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ON FIBRED KAEHLERIAN SPACES

JiIN Hyuk CHor *

ABSTRACT. In this paper, we are to construct a new fibred Rie-
mannian space with almost complex structure from the lift of an
almost contact structures of the base space and that of each fibre.
Moreover, we deal with the fibred Riemannian space with various
Kaehlerian structure.

1. Introduction

Fibred Riemannian space was first considered by Y.Muto [5] and
treated by B.L. Reinhart [8] in the name of foliated Riemannian mani-
folds. B.O’Neill[7] called such a foliation a Riemannian submersion and
gave its structure equations and in the almost same time K.Yano and S.
Ishihara[l11] developed an extensive theory of fibred Riemannian space.

M.Ako[1] and T.Okubo[6] studied fibred space with almost complex
or almost Hermitian structure.These work were synthetically reported
in S.Ishihara and M.Konishi’s monograph|3].

In connection with almost contact structures, S.Tanno[9] investigated
principal bundles over almost complex spaces having a 1-dimensional
structure group. Generalizing Calabi-Eikmann’s example, A.Morimoto[4]
defined an almost complex structure in the product of two almost contact
spaces and obtained a condition on the normality, and S. Ishihara and
K.Yano[11] researched similar properties for the product of two framed
manifolds. Y.Tashiro and B.H.Kim[10]have studied fibred Riemann-
ian spaces with almost Hermitian or almost contact metric structure.
They applied these results to the study of tangent bundle of Riemann-
ian spaces.
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In this point of view, we constructed a new almost complex struc-
ture on the fibred Riemannian space from the lift of an almost complex
structures of the base space and that each fibre. Moreover, we shall
deal with the fibred Riemannian space with almost Kaehlerian or nearly
Kaehlerian structure.

2. Fibred Riemannian space

Let {M, B, g, w} be a fibred Riemannian space,that is, M an m-
dimensional total space with projectable Riemannian metric g, B an n-
dimensional base space, and 7w : M — B a projection with maximal rank
n. The fibre passing through a point P € M is denoted by F' (15) or gen-
erally F', which is a p-dimensional submanifold of M, where p = m — n.
Throughout this paper, manifolds, geometric objects and mappings are
supposed to be of C* class and manifolds are assumed to be connected.
Also, unless stated otherwise, the ranges of indices are as follows ;

ABCDE:1,2---,m,

hot, 3,k 1:1,2,--- . m,
a,be,d,e:1,2,--- . n,

T, Yy, z,w,u:n+1,--- n+p=m.

If we take coordinate neighborhoods (U, 2*) in M and (U, %) in B

such that 7(U)=U, then the projection 7 is expressed by equations

(2.1) = z%(z")

with Jacobian (%) of maximum rank n. There is a local coordinate

system y® in FNU # 0, (% y*) form a coordinate system in U and
each fibre F(P) at P in FNU is parametrized as 2" = 2" (2%, 4*). Then
we can choose a local frame (E,, C,) and its dual frame (E* C®) in U,
where the components of £* and C* are given by

oz oy”
9z and O = ozh
The vector fields E, span the horizontal distribution and C,, the tan-

gent space of each fibre. The metric tensor ¢ in the base space B is given
by

(2.2) B
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(2'3) Geb = g(Eca Eb)

and the induced metric tensor g in each fibre F' by

(2‘4) gxy = g(cxacy)

We write (Ep) for the frame (Ejp, Cy) in all, if necessary. Let h =
(hay®) be components of the second fundamental tensor with respect to
the normal vector E, and L = (L") the nomal connection of each fibre
F. Then we have

(2.5) hxya = hyxa and L™ + Ly = 0.

Denoting by V the Riemannian connection of the total space M, we
have the following equations[3].

(2.6.1)V,;E", =T E;°E"y— Ly" E;°C"y+ Ly ,C;Y E" o—hy ", C;Y Ch

(262)@jchm — LcazEjCEha _ (hmyc _ Pcmy)EjCChy + hzxaCszha
-i-szijzChy,

(2.6.3)V;E;% = —T E;°E;* — L%, (E;°Ci® + C;* Ei°) — hye“C;Y Ci®,

(2.6.4)V;C% = Ly"E;°E* + (hy®, — Pey®)E;°CY
+h ", C BT L, "7 CyY,

where I';* are connection coefficients of the projection V = pV in B,
fzyz those of the induced connection V in F, LSy = ch“’gbagw, hy"y =
hy:*G*" gpe, and Pe,” are local functions in U defined by [Ey, Cy) =
Pyt Cy.

From(2.6.1), we see that [E., Fp] = —2L4"C,, and so the horizontal
distribution is integrable if and only if the structure tensor L vanishes
identically.

Let v be a curve through a point P in the base space B and X be
the tangent vector field of «. There is a unique curve 4 through a point
P € m=(P) such that the tangent vector field is the lift X*. The curve
3 is called the horizontal lift of v passing through P. If a curve v joins
points P and @ in B, then the horizontal lifts of v through all points
of the fibre F'(P) define a fibre mapping ®, : F((P) — F(Q), called the
horizontal mapping covering -.
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If the horizontal mapping covering any curve in B is an isometry of
fibres, then {M, B, g, 7} is called a fibred Riemannian space with isomet-
ric fibres. A necessary and sufficient condition for M to have isometric
fibres is (£ XLQV)V = 0 for any vector field X in B, or equivalently
hzy® = 0. Here and hereafter AH and AV indicate the horizontal and
vertical parts of A respectively. The model space of the fibred Rie-
mannian space with isometric fibre can be seen in [3]. If the horizontal
mapping covering any curve in B is conformal mapping of fibres, then
{M,B,g,n} is called a fibred Riemannian space with conformal fibres.
A condition for M to have conformal fibres is h;y® = guyA®, where
A = A°FE, is the mean curvature vector along each fibre in M. The
following theorem is well known|3].

THEOREM 2.1. If the normal connection L = (L") and second fun-
damental form h = (hg,*) vanish identically in a fibred Riemannian
space, then the fibred space is locally the Riemannian product of the
base and a fibre.

The curvature tensor of a fibred Riemannian space M is defined by

(2.7) K(X,Y)Z =VVyZ =VyViZ =V 337
for any vector fields X, Y and Z in M. We put

(2.8) K(Ep,Ec)Ep = Kpcp”Ea = Kpcp®Eq + Kpep®Ca,
then K DCBA are components of the curvature tensor with respect to
the basis (Eg). Denoting by K, kjih components of the curvature tensor

in (U, z"), we have the relations

(2.9) Kpept = f(ka'hEkDEjCEiBEhA
Substituting (2.6.2) into the definition (2.7) of the curvature tensor,

we have the structure equations of a fibred Riemannian space as follows
[2,3,7,11]:

(2.10) Kar® = Kgop® — L% Lep™ + L% Lay™ + 24" Ly,
(2.11) Ka® = —*VaLa® +* VeLay® — 2Lalhy,
)

(2.12 Kaey® =* Vehy®a —* Vahy®c + 2V La" + Lac”
Ly — Lee" Lty — hz"qhy®c + h."chyq,

(213) f(dzba =* VclLbaz - Lda:rhsz + Ldbxhz:pa - Ldamhzxda



On fibred Kaehlerian spaces 421

) Kaa® = —*Vah, "+ V. Lay® + La®,Lep™ + hoYahy ™,
2.15) Ko%= Lop® + ho"phya — hy“phae®,
) [:nya = Vb =V ha
2.17) Koy = Koy 4 hot“hye — hya“h2%e,
where we have put
2.18)  Kagap® = 0gl'ep® — Ol ap® + TgeTep® — Tee* T,
) *VaLey® = 0qLey” — Tac’Ley”™ — Tap®Lee” + Qay™ Le”,
) *VaLc¢"y = 0qLcy + Tae® Ly — Tac®Ley — Qay* L™ 2,
221)  *Vghay® = 0ghay® + Tae®hzy® — Qaz"hay® — Qay”hza®,
)

2.22 *vdhymb = adhymb - de y et dexhy b Qdy z b7
Q" being defined by Qey® = Pey® — hy"c
and

(223)  **VyLa® = 0yLey” + y"Ley® — Ly Ley” — Li®y Lee”,
(2.24) VyLy* s = Oy Ly s — fyxZLbaz + L%y Ly y — Lpy L™,
(2.25) Vo hye® = 0hyz® — 1oy hope® — fzxwhywa + L% hy,®,
(2.26) WV ohy"y = 0:hy"p + o™y s — DoV hus™s — LS 2hy"e,
(2.27) Lyzp® = Oyl — Ou Ly + Le®w Ly — L2 Ly,
(228)  K.po® = 0.0y — 9yl + To Ty — Ty Top™.

Among these, the functions K% are projectable in U and its pro-
jections, denoted by K% too, are components of the curvature tensor
of the base space {B, g}. On each fibre F the functions f(zyxw are com-
ponents of the curvature tensor of the induced Riemannian metric g and
Ly® those of the curvature tensor of the normal connection of F' in M.
The components Kpog? satisfy the same algebraic equations as those
K kji h satisfy. Denote by K¢ components of the Ricci tensor of {M, g}
with respect to the basis (Ep) in U, and by K. and ny componets
of the Ricci tensors of the base space {B, ¢} in (U,2%) and each fibre
{F,g} in (U, y") respectively. Then we have

(229) f(cb = ch - 2Lcebeez - hyxchmyb + %(*vchxxb +* Vbhxxc)y
(230) sz;b =** V:Ehyyb - vyhzyb +* veLbem - 2ha:yeLbey>
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(2.31) Kyp = Kyz — hya®hs"e +* Vehye® — Ly Loy,

Denoting by K, K and K the scalar curvatures of M, B and each fibre
F respectively, we have the relation

(2.32) K = K"+ K — Ly, L — hypech¥*¢ — hyY chy " 42V b, %

3. Fibred Riemannian space with various Kaehlerian struc-
tures

In this chapter, we consider a fibred Riemannian space M such that
the base space B and each fibre F' are almost contact spaces with al-
most contact structures (¢p%, mp, £%) and (¢, Nz, £Y) respectively. The
structure (¢, n,§) satisfies

PP =—T+n®RE ¢ =0, n®¢d=0, n(¢) =1,

where I is the identity map. An almost contact metric structure (¢, 7, €, g)
is said to be

(a) nearly cosymplectic if ¢ is killing

(b) almost cosymplectic if ® and 7 are closed where ®(X,Y) =
9(¢X,Y). If we define

(3'1) ‘]ji = beanbEia - nbgijbCiy + ﬁxéaCj$Eia + Q_bxyojirciy,

then we can easily see that J? = —I and that we can construct almost
Hermitian structure with almost complex structure J on the total space
M, which will be called fibred almost Hermitian space. Thus we can
state

THEOREM 3.1. Let B and F' be an almost contact metric spaces.
Then the fibred Riemannian space M admits an almost Hermitian struc-
ture.

The equation (3.1) is rewritten as
(3:2) Jj' B g = $a"E'y — 14V CYy,
(3.3) Ji' 07, = Bl + 6.9 C",.

Components of the covariant derivative vJ with respect to the frame
(Eg)=(Ey, Cy) are given by (V;Jin)E/cE‘gE" 4 and we can obtain the
following expressions by means of (2.6), (3.2) and (3.3).

(3-4~1) (@kjji)EkcEjdEie = Vc¢de + Lcdxﬁzne - Lcey"?dgy



(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)
(3.4.6)

(3.4.7)

(3.4.8)
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(@kjji)EkcEijiz = —(Vena)n. —na(*Vens)
+Lcdx¢xz - Lcangda
(@kjji)Echszid = (*vcﬁz)nd + (Vcnd)ﬁz
+Lcdy($zy - Lcaz¢ad
(@iji)Echjoiw =* ch_bzw - Lcawﬁzga
+Lcaz'r]a77w + (VZﬁw)nC
(@kt]ji)cszjdEie =" V,zqz)de - ndgyhzye + hzydﬁy"?e
(Vidji)CFoE4Chy = = ("N 11a) T — 0V 27w
+hzyd¢yw - hzwa¢da
(@kjji)ckzceric = (@zﬁx)nc + 'Fla:(**vznc)
+hzyc(z)azy - hsz¢bc
(@kt]jz)ckzcjzcczy = ?Z(ngy + hsznbﬁy - hzybgbﬁa}

From the equations (3.4.1)-(3.4.8), we get

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(Vidji + VjJus + Vidij) EF B 4B
= Vc¢de + vd¢ec + VeQScd
+2(Lcdx77:r:7]e + Lecmﬁxnd + Ldexﬁ:r:nc)’
(Vidji + VjJig + Vidy; ) BT 4C7,
- _(vcnd)ﬁz - nd*vcﬁz + 2Lcdm(lgacz - Lcaz¢da

+("Vanz)ne + (Vane)n:
—La":¢ac +* Voed — 1c€¥hzya + ¥ ciyna,
(Vidji + Vjdix + Vidy) EF.CI By
= (*Vei)nd + (Vena)z + 2Leay 2"
—Le2Pad +* Vadde — 1€ haye
+he? ayne — (Vane)nz — m: Vi — Laaz9c%,
(Vidji + VjJig + Vidy; ) E*.C,.CY,
=* Vetsw = Leawan® + Lo
H(Vaiw)n + T (* Vatie) + hayedu”
—(**Vaule) Tz — Ner VTl + hwedye,
(ViJji + ViJi + Vidi)C* B4 E,



424 Jin Hyuk Choi

=" V. ¢de — N2 Pzye + DY ailyne
—(Vane)iiz = miVailz + 2Lae" -
—Laaz¢e + ("Venz)na+ (Vena)i: — Le® »Pads
(3.5.6) (@kjji + @jJik + @ika)Cszijiw
= —(""Vna)w — 1aV 27w + hzydﬁgyw
—hzwa®d® +* Vadw: — Ldazuw”
+Ldaw77a77z+(vwﬁz)ndJFﬁ:*vwnd+hwyd¢_5zya
(3.5.7) (@kc]ji + @jJik + @ika)C’“ZCszic
= (Vall)ne + T Vane + hayea?
=(*Vane)lz = 1e(Vells) + ha¥ ey
+*Vedow — Leaw=8" + Le®2Mala,
(3.5.8) (@iji + @jJik + ?ijkj)CkZijCiy = qugxy
+Vadye + Vydi
We suppose that the induced almost complex structure J on M is
aNhnost foehlerian, that is dJ = 0, equivalently in component, VJ;; +
V;Jik + V;Ji; = 0. Then we have
(3.6.1)Vedde +VadectVedeat2(Lea™ Nume + Lec Nana+ Lae“Nzne) = 0,
(3.6.2)  Vidy: + Vybow + Vi = 0,
(3.6.3)  Vidac + ("Ven)na — ("Vaiz)ne + (Vena — Vane) s
+(Ld®2Pac — Le2¢ad) + (hzYane — h2¥ena)iy =0
(36.4)  *Viduw: + (*Vuna)iz — (*Vana)w + (Vi — Vi)
+(Lq"whz — La®2Mw)Na + (hzydq_syw - hwydﬂ_ﬁyz) =0
Transvecting (3.6.4) with n?, we have
(3.7)  *Vabuw:n? + Vuh: — Viijw + (heYadyw — huw?ady:)nt = 0
From the equations (3.6.2) and (3.7), we obtain

THEOREM 3.2. Let M is a fibred almost Kaehlerian manifold with
totally geodesic fibre. Then the manifold F' is almost cosymplectic if
and only if *V g¢uw.n® = 0.

By use of (3.4), we can calculate
(3.8.1) (@kjji + ﬁiji)EkcEjdEie = Vibde + VadPee
_(Lceynd + Ldeync)ﬁy



(3.8.2)

(3.8.3)

(3.8.4)

(3.8.5)

(3.8.6)

(3.8.7)

(3.8.8)
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(Vidji + Vi) BB aC", = =(Vena)ilz — njVeils

_Lcaz¢da - (vdnc)ﬁz - nzvdﬁz - Ldaz¢ca
(Vidji + VjJii) EF.CI Bl g = (Vi )na + (Vena) i

+Lcdy¢zy - Lcaz¢ad +** Vz¢cd - ncgyhzyd + hzycﬁynd

(@kjji + ﬁjJki)Ekccjzciw =* Vc(gzw - Lcawﬁzna

+Lcaznaﬁw - ﬁz;*vznc - ncvzﬁw

+hzyc¢yw - hzwa¢ca + hmesz - hwszcb
(@kjji"i_@jjki)cszjdEie =" vz(bde_ndgyhzye'i_hzydﬁyne

+(*vdﬁz)776 + (vdne)ﬁz + Ldengzy - Ldaz(bae
(Vidji + Vi) C* BT 4Oy = —17**V 500 — 02V 27w
+hzyd¢yw - hzwa¢da +* vd¢zw - Ldawﬁzga + Ldaznaﬁw
(@iji‘F@iji)Cszijic = (vzﬁx)nc+ﬁ;*vzn6+hzyc§5xy

(Vi )ne + 75" Vane + hmch_Szy
(@kjji + @jf]ki)ckzcjxciy = Vzﬂ_ﬁ:vy - hzybgbﬁx + vz&zy
_h$yb§bﬁz

Now we suppose that the total space M is nearly Kaehlerian, that is
(VxJ)Y +(VyJ)Y =0, equivalently in component, V. Jj; +V;Ji; = 0.
Then the right hand side of the equations (3.8) vanishes identically, that

(3.9.1)
(3.9.2)

(3.9.3)

(3.9.4)

(3.9.5)

(3.9.6)

vc¢cle + Vadee — (Lceynd + Ldeync)ﬁy =0
(*Van)ne + ("Venz)na + (Vena)nz + (Vane)n:
+Ldaz¢ca + Lcaz¢da =0

Vo bed + (*Vcﬁz)nd + (vcnd)ﬁz + Lcdyq_szy

_Lcaz¢ad + hzycﬁynd - hzydﬁync =0
(**Vznc)ﬁw —* vc&zw + (Vzﬁw)nc + (Lcawﬁz - Lcazﬁw)na

+hzwPea — hzyc¢yw =0
(**V:H?c)ﬁz + (**vznc)nc + (vxﬁz)nc

+(Vzﬁz)77¢ + hzyc¢ry + hmyc(bzy =0

Vzﬁgxy + V:L"(Z)zy - (hzybﬁz + h:pybﬁz)nb =0
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Thus we have

THEOREM 3.3. Let M be a fibred nearly Kaehlerian manifold with
totally geodesic fibre. Then each fibre F' is a nearly cosymplectic. More-
over if L@ n = 0, then the base space Bis nearly cosymplectic.
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