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ON THE STABILITY OF THE GENERAL SEXTIC

FUNCTIONAL EQUATION

Ick-Soon Chang*, Yang-Hi Lee**, and Jaiok Roh***

Abstract. The general sextic functional equation is a generaliza-
tion of many functional equations such as the additive functional
equation, the quadratic functional equation, the cubic functional
equation, the quartic functional equation and the quintic functional
equation. In this paper, motivating the method of Găvruta [J.
Math. Anal. Appl., 184 (1994), 431–436], we will investigate the
stability of the general sextic functional equation.

1. Introduction

In this paper, let V , X, and Y be a real vector space, a real normed
space, and a real Banach space, respectively. Ulam [25] raised the ques-
tion about the stability of group homomorphisms in 1940 and Hyers [8]
gave a partial answer to this question by solving the stability of the
Cauchy functional equation in the following year. Since then, many
mathematicians have generalized the Hyers’s result [6, 7, 9, 11, 15, 18,
20, 24]. In particular, Găvruta [7] generalized the result of Hyers as
follow :

Proposition 1.1. Let (G,+) be an abelian group and ϕ : G2 →
[0,∞) be a function such that

ϕ̃(x, y) :=

∞∑
k=0

2−kϕ(x, y) <∞

for all x, y ∈ G. If f : G→ Y is a mapping such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y)
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for all x, y ∈ G, then there exists a unique additive mapping T : G→ Y
such that

‖f(x)− T (x)‖ ≤ 1

2
ϕ̃(x, x)

for all x ∈ G.

In this paper, motivating Proposition 1.1, we will study the stability
of the general sextic functional equation :

7∑
i=0

7Ci(−1)7−if(x+ iy) = 0.(1.1)

More detailed term for the concept of a general sextic mapping can be
found in Baker’s paper [3] by the term, generalized polynomial mapping
of degree at most 6.

Jun-Kim[10] have previously studied the stability of a general cubic
functional equation and others studied the stability of a general qua-
dratic functional equation, a general cubic functional equation, and a
general quartic functional equation(refer to [13, 14, 16, 19]). Also, many
mathematicians have investigated the stability of the sextic functional
equation (refer to [1, 2, 4, 5, 23, 21, 22]). But they worked on a special
sextic functional equation. The stability of the general sextic functional
equation have been investigated in Lee [17] and Roh-Lee-Jung [12]. Roh-
Lee-Jung [12] have proved the stability of the general sextic functional
equation by applying the fixed point theorem in the sense of Cădariu
and Radu. And Lee [17] proved the Hyers-Ulam-Rassias stability of the
general sextic functional equation as follows :

Proposition 1.2. (Theorem 3 in [17]) Let p 6= 1, 2, 3, 4, 5, 6 be a
fixed nonnegative real number. Suppose that f : X → Y is a mapping
such that

‖
7∑
i=0

7Ci(−1)7−if(x+ iy)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then there exists a general sextic mapping F with
F (0) = 0 and a constant K(p) such that

‖f(x)− f(0)− F (x)‖ ≤ K(p) θ ‖x‖p, for all x ∈ X.

In this paper, we will investigate the stability of the general sextic
functional equation in sense of Găvruta[7].
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In fact, Lee [17] investigated the stability of the general sextic func-
tional equation for the mapping f such that

Df(x, y) =
7∑
i=0

7Ci(−1)7−if(x+ iy) ≤ θ(‖x‖p + ‖y‖p)

and Roh-Lee-Jung [12] did for the mapping f such that

Df(x, y) =

7∑
i=0

7Ci(−1)7−if(x+ iy) ≤ ϕ(x, y),

where ϕ : V 2 → [0,∞) is a function for which there exists a constant
0 < L < 1 such that

ϕ(2x, 2y) ≤ (4
√

21 cos θ − 14)Lϕ(x, y)

for all x, y ∈ V and θ is a real constant such that 0 < θ < π
4 and

cos(3θ) = −17
21
√
21

.

In this paper, we will investigate the stability of the general sextic
functional equation for the mapping f such that

Df(x, y) =

7∑
i=0

7Ci(−1)7−if(x+ iy) ≤ ϕ(x, y),

where ϕ : V 2 → [0,∞) is a function such that

∞∑
n=0

64nϕ
( x

2n
,
y

2n

)
<∞ or

∞∑
n=0

2−nϕ(2nx, 2ny) <∞

for all x, y ∈ V .

2. Stability of a general sextic functional equation

Throughout this section, for a given mapping f : V → Y , we use the
following abbreviations :

fo(x) :=
f(x)− f(−x)

2
, fe(x) :=

f(x) + f(−x)

2
,

Df(x, y) :=

7∑
i=0

7Ci(−1)7−if(x+ iy),

Γ(x) := Dfo(−6x, 2x) + 6Dfo(−x, x) + 42Dfo(−2x, x) + 112Dfo(−3x, x),

∆f(x) := Dfe(−6x, 2x) + 8Dfe(−x, x) + 56Dfe(−2x, x) + 112Dfe(−3x, x)
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for all x, y ∈ V . If f̃ is a mapping defined by f̃(x) = f(x)−f(0), then the

mapping f̃ satisfies the properties Df̃(x, y) = Df(x, y) and f̃(0) = 0.
By tedious computation we can get the equalities

Γf(x) =fo(8x)− 42fo(4x) + 336fo(2x)− 512fo(x),(2.1)

∆f(x) =fe(8x)− 84fe(4x) + 1344fe(2x)− 4096fe(x)(2.2)

for all x ∈ V .

Lemma 2.1. For a given mapping f : V → Y with f(0) = 0, let
Jnf, J

′
nf : V → Y be the mappings defined by

Jnf(x)

:=
4n − 20 · 16n + 64 · 64n

45
fe

(
x

2n

)
− 80(4n − 17 · 16n + 16 · 64n)

45
fe

(
x

2n+1

)
+

1024(4n − 5 · 16n + 4 · 64n)

45
fe

(
x

2n+2

)
+

2n − 20 · 8n + 64 · 32n

45
fo

(
x

2n

)
− 40(2n − 17 · 8n + 16 · 32n)

45
fo

(
x

2n+1

)
+

256(2n − 5 · 8n + 4 · 32n)

45
fo

(
x

2n+2

)
and

J ′nf(x)

:=

(
1

64n
− 5

16n
+

4

4n

)
fe(2

n+2x)

2880
−
(

20

64n
− 340

16n
+

320

4n

)
fe(2

n+1x)

2880

+

(
64

64n
− 1280

16n
+

4096

4n

)
fe(2

nx)

2880
+

(
1

32n
− 5

8n
+

4

2n

)
fo(2

n+2x)

720

−
(

10

32n
− 170

8n
+

160

2n

)
fo(2

n+1x)

720
+

(
16

32n
− 320

8n
+

1024

2n

)
fo(2

nx)

720

for all x ∈ V and all nonnegative integers n. Then

Jnf(x)− Jn+1f(x) =

(
4n

45
− 20 · 16n

45
+

64 · 64n

45

)
∆f

(
x

2n+3

)
+

(
2n

45
− 20 · 8n

45
+

64 · 32n

45

)
Γf

(
x

2n+3

)
(2.3)

J ′nf(x)− J ′n+1f(x) =−
(

4

4n+1
− 5

16n+1
+

1

64n+1

)
∆f(2nx)

2880

−
(

4

2n+1
− 5

8n+1
+

1

32n+1

)
Γf(2nx)

720
(2.4)

for all x ∈ V and all nonnegative integers n.
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Proof. From the equalities (2.1) and the definitions of Jnf and J ′nf , we
obtain the equalities

Jnf(x)− Jn+1f(x)

=

(
4n

45
− 20 · 16n

45
+

64 · 64n

45

)
∆f

(
x

2n+3

)
+

(
2n

45
− 20 · 8n

45
+

64 · 32n

45

)
Γf

(
x

2n+3

)
and similarly we have

J ′nf(x)− J ′n+1f(x)

= −
(

4

4n+1
− 5

16n+1
+

1

64n+1

)
∆f(2nx)

2880

−
(

4

2n+1
− 5

8n+1
+

1

32n+1

)
Γf(2nx)

720

for all x ∈ V and all nonnegative integers n. �

Lemma 2.2. If f : V → Y is a mapping such that

Df(x, y) = 0

for all x, y ∈ V with f(0) = 0, then

Jnf(x) = f(x) and J ′nf(x) = f(x)

for all x ∈ V and all positive integers n.

Proof. If f : V → Y is a mapping such that

Df(x, y) = 0

for all x, y ∈ V with f(0) = 0, then it follows from the definitions
of ∆f(x) and Γf(x) that ∆f(x) = 0 and Γf(x) = 0 for all x ∈ V .

Therefore, together with the equality f(x) − Jnf(x) =
∑n−1

i=0 (Jif(x) −
Ji+1f(x)) and the equality (2.3), we conclude that

Jnf(x) = f(x)

for all x ∈ V and all positive integers n. In the same way we can easily
show the equality J ′nf(x) = f(x) for all x ∈ V . �

From Lemma 2.1 and Lemma 2.2, we can prove the following stability
theorem.
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Theorem 2.3. Let ϕ : V 2 → [0,∞) be a function such that

∞∑
n=0

64nϕ
( x

2n
,
y

2n

)
<∞(2.5)

for all x, y ∈ V . Suppose that f : V → Y is a mapping such that

‖Df(x, y)‖ ≤ ϕ(x, y)(2.6)

for all x, y ∈ V . Then there exists a general sextic mapping F such that

‖f(x)− f(0)− F (x)‖ ≤
∞∑
n=0

[(
4n

45
− 20 · 16n

45
+

64 · 64n

45

)
Φ

(
x

2n+3

)(2.7)

+

(
2n

45
− 20 · 8n

45
+

64 · 32n

45

)
Φ′
(

x

2n+3

)]
for all x ∈ V and F (0) = 0, where ϕe : V 2 → [0,∞) and Φ,Φ′ : V →
[0,∞) are functions defined by

ϕe(x, y) :=
ϕ(x, y) + ϕ(−x,−y)

2
Φ(x) :=ϕe(−6x, 2x) + 8ϕe(−x, x) + 56ϕe(−2x, x) + 112ϕe(−3x, x)

Φ′(x) :=ϕe(−6x, 2x) + 6ϕe(−x, x) + 42ϕe(−2x, x) + 112ϕe(−3x, x).

Proof. If f̃ is a mapping defined by f̃(x) = f(x) − f(0), then the

mapping f̃ satisfies the properties Df̃(x, y) = Df(x, y) and f̃(0) = 0.
By (2.1) and the definitions of Γf and ∆f , we have

‖Γf̃(x)‖ ≤ Φ′(x) and ‖∆f̃(x)‖ ≤ Φ(x),

for all x ∈ V . Hence, from (2.3) and (2.5), we have

‖Jnf̃(x)− Jn+1f̃(x)‖

≤
(

4n

45
− 20 · 16n

45
+

64 · 64n

45

)
Φ

(
x

2n+3

)
+

(
2n

45
− 20 · 8n

45
+

64 · 32n

45

)
Φ′
(

x

2n+3

)
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for all x ∈ V . So we obtain

‖Jnf̃(x)− Jn+mf̃(x)‖ ≤
n+m−1∑
i=n

[(
4i

45
− 20 · 16i

45
+

64 · 64i

45

)
Φ

(
x

2i+3

)(2.8)

+

(
2i

45
− 20 · 8i

45
+

64 · 32i

45

)
Φ′
(

x

2i+3

)]

for all x ∈ V and n,m ∈ N ∪ {0}. It follows from (2.5) and (2.8) that

the sequence {Jnf̃(x)} is a Cauchy sequence for all x ∈ V . Since Y is

complete, the sequence {Jnf̃(x)} converges for all x ∈ V . Hence we can
define a mapping F : V → Y by

F (x) := lim
n→∞

Jnf̃(x)

for all x ∈ V . Notice that J0f̃(x) = f(x) − f(0) for all x ∈ V and

F (0) = 0 follows from f̃(0) = 0. Moreover, letting n = 0 and passing
the limit m→∞ in (2.8) we get the inequality (2.7). From the definition
of F , we easily get

‖DF (x, y)‖ = lim
n→∞

∥∥DJnf̃(x, y)
∥∥

≤ lim
n→∞

(
64n+1

45
ϕe

(
x

2n
,
y

2n

)
+

20 · 64n+1

45
ϕe

(
x

2n+1
,
y

2n+1

)
+

64n+1

45
ϕe

(
x

2n+2
,
y

2n+2

)
+

64 · 32n

45
ϕe

(
x

2n
,
y

2n

)
+

640 · 32n

45
ϕe

(
x

2n+1
,
y

2n+1

)
+

1024 · 32n

45
ϕe

(
x

2n+2
,
y

2n+2

))
= 0,

for all x, y ∈ V . To prove the uniqueness of F , let F ′ : V → Y be another
general sextic mapping satisfying (2.7) and F ′(0) = 0. Instead of the
condition (2.7), it is sufficient to show that there is a unique mapping
satisfying the simpler condition

‖f̃(x)− F (x)‖ ≤
∞∑
i=0

(
64i+1Φ

(
x

2i+3

)
+ 64i+1Φ′

(
x

2i+3

))
,
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for all x ∈ V . By Lemma 2.2, the equality F ′(x) = JnF
′(x) holds for all

n ∈ N. So we have

‖Jnf̃(x)− F ′(x)‖ = ‖Jnf̃(x)− JnF ′(x)‖

≤ 64n+1

∥∥∥∥f̃e( x

2n

)
− F ′e

(
x

2n

)∥∥∥∥+ 64n+1

∥∥∥∥f̃e( x

2n+1

)
− F ′e

(
x

2n+1

)∥∥∥∥
+ 64n+2

∥∥∥∥f̃e( x

2n+2

)
− F ′e

(
x

2n+2

)∥∥∥∥+ 64n+1

∥∥∥∥f̃o( x

2n

)
− F ′o

(
x

2n

)∥∥∥∥
+ 64n+1

∥∥∥∥f̃o( x

2n+1

)
− F ′o

(
x

2n+1

)∥∥∥∥+ 64n+1

∥∥∥∥f̃o( x

2n+2

)
− F ′o

(
x

2n+2

)∥∥∥∥
≤

∞∑
i=n+3

64iΦ

(
x

2i

)
+

∞∑
i=n+3

64iΦ′
(
x

2i

)
,

for all x ∈ V and all positive integer n. Taking the limit in the above
inequality as n → ∞, we obtain the equality F ′(x) = limn→∞ Jnf̃(x)
for all x ∈ V , which means that F (x) = F ′(x) for all x ∈ V . �

Theorem 2.4. Let ϕ : V 2 → [0,∞) be a function such that

∞∑
n=0

2−nϕ(2nx, 2ny) <∞(2.9)

for all x, y ∈ V . Suppose that f : V → Y is a mapping such that

‖Df(x, y)‖ ≤ ϕ(x, y)(2.10)

for all x, y ∈ V . Then there exists a general sextic mapping F such that

‖f(x)− f(0)− F (x)‖ ≤
∞∑
n=0

[(
4

4n+1
− 5

16n+1
+

1

64n+1

)
Φ(2nx)

2880

(2.11)

+

(
4

2n+1
− 5

8n+1
+

1

32n+1

)
Φ′(2nx)

720

]
,

for all x ∈ V and F (0) = 0, where ϕe,Φ,Φ
′ are functions defined as

Theorem 2.3.

Proof. If f̃ is a mapping defined by f̃(x) = f(x) − f(0), then the

mapping f̃ satisfies the properties Df̃(x, y) = Df(x, y) and f̃(0) = 0.
By the definitions of Γf and ∆f , we have

‖Γf̃(x)‖ ≤ Φ′(x) and ‖∆f̃(x)‖ ≤ Φ(x),



General sextic functional equation 303

for all x ∈ V . So it follows from (2.4) and (2.10) that

‖J ′nf̃(x)− J ′n+1f̃(x)‖ ≤
(

4

4n+1
− 5

16n+1
+

1

64n+1

)∥∥∥∥∆f(2nx)

2880

∥∥∥∥
+

(
4

2n+1
− 5

8n+1
+

1

32n+1

)∥∥∥∥Γf(2nx)

720

∥∥∥∥
≤
(

4

4n+1
− 5

16n+1
+

1

64n+1

)
Φ(2nx)

2880

+

(
4

2n+1
− 5

8n+1
+

1

32n+1

)
Φ′(2nx)

720

for all x ∈ V . Together with the equality

J ′nf̃(x)− J ′n+mf̃(x) =

n+m−1∑
i=n

(J ′i f̃(x)− J ′i+1f̃(x))

for all x ∈ V , we obtain that

‖J ′nf̃(x)− J ′n+mf̃(x)‖ ≤
n+m−1∑
i=n

[(
4

4i+1
− 5

16i+1
+

1

64i+1

)
Φ(2ix)

2880

(2.12)

+

(
4

2n+1
− 5

8i+1
+

1

32i+1

)
Φ′(2ix)

720

]

for all x ∈ V and n,m ∈ N ∪ {0}. It follows from (2.9) and (2.12) that

the sequence {J ′nf̃(x)} is a Cauchy sequence for all x ∈ V . Since Y is

complete, the sequence {J ′nf̃(x)} converges for all x ∈ V . Hence we can
define a mapping F : V → Y by

F (x) := lim
n→∞

J ′nf̃(x)

for all x ∈ V . Note that F (0) = 0 follows from f̃(0) = 0. Notice

that J ′0f̃(x) = f(x) − f(0) for all x ∈ V . Moreover, letting n = 0 and
passing the limit n → ∞ in (2.12) we get the inequality (2.11). From
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the definition of F , we easily get

‖DF (x, y)‖ = lim
n→∞

∥∥DJ ′nf(x, y)
∥∥

≤ lim
n→∞

(
2ϕe(2

nx, 2ny) + ϕe(2
n+1x, 2n+1y) + +ϕe(2

n+2x, 2n+2y)

4n

+
2ϕe(2

nx, 2ny) + ϕe(2
n+1x, 2n+1y) + +ϕe(2

n+2x, 2n+2y)

2n

)
= 0

for all x, y ∈ V . To prove the uniqueness of F , let F ′ : V → Y be
another general sextic mapping satisfying (2.11) and F ′(0) = 0. Instead
of the condition (2.11), it is sufficient to show that there is a unique
mapping satisfying the simpler condition

‖f̃(x)− F (x)‖ ≤
∞∑
i=0

Φ(2ix) + Φ′(2ix)

2i

for all x ∈ V . By Lemma 2.2, the equality F ′(x) = J ′nF
′(x) holds for all

n ∈ N. So we have

‖J ′nf̃(x)− F ′(x)‖ = ‖J ′nf̃(x)− J ′nF ′(x)‖

≤ 2

4n
∥∥(f̃e − F ′e)(2nx)

∥∥+
1

4n+1

∥∥(f̃e − F ′e)(2n+1x)
∥∥+

1

4n+2

∥∥(f̃e − F ′e)(2n+2x)
∥∥

+
2

2n
∥∥(f̃o − F ′o)(2nx)

∥∥+
1

2n+2

∥∥(f̃o − F ′o)(2n+1x)
∥∥+

1

2n+2

∥∥(f̃o − F ′o)(2n+2x)
∥∥

≤ 4

∞∑
i=0

Φ(2n+ix) + Φ′(2n+ix)

2n+i
+ 2

∞∑
i=0

Φ(2n+i+1x) + Φ′(2n+i+1x)

2n+i+1

+ 2
∞∑
i=0

Φ(2n+i+2x) + Φ′(2n+i+2x)

2n+i+2

≤ 8
∞∑
i=n

Φ(2ix) + Φ′(2ix)

2i

for all x ∈ V and all positive integer n. Taking the limit in the above
inequality as n → ∞, we obtain the equality F ′(x) = limn→∞ J

′
nf̃(x)

for all x ∈ V , which means that F (x) = F ′(x) for all x ∈ V . �
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