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HARMONIC FINSLER METRICS ON SPHERES

Chang-Wan Kim

Abstract. In this paper, it is shown that the reversible harmonic
Finsler metrics on spheres must be Riemannian.

1. Introduction

Akbar-Zadeh showed that if a Finsler metric on a compact manifold
has constant negative flag curvature, then it is Riemannian, and, if it
has zero flag curvature, then it is locally Minkowskian. If a Finsler
metric on a compact surfaces has constant positive flag curvature and
is, in addition, reversible, it is a Riemannian metric by [4]. But, in the
non-reversible case, there are many Finsler metrics on 2-spheres with
constant positive flag curvature (see, [5]).

A Finsler metric is called the Zoll if all of its geodesics are closed and
of the same length. The canonical round metric on the compact rank-
one symmetric spaces is a Zoll Riemannian metric. However, there exist
Zoll Riemannian metrics on spheres which are not round. Contrariwise,
a Riemannian metric on the real projective space is a Zoll metric if and
only if it has constant sectional curvature since the orientable double
cover of a real projective space is a Blaschke sphere. However, this
rigidity result fails in the Finsler case (see, [1, 8, 9, 10, 13, 16, 19]).

A Finsler manifold is called harmonic if the mean curvature of all
geodesic spheres is a function depending only on the radius. It is well-
known that the reversible compact harmonic Finsler metrics are Zoll
(see, Theorem 3.1). The goal of this paper is to study the reversible
harmonic Finsler metrics on spheres.

Theorem 1.1. The reversible harmonic Finsler metrics on spheres
must be Riemannian.
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The corresponding question about reversible harmonic Finsler metrics
on compact rank-one symmetric spaces remains open at this writing,
since an essential component of the proof for harmonic Finsler spheres
due to Shen (see, Theorem 2.1) has not yet been generalized to compact
rank-one symmetric spaces (cf. [11]).

2. Preliminaries

In this section, we shall recall some well-known facts about Finsler
geometry. See [18], for more details. Let M be an n-dimensional smooth
manifold and TM denote its tangent bundle. A Finsler structure on
a manifold M is a map F : TM → [0,∞) which has the following
properties

• F is smooth on T̃M := TM \ {0};
• F (ty) = tF (y), for all t > 0, y ∈ TxM ;
• for each y ∈ TxM \ {0}, the following quadratic gy is an inner

product in TxM,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s=t=0.

A manifold M endowed with a Finsler structure will be called a Finsler
manifold. Note that we never require smoothness at the zero section.
Finsler metrics for which all norms F (x, ·) are symmetric will be called
reversible Finsler metrics.

The Chern connection on a Finsler manifold M is defined by the

unique set of local 1-forms {ω i
j }1≤i,j≤n on T̃M such that

dωi = ωj ∧ ω i
j ,

dgij = gkjω
k
i + gikω

k
j + 2Aijkω

k
n , where Aijk =

∂gij
∂yk

.

Define the set of local curvature forms Ω i
j by

Ω i
j := dω i

j − ω k
j ∧ ω i

k .

Then one can write

Ω i
j =

1

2
R i
j kl ω

k ∧ ωl + P i
j kl ω

k ∧ ωn+l.

Define the curvature tensor R by R(U, V )W = ukvlwjR i
j klEi, where

U = uiEi, V = viEi,W = wiEi are vectors in the pull-back bundle

π∗TM of TM by π : T̃M → M. For a fixed v ∈ TxM let γv(t) be
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the geodesic from γv(0) = x with γ̇v(0) = v. Along γv(t), we have the
osculating Riemannian metrics

gγ̇v(t) := g
(
γv(t), γ̇v(t)

)
in Tγv(t)M. Define the flag curvature

Rγ̇v(t) : Tγv(t)M → Tγv(t)M

by

Rγ̇v(t)
(
u(t)

)
:= R

(
U(t), V (t)

)
V (t),

where U(t) = (γ̂v(t);u(t)), V (t) = (γ̂v(t); γv(t)) ∈ π∗TM. The flag cur-
vature is independent of connections, that is, the term appears in the
second variation of arc length, thus is of particular interest to us. We
remark that if F is Riemannian, then the flag curvature coincides with
the sectional curvature. Then the Ricci curvature is defined by

Ric(v) :=
n∑
i=1

gv
(
Rv(ei), ei)

)
, v ∈ TxM,

where {ei}ni=1 is a gv-orthonormal basis for TxM.
Shen ([17]) defined the S-curvature S(v) what measures the average

change of (TxM,F (x, ·)) in the direction v ∈ TxM . We say |S| ≤ δ if

|S(v)| ≤ δF (v) for all v ∈ T̃M. An important property is that S = 0 for
Finsler manifolds modeled on a single Minkowski space. In particular,
S = 0 for Berwald spaces. Locally Minkowski spaces and Riemannian
spaces are all Berwald spaces.

By [6, Sect. 5.5], there is only one reasonable notion of the volume
for Riemannian manifolds. However, the situation is different in Finsler
geometry. The Finsler volume can be defined in various ways and essen-
tially different results may be obtained, e.g., [6, 17]. Therefore, it is an
interesting and important problem to investigate the relations between
the volumes and the geometric properties on a Finsler manifold.

The Busemann-Hausdorff volume volbh of a Finsler space is that mul-
tiple of the Lebesgue measure for which the volume of the unit ball equals
the volume of Euclidean unit ball. Using Brunn-Minkowski theory, Buse-
mann proved that the Busemann-Hausdorff volume of an n-dimensional
Finsler space equals its n-dimensional Hausdorff measure. Hence, from
the viewpoint of metric geometry, this is a very natural definition.

For a constant λ ∈ R and δ ≥ 0, put

Vλ,δ(r) := α(n− 1) ·
∫ r

0
eδtsλ(t)n−1dt,
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where sλ(t) denotes the unique solution to z′′ + λz = 0 with z(0) =
0, z′(0) = 1, and α(n− 1) the volume of the unit (n− 1)-sphere Sn−1 in
Rn.

A Finsler volume used is the Busemann-Hausdorff volume volbh, with
respect to which Shen firstly obtained the following Bishop-Gromov type
volume comparison theorem in [17].

Theorem 2.1. Let (M,F ) be a complete n-dimensional Finsler mani-
fold. If Ric ≥ (n−1)λ, |S| ≤ δ, then for all x ∈M and for any 0 < r < R
we have

volbh(B(x, r))

Vλ,δ(r)
≥ volbh(B(x,R))

Vλ,δ(R)
.

Furthermore, we have the equality if and only if any Jacobi field Ju(t)
along γv has the form, Ju(t) = sλ(t)u(t), where u = u(t) is a parallel
vector field along γv.

Another volume that is used frequently in Finsler geometry is the
so-called Holmes-Thompson volume. The Holmes-Thompson volume
volht of n-dimensional compact Finsler manifold (M,F ) is the symplec-
tic volume of the unit co-disc bundle divided by the volume of the Eu-
clidean unit ball of dimension n. In the case of Riemannian metrics, all
unit tangent spaces are isometric to the Euclidean spheres, and we have
volht(M) = volbh(M). On the other hand, in a general Finsler metric,
unit tangent spaces may not be isometric to each other, and hence one
can not expect the equality. We instead have the following theorem.

Theorem 2.2. ([7]) Let (M,F ) be an n-dimensional compact re-
versible Finsler manifold. Then we have

volht(M) ≤ volbh(M).

with equality if and only if (M,F ) is a Riemannian metric

There exist counterexamples to the inequality when F is nonreversible,
e.g., [15].

A Zoll Finsler manifold is called a C2π-manifold, if all geodesics are
closed and of the same length 2π. The following statements are standard
whose proofs can be found also in [2, 14].

Theorem 2.3. If (M,F ) be an n-dimensional Finsler C2π-manifold,
then the ratio

i(M) =
volht(M,F )

volht(Sn, g0)
is an integer.
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Here, and in what follows, (Sn, g0) is the canonical Riemannian sphere
Sn of radius 1 in Rn+1.

Remark 2.4. Under the assumption of Theorem 2.3, if M is home-
omorphic to one of the compact rank-one symmetric spaces P, i.e.,
Sn, CPn/2, HPn/4, CaP 2, Weinstein, Yang, and Reznikov showed that
volht(M,F ) = volht(P, g0).

3. Harmonic Finsler manifolds

A reversible Finsler manifold is called a Blaschke manifold, if every
minimal geodesic of length less than the diameter is the unique short-
est path between any of its points. Equivalently, for which all cut loci
are round spheres of constant radius and dimension. For a reversible
Blaschke Finsler manifold the exponential map restricted to the unit
tangent sphere defines a great sphere foliation. Since every great sphere
foliation of sphere is homeomorphic to a Hopf fibration, simply con-
nected reversible Blaschke Finsler manifolds are actually homeomorphic
to compact rank-one symmetric spaces (cf. [12]).

The mean curvature mt(v) of geodesic sphere of radius t about geo-
desic γv(t) has following Taylor expansion

mt(v) =
n− 1

t
− S(v)− 1

3

(
Ric(v) + 3Ṡ(v)

)
t+O(t),

where S is S-curvature. A Finsler manifold is called harmonic if the
mean curvature mt(v) of all geodesic spheres is a function depending
only on the radius t. Hence the harmonic Finsler manifolds have Einstein
metrics and zero S-curvature.

A historical break in the theory of harmonic Riemannian manifolds
was made by Allamigeon when he proved the following: A simply con-
nected harmonic Riemannian manifold is either diffeomorphic to Eu-
clidean space or is a Blaschke Finsler manifold. The following theorem
is to put them in a Finsler-geometric setting. For the sake of complete-
ness we sketch the proof.

Theorem 3.1. A simply connected reversible harmonic Finsler mani-
fold M is either diffeomorphic to Euclidean space or is a Blaschke Finsler
manifold.

Proof. Suppose there is no conjugate points. Then exponential map
is a covering map and since M is simply connected, a diffeomorphism.
So take a 0 6= v0 ∈ TxM and an r0 ∈ R such that the first conjugate
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point along γv0 is γv0(r0). Then the first conjugate point along γv is
γv(r0) for all v ∈ TxM, since the mean curvature is radial. Note that
r0 is the same for every point in M. This means that M is a Blaschke
manifold by the Allamigeon-Warner theorem, cf. [3, Corollary 5.31].

Now we are ready to prove main theorem using Theorems 2.1, 2.2,
2.3 and Remark 2.4.

Theorem 3.2. A reversible harmonic Finsler metric F on sphere M
is Riemannian.

Proof. Up to a scaling of the metric, we assume that the reversible
harmonic Finsler sphere (M,F ) is an n-dimensional Blaschke C2π-manifold.

By Theorem 2.3 and Remark 2.4, we have volht(M,F ) = volht(Sn, g0).
On the other hand, (M,F ) has constant Ricci curvature (n−1) and zero

S-curvature, and by Theorem 2.1, we obtain volbh(M,F ) ≤ volbh(Sn, g0).
Thus we conclude

volbh(Sn, g0) = volht(Sn, g0)
= volht(M,F )

≤ volbh(M,F )

≤ volbh(Sn, g0).
We note that the third line is obtained from Theorem 2.2, and hence we
obtain volht(M,F ) = volbh(M,F ). Then by the equality case of Theorem
2.2, F is a Riemannian metric.
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