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THE DOMINATION COVER PEBBLING NUMBER OF
SOME GRAPHS

Ju Young Kim* and Sung Sook Kim**

Abstract. A pebbling move on a connected graph G is taking two
pebbles off of one vertex and placing one of them on an adjacent
vertex. The domination cover pebbling number ψ(G) is the mini-
mum number of pebbles required so that any initial configuration
of pebbles can be transformed by a sequence of pebbling moves so
that the set of vertices that contain pebbles forms a domination set
of G. We determine the domination cover pebbling number for fans,
fuses, and pseudo-star.

1. Introduction

Since Chung[1] introduced the concept of pebbling in graph theory,
several researchers including Lagarias, Saks and Hurlbert made progress
in the study of pebbling in graph theory.

Throughout this paper G will denote a simple connected graph. Con-
sider a connected graph with a fixed number of pebbles distributed on
its vertices. A pebbling move(step) consists of removing two pebbles
from one vertex u and then placing one pebble at an adjacent vertex
v. We say that we can pebble to a vertex v, the target(root) vertex, if
we can apply pebbling moves repeatedly so that it is possible to reach a
configuration with at least one pebble at v. We define the pebbling num-
ber of a vertex v for a graph G, denoted by f(G, v), to be the smallest
integer m which guarantees that any starting pebble configuration with
m pebbles allows pebbling to v. We define the pebbling number of G,
denoted by f(G) as the maximum of f(G, v), over all vertices v.
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The cover pebbling number γ(G) is defined to be the minimum num-
ber of pebbles needed to place a pebble on every vertex of the graph
using a sequence of pebbling moves, regardless of the initial configura-
tion by Crull et al. [2]. A set S of some vertices in G is a dominating
set if every vertex in G is either in S or adjacent to some element in
S. Gardner et al. [4] combine these two ideas, cover pebbling and domi-
nation, to introduce a new graph invariant called the domination cover
pebbling number, ψ(G), of a graph. The domination cover pebbling num-
ber ψ(G) of a graph G is the minimum number of pebbles that must be
placed on V (G) such that after a sequence of pebbling moves, the set
of vertices with pebbles forms a dominating set of G, regardless of the
initial configuration of pebbles. The motivation of Gardner et al. for
this definition comes from a hypothetical situation in which one wishes
to transport monitors along the edges of a network that could ultimately
”watch” each vertex-but half the devices are lost during each move. The
pebbles may be placed on any of the vertices of G, and S depends, in
general, on the initial configuration - most importantly, however, S need
not equal a minimum dominating set.

Gardner et al.[4] calculated the domination cover pebbling number
for paths, cycles and complete binary trees.

In this paper, we determine the domination cover pebbling number of
fans, fuses and pseudo-stars. For a finite set S, |S| denotes the number
of elements in S. For any configuration C on G and a vertex v of G, we
denote by C(v) the number of pebbles on v in the configuration C.

2. Domination Cover Pebbling for Fans

Gardner et al.[4] determined the domination cover pebbling number
for some family of graphs.

Theorem 2.1 ([4]). For the complete graph Kn on n vertices,

ψ(Kn) = 1 .

The wheel graph, denoted by Wn, is the graph with V (Wn) =
{h, v1, · · · , vn}, where h is called the hub of Wn, and E(Wn) =
Cn

⋃{hv1, hv2, ..., hvn}, where Cn denotes the cycle graph on n vertices
v1, v2, ..., vn.

Theorem 2.2 ([4]). For the wheel graph Wn , ψ(Wn) = n − 2, for

n ≥ 3.
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First, we find the domination cover pebbling number of the star graph
Sn with n vertices.

Theorem 2.3. For the star graph Sn, ψ(Sn) = n− 1.

This result is obvious.

A fan graph, denoted by Fn, is a path Pn plus an extra vertex
connected to all vertices of the path Pn.

Throughout this paper, a fan graph with vertices v0, v1, · · · , vn in or-
der means the fan graph Fn whose vertices of the path Pn are v1, · · · , vn

in order and whose extra vertex is v0.

Theorem 2.4. For the fan graph, ψ(Fn) = n− 1, n ≥ 3.

Proof. ψ(Fn) > n − 2 because placing one pebble on each of n − 2

consecutive vertices v1, · · · , vn−2 on Pn leaves the vertex vn of Fn non-

dominated. If there is a pair of pebbles on any vertex, move it to the

center v0, then the domination is complete. Likewise, if there is a pebble

at v0, Fn is dominated. Thus, consider all configurations such that each

pebbled vertex contains just one pebble. If there are n − 1 pebbled

vertices, then there are just two non-pebbled vertices. It is easy to see

that these two non-pebbled vertices are dominated. Therefore, ψ(Fn) =

n− 1.

The following family of graphs which was introduced by Watson[5].
The pseudo-star graph, denoted by Hw(n), is defined to be a star graph
of order n + 1 with w consecutive additional edges added to make the
graph induced by one subset of w + 1 outer vertices connected.

Theorem 2.5. For the pseudo-star graph, ψ(Hw(n))= n, 1 ≤ w ≤
n− 2,

Proof. Let V (Hw(n)) be {h, v1, · · · , vn} and E(Hw(n)))

{hv1, hv2, · · · , hvn, v1v2, v2v3, · · · , vwvw+1}. First, ψ(Hw(n)) > n − 1

because placing one pebble on each of (n − 1) consecutive vertices
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v1, · · · , vn−1 leaves the vertex vn non-dominated. If there is a pair

of pebbles on any vertex, move it to the center, then the domination

is complete. Likewise, if there is a pebble at h, Hw(n) is dominated.

Thus, consider all configurations such that each pebbled vertex contains

just one pebble. If there are n pebbled vertices, then there is just one

non-pebbled vertex. It is easy to see that this non-pebbled vertex is

dominated. Therefore, ψ(Hw(n)) = n.

3. Domination Cover Pebbling for fuses

The class of fuses is defined as follows. The vertices of a fuse F`(k)
(` ≥ 2 and k ≥ 2) are v1, · · · , vn with n = `+k, so that the first ` vertices
form a path from v1 to v`, and the remaining vertices vl+1, · · · , vn are
independent and adjacent only to v`. The path is sometimes called
the wick, while the remaining vertices are sometimes called the sparks.
For example, F2(k) is the star Sk+2 on k + 2 vertices. The fact that
ψ(Sn) = n− 1 serves as the base case for the following result.

Theorem 3.1. For the fuse graph,

(1)

ψ
(
F` (n)

)
=





2`+2 − 2α

7
+ (k − 1) , if `− 1 ≡ α 6= 0 (mod 3)

2`+2 − 23

7
+ (k − 1) , if `− 1 ≡ 0 (mod 3)

Proof. Induction on l shows that so many pebbles suffice to dominate

the fuse. Regarding the base case l = 2, we point out that F2(k) is the

star on k + 2 vertices. Consider the configuration D such that D(vi)=1

for i = l + 2, · · · , n, D(vj)=0 for j = 1, · · · , `, and D(v`+1) = 8·2`−1−2α

7 .

We need at least 2`−1 + 2`−4 + · · · + 2α (0 6= α ≡ ` − 1 (mod 3) and

α = 3 if ` − 1 ≡ 0 (mod 3)) pebbles to dominate {v1, · · · , v`−1}. v`+2
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dominates v`. But

2`−1 + 2`−4 + · · ·+ 2α =
8 · 2`−1 − 2α

7
Thus, under this configuration D,

ψ
(
F` (k)

) ≥ 8 · 2`−1 − 2α

7
+ (k − 1) .

We now use induction on ` to show that ψ
(
F` (k)

) ≤ (1). The assertion

is clear for ` = 2. Therefore, we assume it is true for all s, when

2 ≤ s ≤ ` − 1. Consider an arbitrary configuration of F` (k) having

(1) pebbles. Clearly we can cover dominate {v1, v2, v3 } is a finite

number of moves with 2`−1 pebbles or less. Thus, we need to dominate

F`−3 (k) with the remaining

(1)− 2`−1 =
2(`−3)+2 − 2α

7
+ (k − 1)

pebbles. This number of pebbles is enough to dominate F`−3 (k) by

hypothesis. Thus,

ψ
(
F` (k)

) ≥ (1) ,

completing the proof.

Determination of the ψ values for several other families of graphs is
an still open question.
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