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BARRIER OPTIONS UNDER THE MFBM WITH

JUMPS : APPLICATION OF THE BDF2 METHOD

Heungsu Choi* and Younhee Lee**

Abstract. In this paper we consider a mixed fractional Brownian
motion (mfBm) with jumps. The prices of European barrier options
can be evaluated by solving a partial integro-differential equation
(PIDE) with variable coefficients, which is derived from the mfBm
with jumps. The 2-step backward differentiation formula (BDF2
method) proposed in [6] is applied with the second-order conver-
gence rate in the time and spatial variables. Numerical simulations
are carried out to observe the convergence behaviors of the BDF2
method under the mfBm with the Kou model.

1. Introduction

A barrier option as one of path-dependent options is traded widely
in the financial market. There are a variety of stochastic processes to
model an underlying asset in order for us to price the barrier option. For
example, the price of a down-and-out call option under the geometric
Brownian motion was evaluated by Merton [8]. Empirical studies, how-
ever, exhibit that the Black-Scholes model is inconsistent to design the
underlying asset because it cannot explain volatility smiles, heavy tails,
long-range dependencies, and so on. We concentrate on a fractional
Brownian motion (fBm) to incorporate these market phenomena.

The fBm BH
t was proposed by Mandelbrot and Van Ness [7] and

thereafter was modified by the following form

BH
t = cH

∫
R

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
dWs
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with

cH =

√
2HΓ(3

2 −H)

Γ(1
2 +H)Γ(2− 2H)

,

where (Wt)t∈R is a two-sided Brownian motion, H is the Hurst index
with H ∈ (0, 1), and Γ(·) is the gamma function. We denote by (x)y+
the function given by

(1.1) (x)y+ =

{
xy for x ≥ 0

0 otherwise.

The fBm BH
t is a self-similar process and has stationary increments. The

covariance between two non-overlapping increments of BH
t is negative for

H ∈ (0, 1
2) and is positive for H ∈ (1

2 , 1). The process BH
t with H = 1

2

corresponds to a two-sided Brownian motion. Moreover, the fBm BH
t

with H ∈ (1
2 , 1) has long-range dependence, that is, if a function γH(n)

is defined by the expectation

γH(n) = E[BH
1 (BH

n+1 −BH
n )],

then
∞∑
n=1

γH(n) =∞ for 1
2 < H < 1.

When the underlying asset follows the geometric fBm which reflects
the stylized facts observed in the financial market, Cheridito [4] showed
that there exist arbitrage strategies and how arbitrage opportunities can
be eliminated under the exponential fBm. It is incompatible with the
economic explanation discussed by Björk and Hult [2].

In order to conquer the shortcomings of the fBm, a mixed fractional
Brownian motion (mfBm) is considered with the log return of the un-
derlying asset. The mfBm is the linear combination of the standard
Brownian motion and the fBm independently and it is proved in [3] that
there are no arbitrage opportunities for H ∈ (3

4 , 1). The mfBm is popu-
larly employed to price financial derivatives in the literature [1, 10, 11].

In this paper we are interested in barrier options when the underly-
ing asset follows the mfBm with jumps. Although there are a number
of numerical methods to evaluate barrier options, they have not been
considered under the mfBm with jumps to our knowledge. The 2-step
backward differentiation formula (BDF2 method) proposed by Lee and
Lee [6] is used to solve a partial integro-differential equation (PIDE) for
pricing barrier options under the mfBm with the Kou model.

The remainder of this paper is organized as follows. In section 2
we briefly introduce the mfBm with jumps and the PIDE for an up-
and-out European barrier call option. In section 3 the BDF2 method is
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employed to price the barrier option. A variety of numerical simulations
are performed to show the convergence behaviors of the BDF2 method
in section 4. This paper ends with conclusions in section 5.

2. Option pricing model under the mfBm with jumps

A fractional Brownian motion BH = (BH
t )t∈R with Hurst parameter

H ∈ (0, 1) on a probability space (Ω,F ,P) is a continuous and centered
Gaussian process with mean zero and covariance

E[BH(t)BH(s)] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
for s, t ∈ R.

A mfBm MH
t (a, b) for t ∈ R on the probability space (Ω,F ,P) is defined

by

MH
t (a, b) = aBt + bBH

t ,

where Bt is a Brownian motion, Bt and BH
t are independent, and a and

b are two nonzero real constants.
We are interested in the Hurst parameter H ∈ (3

4 , 1) in which the
mfBm is equivalent to a Brownian motion and it allows us to exclude
arbitrage strategies. For more details, see [3]. In order to take into
account the long-range dependence observed in the financial market, an
underlying asset in a risk-neutral measure Q is considered to satisfy

(2.1) dSt/St− = (r − d− λζ)dt+MH
t (σ1, σ2) + ηdNt,

where r is a risk-free interest rate, d is a continuous dividend yield, Nt

is a Poisson process with intensity λ, ln(η + 1) is a random variable to
determine jump sizes of the log return, and ζ is the expectation of η. all
random processes Bt, B

H
t , η, and Nt are assumed to be independent.

Let us consider the price of an up-and-out European barrier call op-
tion u(τ, x) that satisfies the following PIDE, which is described in [9],
by using the Wick-Itô integral

∂u

∂τ
(τ, x) = α(τ)

∂2u

∂x2
(τ, x) + β(τ)

∂u

∂x
(τ, x)(2.2)

−(r + λ)u(τ, x) + λ

∫
R
u(τ, z)f(z − x)dz,

h(x) = max(0, S0e
x −K) · 1{S0ex<B̄},(2.3)

where τ = T − t is the time to maturity, x = ln(St/S0) is the log price,
K is a strike price, B̄ is a barrier level, 1Ω is the indicator function of
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Ω, and α(τ) and β(τ) are given by

α(τ) =

(
σ2

1

2
+Hσ2

2(T − τ)2H−1

)
,

β(τ) =

(
r − d− σ2

1

2
−Hσ2

2(T − τ)2H−1 − λζ
)
.

3. The BDF2 method for barrier option pricing

The three implicit methods in [6] are proposed for pricing options
under a regime-switching jump-diffusion model where coefficients are
considered as functions in the time and spatial variables. It is shown
in [6] that these implicit methods have the second-order accuracy in
the time and spatial variables. We note that these implicit methods
can be also employed to solve the PIDE (2.2)–(2.3) because α(τ) and
β(τ) are the functions in the time variable for H ∈ (3

4 , 1). One of
the three implicit methods called the BDF2 method is based on the 2-
step backward differentiation formula. In this paper, we introduce the
BDF2 method when the number of states of economy is 1. The discrete
equation of the BDF2 method with Unm = U(τn, xm) is given by

(3.1)
1

∆τ

(
3

2
Un+1
m − 2Unm +

1

2
Un−1
m

)
= L∆U

n+1
m ,

where the discrete integro-differential operator L∆U
n+1
m is

(3.2) L∆U
n+1
m = D∆U

n+1
m + I∆(2Unm − Un−1

m )− (r + λ)Un+1
m ,

the discrete differential operator D∆U
n+1
m is

(3.3) D∆U
n+1
m = αn+1U

n+1
m+1 − 2Un+1

m + Un+1
m−1

∆x2
+ βn+1U

n+1
m+1 − U

n+1
m−1

2∆x
,

and the discrete integral operator I∆U
n
m is

I∆U
n
m =

λ∆x

2

(
Un0 fm,0 + 2

M−1∑
i=1

Uni fm,i + UnMfm,M

)
(3.4)

+λR(τn, xm, X, Y )

with fm,i = f(xi − xm) and R(τn, xm, X, Y ) which is given by

R(τn, xm, X, Y ) =

∫
R\(X,Y )

h(z)f(z − xm)dz.
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Table 1. The prices of the up-and-out European bar-
rier call option obtained by the BDF2 method under the
mfBm with the Kou model. N is the number of time
steps and M is the number of spatial steps.

S = 90 S = 100 S = 110
N M Value Error Value Error Value Error

50 64 0.556282 - 3.612688 - 9.054693 -

100 128 0.567844 0.011562 3.688933 0.076245 9.158832 0.104139

200 256 0.570841 0.002997 3.707951 0.019017 9.185099 0.026267

400 512 0.571598 0.000757 3.712709 0.004758 9.191666 0.006568

800 1024 0.571788 0.000190 3.713899 0.001190 9.193306 0.001640

1600 2048 0.571835 0.000048 3.714197 0.000298 9.193715 0.000409

3200 4096 0.571847 0.000012 3.714272 0.000075 9.193817 0.000102

In the up-and-out European barrier call option, R(τn, xm, X, Y ) can be
regarded as 0 because h(z) = 0 on the domain R \ (X,Y ).

4. Numerical simulations

In this section a number of numerical simulations with MATLAB
on a computer are carried out to evaluate the prices of an up-and-out
European barrier call option under the mfBm with jumps. The Kou
model is considered with the probability density function of ln(η + 1)
given by

f(x) = pλ+e
−λ+x1x≥0 + (1− p)λ−eλ−x1x<0,

where λ+ > 1, λ− > 0, 0 ≤ p ≤ 1. The corresponding parameters in the
simulation are

σ1 = σ2 = 0.15, H = 0.85, r = 0.05, d = 0.02,

λ = 0.10, p = 0.3445, λ+ = 3.0465, λ− = 3.0775,

T = 0.25, K = 100, B̄ = 130,

in which the parameters concerned with jumps are also used by d’Halluin,
Forsyth, and Vetzal [5]. The truncated domain is taken with

(X,Y ) = (−7 ln(B̄/S0), ln(B̄/S0)),

where S0 = K.
In Table 1, the errors are computed by the consecutive changes of

the prices of the up-and-out European barrier call option at each stock
price. We can observe that the errors with the BDF2 method are reduced
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Table 2. The rates of `2-errors obtained by the BDF2
method under the mfBm with the Kou model. N is the
number of time steps and M is the number of spatial
steps. ε is the rate of convergence calculated by (4.1).

N M ‖U(∆τ,∆x)− U(∆τ/2,∆x/2)‖`2 ε

50 64
0.039889865794569

100 128
0.010001800909309 1.996

200 256
0.002501155699599 2.000

400 512
0.000625051383142 2.001

800 1024
0.000156155707964 2.001

1600 2048
0.000039001906173 2.001

3200 4096

to about a quarter as the numbers of time and spatial grid points are
doubled. The ratio ε in Table 2 is calculated by

(4.1) ε = log2

‖U(∆τ,∆x)− U(∆τ/2,∆x/2)‖`2
‖U(∆τ/2,∆x/2)− U(∆τ/4,∆x/4)‖`2

,

where U(∆τ,∆x) is the option price on τ = T and the discrete `2-norm
of the numerical solution Un is given by

‖Un‖`2 =

√√√√∆x

M−1∑
m=1

(Unm)2.

The results in Table 2 show that the BDF2 method has the second-
order convergence rate in the discrete `2-norm as the rates ε are almost
quadratic.

5. Conclusion

In this paper we deal with the mfBm with jumps to evaluate the
up-and-out European barrier call option. These prices under the mfBm
with the Kou model can be obtained by solving the PIDE with variable
coefficients. The BDF2 method proposed in [6] is applied to solve the
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PIDE (2.2)–(2.3) numerically. A variety of simulations are performed to
show the second-order convergence rate in the time and spatial variables.
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