +∗∗ ∇zφcd − ηcξ̄

yhzyd + hz
y
cη̄yηd

(3.8.4) (∇̃kJji + ∇̃jJki)Ek
cC

j
zC

i
w =∗ ∇cφ̄zw − Lcawη̄zη

a

+Lc
a
zηaη̄w − η̄∗∗w ∇zηc − ηc∇z η̄w

+hz
y
cφ̄yw − hzwaφc

a + hw
x
cHxz − hwzbAc

b

(3.8.5) (∇̃kJji+∇̃jJki)Ck
zE

j
dE

i
e =∗∗ ∇zφde−ηdξ̄

yhzye+hz
y
dη̄yηe

+(∗∇dη̄z)ηe + (∇dηe)η̄z + Ldeyφ̄z
y − Ld

a
zφae

(3.8.6) (∇̃kJji + ∇̃jJki)Ck
zE

j
dC

i
w = −η̄w

∗∗∇zηd − ηd∇z η̄w

+hz
y
dφ̄yw − hzwaφd

a +∗∇dφ̄zw −Ldawη̄zξ
a + Ld

a
zηaη̄w

(3.8.7) (∇̃kJji+∇̃jJki)Ck
zC

j
xEi

c = (∇z η̄x)ηc+η̄∗∗x ∇zηc+hzycφ̄x
y

+(∇xη̄z)ηc + η̄∗∗z ∇xηc + hxycφ̄z
y

(3.8.8) (∇̃kJji + ∇̃jJki)Ck
zC

j
xCi

y = ∇zφ̄xy − hzybξ
bη̄x +∇xφ̄zy

−hxybξ
bη̄z

Now we suppose that the total space M is nearly Kaehlerian, that is
(∇XJ)Y +(∇Y J)Y = 0, equivalently in component, ∇̃kJji + ∇̃jJki = 0.
Then the right hand side of the equations (3.8) vanishes identically, that
is

(3.9.1) ∇cφde +∇dφce − (Lce
yηd + Lde

yηc)η̄y = 0

(3.9.2) (∗∇dη̄z)ηc + (∗∇cη̄z)ηd + (∇cηd)η̄z + (∇dηc)η̄z

+Ld
a
zφca + Lc

a
zφda = 0

(3.9.3) ∗∗∇zφcd + (∗∇cη̄z)ηd + (∇cηd)η̄z + Lcd
yφ̄zy

−Lc
a
zφad + hz

y
cη̄yηd − hz

y
dη̄yηc = 0

(3.9.4) (∗∗∇zηc)η̄w −∗∇cφ̄zw + (∇z η̄w)ηc + (Lc
a
wη̄z −Lc

a
z η̄w)ηa

+hzw
aφca − hz

y
cφ̄yw = 0

(3.9.5) (∗∗∇xηc)η̄z + (∗∗∇zηc)ηc + (∇xη̄z)ηc

+(∇z η̄x)ηc + hz
y
cφ̄xy + hx

y
cφ̄zy = 0

(3.9.6) ∇zφ̄xy +∇xφ̄zy − (hzy
bη̄x + hxy

bη̄z)ηb = 0
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Thus we have

Theorem 3.3. Let M be a fibred nearly Kaehlerian manifold with
totally geodesic fibre. Then each fibre F is a nearly cosymplectic. More-
over if L

⊗
η = 0, then the base space Bis nearly cosymplectic.
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