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A FIXED POINT APPROACH TO THE STABILITY OF
AN ADDITIVE-QUADRATIC-QUARTIC FUNCTIONAL
EQUATION

YANG-HI LEE

ABSTRACT. In this paper, we investigate the stability of a func-
tional equation

flx+3y) =5f(z+2y) +10f(z + y) — 8f(x) + 5f(xz —y) — f(z — 2y)
—2f(—z) = f(2z) + f(—22) =0

by using the fixed point theory in the sense of L. Cadariu and V.
Radu.

1. Introduction

The stability of functional equation has begun to become a research
topic from Ulam’s question [20] about the stability of group homomor-
phisms. Hyers [8] gave an affirmative answer to this problem for additive
mappings between Banach spaces. Subsequently many mathematicians
came to deal with this problem (cf. [6, 13, 18]).

In this paper, let V and W be real vector spaces and Y a real Ba-
nach space. For a given mapping f : V — W, we use the following
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abbreviations
folz) = f(z) +2f(—90)7 fo(z) = f(z) —Qf(—fv)7
Af(x,y) =f(x +y) — f(@) — f(y),
Qf(z,y) =f(x+y) + flx —y) —2f(z) — 2f(y),
Q' f(x,y) =f(x+2y) —4f(z +y) +6f(x) —4f(x —y)

+ f(z —2y) — 24f(y),
Df(z,y) :==f(x +3y) = 5f(z +2y) + 10f(x +y) — 8f(x)
+5f(x —y) — flz —2y) = 2f(—z) — f(22) + f(—22)

for all x,y € V. Each functional equation Af(z,y) = 0, Q(z,y) = 0
and Q' f(x,y) = 0 is called an additive functional equation, a quadratic
functional equation and a quartic functional equation, respectively. Ev-
ery solution of the functional equations Af(x,y) = 0, Q(z,y) = 0 and
Q' f(z,y) = 0 are called an additive mapping, a quadratic mapping and
a quartic mapping, respectively. If a mapping can be expressed by the
sum of a quartic mapping, a quadratic mapping and an additive map-
ping, then we call the mapping an additive-quadratic-quartic mapping.
A functional equation is called an additive-quadratic-quartic functional
equation provided that each solution of that equation is an additive-
quadratic-quartic mapping and every additive-quadratic-quartic map-
ping is a solution of that equation.

Many mathematicians [7, 16, 17] investigated the stability of the
additive-quadratic-quartic functional equation

flxz+2y) + f(z —2y) —2f(z +y) —2f(—x —y) — 2f(z — y)
—2f(y — ) +4f(—x) + 2f(z) — f(2y) — f(—2y) +4f(y) +4f(-y) =0

for all z,y € V. They proved the stability of the above functional
equation by dividing into three parts: the additive part, the quadratic
part and the quartic part of the given mapping f. However, in this
paper, we will show the stability of another type of additive-quadratic-
quartic functional equation D f(z,y) = 0 by using fixed point theorem
without dividing into three parts. We will show that every solution of
functional equation D f(z,y) = 0 is an additive-quadratic-quartic func-
tional equation and we introduce a strictly contractive mapping which
allows me to use the fixed point theory in the sense of L. Cadariu and
V. Radu([2, 3, 4]) (See also [9, 10, 11, 12, 14, 15]). And then we can
adopt the fixed point method for proving the stability of the functional
equation Df(z,y) = 0.
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Namely, starting from the given mapping f that approximately satis-
fies the functional equation D f(x,y) = 0, a solution F of the functional
equation D f(x,y) = 0 is explicitly constructed by using the formula

F) =t (200 +Z o EU 0 fe<32”—ix>)

n—00 7297

or

F(z) = nl;ngo3”<fo( >+Zn:nci901(—729)"ife(3;j_i>>,
=0

which approximates the mapping f.

2. Main theorems

We recall the following result of the fixed point theory by Margolis
and Diaz.

THEOREM 2.1. ([5] or [19]) Suppose that a complete generalized met-
ric space (X, d), which means that the metric d may assume infinite val-
ues, and a strictly contractive mapping J : X — X with the Lipschitz
constant 0 < L < 1 are given. Then, for each given element z € X,
either

d(J"z, J" ) = +o0, Vn € NU {0},
or there exists a nonnegative integer k such that:
(1) d(J"x, J"tx) < 400 for all n > k;
(2) the sequence {J"x} is convergent to a fixed point y* of J;
(3) y* is the unique fixed point of J in Y := {y € X,d(J*z,y) < +o0};
(4) d(y,y*) < (1/(1 — L))d(y, Jy) for all y € Y.

The following theorem is a particular case of Baker’s theorem [1] when
5 =0.

THEOREM 2.2. (Theorem 1 in [1]) Suppose that V' and W are vector
spaces over Q, R or C and ay, Bo, - . . , aum, B are scalar such that o3 —
a;B; #0 whenever 0 < j <l <m. If f;: V = W for 0 <1 <m and

> filawx + By) =0
1=0

for all z,y € V, then each f; is a “generalized” polynomial mapping of
“degree” at most m — 1.
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Baker [1] also states that if f is a “generalized” polynomial mapping
of “degree” at most m—1, then f is expressed as f(z) = zo+> "7 " af(x)
for € V', where a; is a monomial mapping of degree [ and f has a prop-
erty f(rxz) = xo + Zﬁ]l rla¥(z) for x € V and 7 € Q. The monomial
mapping of degree 1, 2 and 4 are also called an additive mapping, a
quadric mapping and a quartic mapping, respectively.

THEOREM 2.3. A mapping f : V — W satisfies D f(x,y) = 0 for all
x,y € V with f(0) = 0 if and only if f is an additive-quadratic-quartic
mapping.

Proof. First, we assume that a mapping f : V' — W satisfies D f (z,y) =
0 for all 2,y € V. Since the equalities f.(92) — 90f.(3z) + 729 fc(z) = 0
and f,(3z) = 3f,(x) are obtained from

£.(92) — 90f.(32) + 729f. () =D f.(0,3z) + 6D £.(0, 2z)
+ 36D fe(z,z) + 75D f¢(0, x),
fo(3x) = 3fo(x) =2D f,(—x,2) + D f,(0, —x)

for all z € V', we can say that Df,(z,y) =0, Dg(x,y) = 0,Dh(x,y) = 0,
g(3z) = 3%(x) and h(3z) = 32%(x) and f,(3x) = 3f,(x), where g,h
are defined by g(z) := f.(3x) — 32f.(x) and h(x) := f.(3x) — 3*f.(z).
Therefore, by the comments mentioned after Theorem 2.2, we conclude
that f,, g and h are an additive mapping and a quadratic mapping and
a quartic mapping, respectively. With the equality f(z) = fo(z)+ % +
_?gv)’ we obtain that f is an additive-quartic-quadratic mapping.

Conversely, assume that f1, fo, f3 are mappings such that the equal-
ities f(z) i= fi(a) + o) + fo(@), Afi(z,y) = 0, Qfalw,y) = 0, and
Q' f3(x,y) = 0 hold for all z,y € V. Then the equalities fi(z) =
—fi(=z), fo(zx) = fa(—2), f3(z) = fs(—z), f1(2z) = 2fi(z), fo(2z) =
4fo(x), and f3(2x) = 16f3(x) hold for all z € V. From the above equal-
ities, we obtain the equalities

Dfi(z,y) = — Afi(z + 3y, z+y) + 3Af1(x + 2y, x)
—3Af1(x—|—y,m—y)+Af1(x,x—2y),
_Qh+3yaty)  3QfH(+2y 1)
2 2
_3Qfa(z+y.x—y) n Qfax, x — 2y)
2 2 ’
ng(x,y) = Q/f?)(x +y7y) - Q/f?)(x?y)

DfQ(x7y) =




Stability of an additive-quadratic-quartic functional equation 81

for all z,y € V, which mean that

as we desired. O

In the following theorem, we can prove the generalized Hyers-Ulam
stability of the functional equation Df(x,y) = 0 for all z,y € V by
using the fixed point method.

THEOREM 2.4. Let f : V — Y be a mapping for which there exists a
mapping ¢ : V2 — [0,00) such that the inequality
(2.1) IDf(z, y)ll < ¢(z,y)

holds for all x,y € V. If there exists a constant 0 < L < 1 such that ¢
has the property

(2.2) ©(3xz,3y) < (V59778 — 243) Ly(x,y)

for all x,y € V, then there exists a unique solution mapping F': V — Y
of DF(z,y) = 0 such that

o(z)

2. — - F <t

(2.3) 1f(x) = f(0) = F(z)|| < 7291 — L)

for all x € V with F(0) = 0, where ®(z) = ¢(0,3z) + 6p(0,2x) +
36we(, ) + Thpe (0, ) 4+ 486we (v, —2) + 2439, (0, z). In particular, F' is
represented by

(2.4) o
Pl = i (2430 0 O ) — o)
=0
forallx € V.

Proof. Let f : V — Y be the mapping defined by f(x) := f(z)—f(0).
Then Df(x,y) = Df(x,y) for all 2,y € V and f(0) = 0. Let S be the
set of all mappings g : V' — Y with ¢g(0) = 0. We introduce a generalized
metric on S by

d(g,h) = inf {K € Ry||g(x) — h(z)|| < K®(z) for all z € V}.
It is easy to show that (S,d) is a generalized complete metric space.
Now we consider the mapping J : S — S, which is defined by
~9(9z)  g(=9z)  333g(3z) 153g(—3z)
1458 1458 1458 1458

Jg(x) =
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for all x € V. Notice that the equality

J'g(x) =

holds for all n € N and z € V. Let g,h € S and let K € [0, 00| be an
arbitrary constant with d(g, h) < K. From the definition of d, we have

17g(z) - ()H_1458||g(9x) (9m)||+@||g( @) = h(-92)]

1343538Hg(3x) (3“@)“1458”9( o) sl
P(92)K | ®(B3x)K

=T T3

g (VBITT8 — 243)KL®(3z) K ®(3z)

= 729 E

. (JWZSQ 29 0 4 @m@(x»

. (V59778 — 243)° ;;86(\/% =23) K L)

=KL®(x)

for all x € V, which implies that
d(Jg, Jh) < Ld(g,h)

for any g,h € S. That is, J is a strictly contractive self-mapping of S
with the Lipschitz constant L. Moreover, by (2.1) we see that

I 7@) = TF@) = 555 1Df(0,32) + 6D £.(0, 22) + 36D .z 2)

+ 75D £.(0,z) + 486D fo(z, —x) + 243D, (0, z)|

1
729(gpe(O 3x) + 6p(0,22) 4+ 36 (x, ) + 750 (0, x)

+ 486¢pc (z, —z) + 243¢¢(0, 7))
_ o)
- 729
for all z € V. It means that d(f,.Jf) < % < oo by the definition of d.

Therefore according to Theorem 2.1, the sequence {J" f} converges to
the unique fixed point F' : V' — Y of J in the set T = {g € S|d(f,9) <
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oo}, which is represented by (2.4) for all x € V. Notice that

1
d(f, F)S?d(f Jf)_m

which implies (2.3). By the definition of F, together with (2.1) and
(2.2), we have

|DF(x.y)
= lim D" f(z,9)]

1 Dfo 3 L 3n . n 1901 2n—1 2n—1
_71113;0”— Z o, 729n D3T3y

we(3"x,3"y) edm—i o2n—i
+ 729n 2 0:”Ci90Z906(3 ", 3 Zy)
7=

1 1 . .
< lim (oo e > aCi(VBOTTE — 243)”%”’902)%(3%,3";/)
=0
n
. n n
Jim (o o ((\/5977 243)L+90> )%(3 z,3"y)

IN
=]
/\/\\/‘\/_\/—\\
—_

243\ " "

< l _ 24 . n , n
< lim <729> g (\/5977 3+90> )gp (3"x,3"y)

. VHIT78 + 243 V59778 + 243\ " N on
< lim ——— | |pe(3"z,3"y)

n—00 729 729
24 —24 "

<2 1im <(\/59778+ 37)2(9\/59778 3)) Fouo.y)

=2 lim L"pc(z,y)
n—oo
=0

for all z,y € V i.e., F'is a solution of the functional equation DF(x,y) =
0 and F'(0) = 0. Notice that if F is a solution of the functional equation
DF(z,y) =0 with F(O) = 0, then the equality

F(a) = JF() = = L (DF,(0,32) + 6DF,(0,22) + 36DF,(z, 2)
+ 75DF.(0,z) + 486 DF,(xz, —x) + 243D F,(0, x))
implies that F' is a fixed point of J. (]

THEOREM 2.5. Let f : V — Y be a mapping for which there exists
a mapping ¢ : V2 — [0,00) such that the inequality (2.1) holds for all
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x,y € V. If there exists a constant 0 < L < 1 such that ¢ has the
property

729

(2.5) Lp(3x,3y) = N T ( )

for all x,y € V, then there exists a unique solution mapping F': V —Y
of DF(z,y) = 0 such that

(2.6 I£(2) — £(0) — ()] < )

for all x € V' with F(0) = 0, where ¥(x) is given by

P
U(z) =0 (o, “;) + 6, (o, 9”3) + 36%(3 9> + 750 (0 g)
.%' —X

In particular, F' is represented by

2.7)
P(z) = lim (3 f0< )+Z ;90" (—729)" ’<fe<32f_i>> —f(O))
forallz e V.

Proof. Let the mapping f and the set S be as in the proof of Theorem
2.3 with a generalized metric d on S given by

d(g,h) = inf {K € Ry||g(z) — h(z)|| < K¥(z) for all z €V},

Now we consider the mapping J : S — S defined by

o) = (a(5) w50 () ~ra(5) -7 ()

for all x € V. Notice that the equality

Tg(x) = 3"g <3n> +Z 3907 (~729)"" (3;;_1.)
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holds for all n € N and z € V. Let g,h € S and let K € [0, 00| be an
arbitrary constant with d(g, h) < K. From the definition of d, we have

pate ~ e <y (9]o(5) ()| 1 (37) (5|
+729” <9>—h< >H+729H ( >—h<9m>H>
§729K\I/< )+9OK\IJ< )

L2 (V2T -5 90(v2T51 —45)
729 (z) + 729 (z)
SLK\IJ(:U)

for all x € V', which implies that
d(Jg, Jh) < Ld(g, h)

for any g,h € S. That is, J is a strictly contractive self-mapping of S
with the Lipschitz constant L. Moreover, by (2.1) we see that

I7) - a5l = D5 (0.5 ) + 601, (0.%7) + 3601, (5.7
+75Dfe<0,9>+2Df0< R 3>+Df0< 3>H
< 906<0,x> +6¢6<0 2 >+36¢e< >+75¢6<0 x)
3 9 9’9 9
Tr T —x
+ Soe( 3 3>+806(0 3)

= U(x)

for all z € V. It means that d(f,Jf) <1 < oo by the definition of d.
Therefore according to Theorem 2.1, the sequence {J" f } converges to
the unique fixed point F : V — Y of J in the set T = {g € S|d(f,g) <
oo}, which is represented by (2.7) for all x € V. Notice that
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which implies (2.6). By the definition of F, together with (2.1) and
(2.5), we have

|DF(z,y)|

= lim [|[DJ"f(z,y)|
n—o0

= lim

n n—u z y
Tim |3 fo< )+Z C:90" 1 (—729)1 £, <32n—i’32n—i>”
: x n—1i 7 x y
S nlggo (3 Pe <3n 3n) + Z CiT297 90" pe (32ni’ 32ni>)
< lim (3" + Y nCi00° (V2754 — 45)" L"), <’“° y)
=0

n—o0 3n ’ 3n

< lim (3" + (V2754 — 45) + 90)") o, <§; ;)

< lim (V2754 + 45))" + (V2754 + 45))") o, (3”; y)

T n—oo ' 3n
4 n _ n
o tim 10 (V27544 45))" (V2751 — 45)) -
n—00 729™
<2 1i n
<2 lim L"pc(z,y)
=0

for all z,y € V i.e., F'is a solution of the functional equation DF(z,y) =

0 with F'(0) = 0. Notice that if F' is a solution of the functional equa-

tlon DF(z,y) = 0 with F'(0) = 0, then the equality F(z) — JF(z) =
F(0, )+6DF (0,%)+36DF, (g,g)+75DF (0,£)+2DF, (5, %)+

DF (0, T‘”) implies that F is a fixed point of J. O
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