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ON THE CRYSTALLOGRAPHIC GROUP OF Sol!

WOoN SoK Yoo

ABSTRACT. The purpose of this paper is to determine the structure
of the crystallographic group II of the 4-dimensional solvable Lie
group Sol,ﬁm that the translation subgroup of I, I' := 1IN Sol,ﬁ)n,
is generated by the particular elements.

1. Introduction

Let X be a complete connected, simply connected Riemannian man-
ifold, and let G be a group of isometries of X. A pair (X, G) is called
a geometry in the sense of Thurston [6, 7] if G acts transitively on X
and G contains a discrete subgroup I'" with the coset space I'\ X of fi-
nite volume. According to Filipkiewicz [3, 9], there are 20 types of
geometries in dimension 4: §*,H*, P2(C), H%(C), S? x §2, 5% x R?, 52 x
H2, R4, R? x H2, H2 x H2, $3 x R, H? x R, PSL(2, R) x R, Nil® x R, Sol® x
R, Nil4, Solﬁihn, Solg, Solt and F*4.

Let G be a connected, simply connected solvable Lie group and let
C' be any maximal compact subgroup of Aff(G). A discrete cocompact
subgroup II of G x C is called a crystallographic group of G. The coset
space II\G is an infra-solvmanifold of G, when II is a Bieberbach group
(i.e., a torsion-free crystallographic group) of G. The maximal compact
subgroup C' can be chosen so that G x C' is equal to Isom(G). There-
fore, the Bieberbach groups of G are exactly the fundamental groups
of compact infra-solvmanifolds of G. Consequently, a closed manifold
has a (X, G)-geometry if and only if it is an infra-solvmanifold of G.
The crystallographic groups of Sol® and Sol}! are classified in [2] and
[4], respectively. All the closed four-manifolds with Sol;!-geometry were
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studied in [8]. Utilizing the ideas in [2, 4, 8], the aim of this paper is to
determine the structure of the crystallographic group of the solvable Lie
group Sol,f%n.

This paper is organized as follows. In Section 2, we show that a
compact subgroup of the group of automorphisms of the Lie group Solf
has at most 8 elements. There are an infinite but countable number of
the Lie groups Solf that admit a lattice. Such Lie groups are denoted
by Sol,f%n. In Section 3, we review a family of Lie groups Sol#%n. In
Section 4, we study the structure of the crystallographic group II of
Solé,n that the translation subgroup of I, I := IIN Sol,ﬁhn, is generated
by the particular elements.

2. The Lie group Solf and its automorphism group

The Lie group Solf is a 4-dimensional connected, simply connected
and unimodular solvable Lie group R? X, R of type (R) where

er 0 0
e(s)=10 ¢€° 0 (A>1).
0 0 e—(l—l—)\)s

This can be embedded in Aff(4) as

e(s) 0
Soly = 0 1
0 0

C Aff(4) € GL(5,R),

— ®»n H®

where x € R? is a column vector. The Lie algebra soly' of Sol,! is

7(s) 0 a
soly = 0 0 s|p,
0 00
where
As 0 0
7(s) =logp(s)= |0 s 0
0 0 —(1+A)s

Now let us first find the group of automorphisms Aut(Soly') of Soly.
Because Solf is simply connected, it suffices to find the group of Lie
algebra automorphisms of the Lie algebra 50[;\1. For this purpose, we
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choose a linear basis {Ej, E9, E3, F} of 50[A4 as follows:

7(0) 0 e 7(1) 0 O
Ei=| 0 00|, F=|0 o0 1,
0 0 0 0 0 0

where {e1,es, e3} is the set of standard basis vectors of R3. Then the
nontrivial Lie brackets between them are

(2-1) [F,Ei] = A\E;, [F,Es] =Ey, [F,E3]=—(1+ )\)Es.
A Lie algebra automorphism of so[f is a nonsingular linear transforma-
tion of the linear space sol{ preserving the nontrivial Lie brackets (2-1)

together with all trivial Lie brackets. It is now easy to observe that:

PROPOSITION 2.1. The Lie group Aut(soly) is, with respect to the
linear basis {E1, Eq, Es, F}, the following matrix group

abc # 0 p = R* x GD(3),

S0 OO
— % % %

S O O
OO T O

where GD(3) is the group of all invertible 3 x 3-diagonal matrices and
it acts on R by matrix multiplication.

From Proposition 2.1, it is immediate that a maximal compact sub-
group of Aut(soly!) is

+1 0 0
O(1) x O(1) x O(1) = 0 +1 0| p=(Zy)?
0 0 +1

which is a maximal compact subgroup of GD(3).

Remark that the Lie group Soly is of type (R) and hence is of type (E),
that is, the exponential map exp : Sol ;\1 — 50[;\1 is a diffeomorphism. Us-

a 0 0 p
ing this diffeomorphism, we can observe that 8 8 2 g € Aut(soly)
0 0 01
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is an automorphism of Solf given by

0 0 0=z 0 0 0 axtspyt
0 e 0 0 y 0 e 0 0 by+sqgct
0 0 eV 0 2zl = |0 0 N 0 ezt 87"76:((1;:););1
0 O 0 1 s 0 0 0 1 s
0 0 0 01 0 0 0 0 1

In particular, GD(3) (p = ¢ = r = 0) acts on Soly} = R? x, R as matrix
multiplication on its nilradical R3. Consequently,

(2-2)  Sol{ x GD(3) = (R? x, R) x GD(3) = R? x (R x GD(3))
where ¢'(5, X) = ¢(s) - X = X - p(s).

3. The Lie group Sol,fm

In this section, we will briefly review a family of Lie groups Solén. A
good reference is [5] or [9]. Let I" be a lattice (i.e., a discrete cocompact
subgroup) of Sol = R3x,R. Then TNR? is a lattice of R* and I'/(I'NR?)
is a lattice of Sol{/R? = R, so that T NR3 = Z3 and I'/(T NR3) = 7,
and the following diagram of short exact sequences is commutative

1 R3 R3 x, R R 1
I I |
1 73 S r s 7 1

The rightmost map is injective. We may assume this injective map is
an inclusion Z C R. Choose a generator s > 0 of the group Z. Then
73 is a @(s)-invariant lattice of R?, namely, ¢(s) can be regarded as an
automorphism on Z3. Choose a basis {x1,X2,x3} of Z3. Then we must
have that

(3-1) @(s)(xi) = lrix1 + Loixa + €3;X3, (i =1,2,3)
for some integers ¢;;. Thus the lattice I' is a subgroup of Sol/{l generated
by the following elements
X1 = (X170)7 X2 = (X270)7 X3 = (X370)a s = (018)
of Solf =R3 X, R. We shall denote such a lattice by
(3-2)
I'= <X1,X2,X3, S ‘ [Xi,Xj] =1, @(S)(Xi) = l1;x1 + fo;x9 + 531X3>.




On the crystallographic group of Sol,iyn 21

b1 2 U3
A= |ly1 fao la3
l31 l32 33
Then I' 2 73 x4 Z.
Now we form the matrix P with columns x;,x2 and x3. Then (3-1)
is equivalent to

e 0 0
(3-3) PAP ' =¢(s)=| 0 e° 0
0 0 67(1+)\)s

This implies that A € SL(3,Z) and the columns of P~! are eigenvectors
of A with corresponding eigenvalues e**, e® and e~ (1HN)s respectively.
For another basis {x],x5,x4} of Z3, we let P’ be the matrix with
columns x},x% and x5. Then we have that
90(5)(){;) = gllz'xll + El2ix/2 + Eé’n’xé’n (Z = 17 2’ 3)
for some integers £;;. If
[
A= 5/21 £/22 lys |
31 t32 £33
then we have
o(s) = PAP!
Therefore, A’ = P 'PAP~'P’, ie., A and A’ are conjugate by an
element of GL(3,R). Clearly, Z3 x4 Z = 73 x4/ Z.
Let
3

xa(z) =2® —ma? +nx —1

be the characteristic polynomial of A (so m,n € Z). Since A and ¢(s)
are conjugate, we have

m = e 4 e 4+ e~ (Vs — tr(A)
n— 6—)\3 + e~ + e(l—l-)\)s _ tI“(A_l).

Note that m > 3. [It can be seen that the function f(x) = e 4 e +
e~(1+N7 hag the global minimum value 3 at z = 0.] Similarly, n > 3.
We call such Soly! as Solﬁl,n.

By choosing —s as another generator of the group Z(C R), we see
that Sol,‘im = Sol;,l%n. Note also that e® cannot be 1, that is, 1 cannot
be a root of x 4(z), which happens when and only when m = n. Remark
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that Solf,ll’m >~ Sol? x R. Thus in what follows we shall assume that
m>n> 3.

Since m > n > 3, we have m? — 3n > 0. So, the characteristic
polynomial x 4(z) of A has two positive critical values

1
:C:§(m:i: m2—3n).

Then x4 (z) has 3 distinct positive real roots if and only if
m>n> 3,
(3-4) XA <% (m — m>> >0,
XA (% (m+ m? —3n)> < 0.
Consequently, if the group Solf has a lattice, then there exists a pair of

integers (m,n) satisfying the conditions (3-4), or equivalently, lying in
the shaded region.

450 4
40F /

350/

— m

Conversely, suppose (m,n) is a pair of integers satisfying the condi-
tions (3-4). Then the equation 3 — ma? +nz — 1 = 0 has 3 distinct
positive real roots, say a; > ag > az > 0. This equation has the
companion matrix

0 0 1
Appni=11 0 —n
01 m
Let P be the Vandermonde matrix corresponding «y, ag, as:
1 g of
P=1|1 ay o

1 a3 o?
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Then
00 1 a 0 O
P|I1 0 —n|{=|0 a O]|P
01 m 0 0 asg
Moreover,

103 = 1
o]+ oy +az3=m
-1 -1 -1
) Fag tay =azazt+aza; Hajas =n

Consequently, if A € SL(3,7Z) has characteristic polynomial x4(x) =

23 — ma? + nz — 1 then it is conjugate to Ay, .
Let
In (651
= ——, s=lnas.
In (6%)

A direct computation shows that Q = P~! is, up to a nonzero constant,

—042043(042 - 0é3) _043041(043 - 041) —041042(041 - 042)
(g + ag)(ae —a3) (as+aq)(ag —a1) (a1 4+ az)(ag — a9)
—(ag — as) —(a3 —a1) —(o1 —az)

Hence the vectors

(eDe%! Q3o Q1
(35) xp = |—(a2a+a3)|, xe=|—(ag+a1)|, x3=|—(1 + 2)
1 1 1

As

are eigenvectors of A,,, with eigenvalues a1 = e**,ap = €° and a3 =

e~ (N5 respectively. This proves that the abstract group Z3 x Ao L 18

isomorphic to the lattice of Sol,! = Sol,fm generated by (x1,0), (x2,0), (x3,0)
and (0, s), see (3-2).

4. The structure of crystallographic group of Solﬁw

We recall that a closed 4-dimensional manifold M has Solén—geometry
M = H\Solrfm. There-
fore, II is a torsion-free discrete cocompact subgroup of Solﬁm x K C

if and only if it is an infra-solvmanifold of Solé’n,

Aff(Sol,} ) where K = O(1)? is a maximal compact subgroup of the

m,n
group of automorphisms Aut(Sol,, ) of Sol, ..
Let II be a crystallographic group of Sol;lw. Since the Bieberbach
theorems generalize to Sol,4n7n [1], the translation subgroup of II, " :=
IINSol,,

m.ns 18 of finite index in IT, and is a lattice of Solgl%n. The maximal
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compact subgroup K is very small, has only 8 elements. Therefore,
all crystallographic groups of Sol;l%n are extensions of a lattice by a
subgroup ® of the finite group K.

Given a pair of integers (m,n) satisfying the conditions (3-4), we
denote by a1 > as > a3z > 0 the 3 distinct positive real roots of the
associated equation z® — ma? +nz —1 = 0.

The purpose of this paper is to determine the structure of the crystal-
lographic group II of which the translation subgroup I' is generated by
{(x1,0), (x2,0), (x3,0), (0, s)}, where s = In s and x1,x92,x3 are given
as in (3-5). With ® :=II/T C K and Zg¢ := II/(I' N R?), we obtain the
commutative diagram below with exact rows and columns

<—
Il

where Z3 = (x1,%2,x3) and Z = (s).
Remark also that II € Sol? = x K = R? Xy (R x K) and hence

m,mn

Ze C R x K. In particular, Zg is abelian. Consequently, it makes easy
to determine Z¢ C R x K, which is an extension of Z = (s) by ®.

For any non-trivial element X of ®, there exists a ¢ € R such that
(t,X) € Zg. Since (t,X)? = (2t,X?) = (2t,1) € (s), we may as-
sume that ¢ = 0 or ¢t = 5. Hence the subgroup ((s, I), (¢, X)) is either

<(87I)7 (07X>> =7 x ZQ or <(%7X>> = Z.
Let X,Y € ® generate a subgroup of ® isomorphic to Z%. Choose
lifts (¢, X),(u,Y) € Zg of X,Y where t,u are 0 or 5. Therefore, the
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subgroup ((s, I), (¢, X), (u,Y)) of Zg is one of the following:
((s.1),(0,X),(0,Y)) = Z x Z3,
((5,X),(0,Y)) 2 Z x Zy,
((0,X),(5,Y)) 2 Z x Ly,
(5, X),(3.Y)) 2 Z x Zs.

Let & = K with generators X, Y, Z. Choose lifts (¢, X), (u,Y), (v, Z)
Zg of XY, Z where t,u and v are 0 or §. Then it can be seen easily that
the subgroup ((s, I), (t,X), (u,Y), (v, Z)) of Zg is one of the following:

(5, 1), (0,X), (0,Y), (0, 2)) = Z x Z3,

. X),(0,Y),(0,2)) =7 x 72,

~ 7 x 73,

~ 7 x 73,

>~ 7 x 73,

>~ 7 x 73,

>~ 7 x 73,

7)) =7 x 72

can see that Zg is isomorphic to one of the following

Z, 7.x Ty, T x 73, 7x 73

m

s
—~
Njw N|w >
)~<
S S =
—~
D om e B
SECEURG G
~— ~— ~— ~ ~ ~

@ N

In conclusion, w

Moreover, if ® has 2 or more generators, then (0,X) € Zg for some
nontrivial element X of ®.

We know all the subgroups ® of K C Aut(Sol;,ll’n). The group K =
O(1)3 is generated by

-1 0 O 1 0 0 1 0 0
X=|l010/,vy=10 -1 0l,z=101 o
0 0 1 0 01 0 0 —1

Thus the nontrivial subgroups ® of K = {+1,+X,+Y, +7} are:

®  generator(s)

Ly <X>7 <Y>7 <Z>7 <_X>7 <_Y>7 <_Z>7 <_I>

Z% <X7_X>> <X7Y>> <X>Z>> <Y’_Y>a (KZ>7 <Zv_Z>> <_X7_Z>
Zj (X.Y,Z)
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