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THE PRICING OF VULNERABLE OPTIONS UNDER A

CONSTANT ELASTICITY OF VARIANCE MODEL

Junhui U*, Donghyun Kim**, and Ji-Hun Yoon***

Abstract. This paper suggests the price of vulnerable European
option under a constant elasticity of variance model by using as-
ymptotic analysis technique and obtains the approximated solution
of the option price. Finally, we illustrate an accuracy of the vulner-
able option price so that the approximate solution is well-defined.

1. Introduction

The Black–Scholes model suggested Black and Scholes (1973) re-
flected well the financial market until the global financial crisis of 2007–
2009 but, since then, because this model cannot fully account for the
situation in a complex market, the significance of non-constant volatility
and credit risk factors has come to the fore.

In this context, the constant elasticity of variance (CEV) model can
complement the limitations of Black–Scholes model. The CEV model
not only proves a good representation of the curve of implied volatil-
ity but also captures the price changes of four strategic commodities,
namely copper, coal, gold, and crude oil stated in Geman and Shih
(2008). The CEV model was first proposed by Cox and Ross (1976) as
an alternative to the geometric Brownian motion, to model underlying
asset prices. Since then, several improvements have been proposed to
this model, for instance, a pricing and hedging of barrier options and
lookback options by Davydov and Linetsky (2001). Further, Wong and
Zhao (2010) investigated American options using the CEV model by
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using the Laplace–Carson transform. Peng and Peng (2010) studied
arithmetic Asian option pricing under the CEV model with the bino-
mial tree method. The option price under the CEV model is obtained
through the asymptotic expansion of Park and Kim (2011). A detailed
description of the CEV model is provided in section 2.1.

After the recent global financial crisis, which began as a sub-prime
mortgage crisis, the importance of risk and credit risk has come to the
fore in finance. In particular, several financial studies have focused on
the derivatives on credit. The financial and derivative markets world-
wide are growing rapidly, and the importance of credit risk and risk
continues to be high. Hence, we are at an essential stage in the study of
option pricing for credit risk. A vulnerable option is a type of option that
represents credit risk. The value of a vulnerable option is determined
by the simultaneous consideration of the value of the underlying asset
and the market value of the option writer. Johnson and Stulz (1987)
proposed the pricing of European-style vulnerable options and provided
several examples before the crisis. Klein (1996) proposed an analytic
solution for the pricing of vulnerable Black–Scholes options, considering
the correlation between the underlying asset of the option and the credit
risk of the counterparty; further, in their model, the option writer has
other liabilities. Hung and Liu (2005) studied the pricing of vulnera-
ble options under an incomplete market. Yoon and Kim (2015) derived
European-style vulnerable options under constant, as well as stochastic
interest rates and also studied Jeon et al. (2017) the pricing of vulnerable
path-dependent options, such as vulnerable barrier, vulnerable double
barrier, and vulnerable lookback options using double Mellin transforms.

This paper studies European-style vulnerable options under CEV and
presents an analytic solution. In section 2, we briefly review the CEV
model. Here, the partial differential equation (PDE) is induced from
the stochastic differential equation to obtain the price of the vulnerable
option under the considered model. The solution is then calculated
through an approximate analytical method. In section 3, we provide the
conclusion.

2. Pricing vulnerable option under a CEV model

Here, we investigate the price of European-style vulnerable options
under the CEV model. First, we briefly review the model in subsection
2.1. Second, in subsection 2.2, we describe the model for underlying
assets with credit risks and CEV. Using the Feynman–Kac formula, we
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induce the PDE for the pricing option. Third, in subsection 2.3, we
use asymptotic analysis to obtain the solution of the PDE. Finally, we
calculate the analytical solution for the vulnerable option price under
the CEV model.

2.1. Review of the CEV model

Recently, the study of underlying asset prices and their volatility has
become a major concern in financial mathematics research. One of the
main topics is the CEV model, which is a stochastic volatility model
for capturing the stochastic volatility circumstance and leverage effects.
The model is widely used by practitioners in the financial industry for
modeling stocks and financial products. For instance, Wang et al. (2014)
apply the model to study the optimal investment strategy and personal
optimal portfolio. A class of CEV models can be described by a sto-
chastic differential equation, as follows:

dXt = µXtdt+ σX
θ/2
t dWt.

In its differential form, the equation is a special case of drift term

µ(t,Xt) = µXt and diffusion term σ(t,Xt) = σX
θ/2
t , as a general class

of stochastic differential equation dXt = µ(t,Xt)dt+σ(t,Xt)dWt, where
Wt is the Brownian motion. Parameter θ controls the relationship be-
tween volatility and underlying asset price and is characteristic to the
CEV model. CEV models are classified according to elasticity param-
eter θ > 0 as follows. (1) θ is less than 2. This case was first illus-
trated by Cox and Ross (1976), where the volatility of underlying asset
prices is a decreasing function of underlying asset prices and the lever-
age effect can be observed, as the effect of increasing volatility when
the underlying asset price decreases. (2) θ is equal to 2. The stochastic
differential equation becomes the classical Black–Scholes model; there-
fore, the Black–Scholes model is particular case of a general class of the
CEV models. (3) θ is greater than 2. This case was first introduced by
Emanuel and Macbeth (1982) by expanding Coxs research, where the
volatility of the underlying asset price is an increasing function of the
underlying asset price and the reverse leverage effect can be observed.

2.2. Underlying model

Under probability space (Ω,F ,P), where F is a sigma field, we can
define a filtration Ft generated by Brownian motion {Wt : t ≥ 0}. T is
the maturity time, and let Xt be the value of the asset underlying the
option at time t ≥ 0, µx the constant drift rate of the underlying assets,
and σx its constant volatility. Further, let Yt be the market value of the
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assets of the option writer with respect to current time t ≥ 0 with µy
and σy the constant drift rate and volatility, respectively. The difference
of the stochastic differential equation between the CEV model and the
fundamental model with geometric Brownian motion is that elasticity
parameter θ is present in the diffusion part. Then, the dynamics of the
Xt and Yt are given by stochastic differential equations:

dXt =µxXtdt+ σxX
θ/2
t dW x

t ,

dYt =µyYtdt+ σyYtdW
y
t ,

where W x
t and W y

t are Brownian motions so that d〈W x
t ,W

y
t 〉t = ρdt.

Then, by using Girsanovs theorem, the given dynamic model transforms
into the stochastic differential equations as follows:

dXt =rXtdt+ σxX
θ/2
t dW x∗

t ,

dYt =rYtdt+ σyYtdW
y∗
t ,

under a martingale measure(risk-neutral measure) P∗ equivalent to P,
where r is the risk-free interest rate and W x∗

t and W y∗
t are the trans-

formed Brownian motions ofW x
t andW y

t , respectively, with d〈W x∗
t ,W y∗

t 〉t
= ρdt.

To express the given stochastic differential equations as PDEs, let us
consider the value of options at maturity T , that is, the payoff function.
The payoff of a vulnerable call option considered in this paper is given
by Klein (1996) as follows:

h(XT , YT ) = (XT −K)+
(

1{YT≥D∗} + 1{YT<D∗}
(1−α)YT

D

)
,

where K is the strike price of the options and D∗ is a fixed default
boundary value. A loss of credit happens if the market value of the
option writers asset YT at maturity T is below D∗. D is the value of the
total liabilities of the option writer given by D∗ plus the liability owing
to the possibility of a counterparty maintaining operation even if VT
is less than D∗. α is the deadweight cost related to the bankruptcy or
reorganization process of the firm, expressed as a percentage of the value
of the assets of the option writer. If YT is greater than or equal to default
boundary D∗, the entire claim is paid out. Otherwise, default occurs and

only proportion (1−α)YT
D of the nominal claim is paid out, where ratio

YT
D represents the value of the option writer’s assets available to pay
the claim. In this situation, the no-arbitrage price of a European-style
vulnerable call option with payoff function h is given by:
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P (t, x, y) = E∗[e−r(T−t)h(XT , YT )|Xt = x, Yt = y],

where E∗ denotes expectation under the martingale measure. By the
Feynman–Kac formula, price P (t, x, y) is the solution of the following
PDE:

∂P

∂t
+

1

2
σ2
xx

θ ∂
2P

∂x2
+

1

2
σ2
yy

2∂
2P

∂y2
+ ρσxσyx

θ/2y
∂2P

∂x∂y
+ rx

∂P

∂x
+ ry

∂P

∂y
− rP = 0

(2.1)

with terminal condition P (T, x, y) = h(x, y).

2.3. Model formulation

We use the following operators to express the PDE for convenience:
(2.2)
LP (t, x, y) = 0, t ≤ T,

L =
∂

∂t
+

1

2
σ2
xx

2 ∂
2

∂x2
+

1

2
σyy

2 ∂
2

∂y2
+ ρσxσyxy

∂2

∂x∂y
+ rx

∂

∂x
+ ry

∂

∂y
− rI,

where I is the identity operator. To solve the PDE, assume that price
P (t, x, y) is the solution to the PDE and has an asymptotic expansion
with respect to δ, P (t, x, y) =

∑
n≥0

Pn(t, x, y)δn for 0 < δ � 1.

Theorem 2.1. Suppose that price function P (t, x, y) has an asymp-
totic expansion P (t, x, y) =

∑
n≥0

Pn(t, x, y)δn for 0 < δ � 1. Then, we

have a system of PDEs as follows:

LP0 =0, P0(T, x, y) = h(x, y),

(2.3)

LP1 =
1

2
σ2
xx

2(log x)
∂2P0

∂x2
+

1

2
ρσxσyxy(log x)

∂2P0

∂x∂y
, P1(T, x, y) = 0,

(2.4)

· · ·
(2.5)

(2.6)

LPn =
1

2
σ2
xx

2
n−1∑
k=0

(−1)n−k+1(log x)n−k

(n− k) !

∂2Pk
∂x2

+ ρσxσyxy

n−1∑
k=0

(−1)n−k+1(log x)n−k

2n−k(n− k) !

∂2Pk
∂x∂y

, Pn(T, x, y) = 0.



186 Junhui U, Donghyun Kim, and Ji-Hun Yoon

Proof. Assume that parameter θ can be expressed as θ = 2−δ for 0 <
δ � 1. The reason for this assumption is that the elasticity parameter
θ tends to be less than 2 in many financial problems based on Park and
Kim (2011) and are determined within a small neighborhood of 2. Then,

using the Taylor series expansion for xθ and xθ/2 with respect to δ, gives
us:

x2−δ =x2
∑
n≥0

(−1)n

n !
δn(log x)n,

x
1
2

(2−δ) =x
∑
n≥0

(−1)n

2n n !
δn(log x)n.

PDE (2.1) can be rewritten by the asymptotic expansion of P (t, x, y)
and Taylor series:

∂

∂t

∑
n≥0

Pn(t, x, y)δn︸ ︷︷ ︸
T (1)

+
1

2
σ2
xx

2
∑
n≥0

(
(−1)n

n !
δn(log x)n

)
∂2

∂x2

∑
n≥0

Pn(t, x, y)δn︸ ︷︷ ︸
T (2)

+
1

2
σ2
yy

2 ∂
2

∂y2

∑
n≥0

Pn(t, x, y)δn︸ ︷︷ ︸
T (3)

+ ρσxσyxy
∑
n≥0

(
(−1)n

2n n !
δn(log x)n

)
∂2

∂x∂y

∑
n≥0

Pn(t, x, y)δn︸ ︷︷ ︸
T (4)

+ r

x ∂
∂x

∑
n≥0

Pn(t, x, y)δn + y
∂

∂y

∑
n≥0

Pn(t, x, y)δn −
∑
n≥0

Pn(t, x, y)δn


︸ ︷︷ ︸

T (5)

= 0.

Here, the coefficient on δ with degree 0 is:

∂P0

∂t
+

1

2
σ2
xx

2∂
2P0

∂x2
+

1

2
σ2
yy

2∂
2P0

∂y2
+ ρσxσyxy

∂2P0

∂x∂y
+ rx

∂P0

∂x
+ ry

∂P0

∂y
− rP0 = 0.

Or, using operator L in (2.2), we can rewrite the above PDE as:

LP0 = 0.

Further, the coefficients on δ with degree n greater than or equal to 1
are calculated as follows:



The Pricing of Vulnerable Options under a CEV Model 187

T (1) =
∂

∂t

∑
n≥0

Pn(t, x, y)δn → ∂

∂t
Pn(t, x, y),

T (2) =
1

2
σ2
xx

2
∑
n≥0

(
(−1)n

n !
δn(log x)n

)
∂2

∂x2

∑
n≥0

Pn(t, x, y)δn

=
1

2
σ2
xx

2
∑
n≥0

(
n∑
k=0

(−1)n−k(log x)n−k

(n− k) !

∂2

∂x2
Pk(t, x, y)

)
δn

→ 1

2
σ2
xx

2
n∑
k=0

(−1)n−k(log x)n−k

(n− k) !

∂2

∂x2
Pk(t, x, y),

T (3) =
1

2
σ2
yy

2 ∂
2

∂y2

∑
n≥0

Pn(t, x, y)δn

→ 1

2
σ2
yy

2 ∂
2

∂y2
Pn(t, x, y),

T (4) = ρσxσyxy
∑
n≥0

(
(−1)n

2n n !
δn(log x)n

)
∂2

∂x∂y

∑
n≥0

Pn(t, x, y)δn

= ρσxσyxy
∑
n≥0

(
n∑
k=0

(−1)n−k(log x)n−k

(n− k) !

(
1

2

)n−k ∂2

∂x∂y
Pk(t, x, y)

)
δn

→ ρσxσyxy

n∑
k=0

(−1)n−k(log x)n−k

(n− k) !

(
1

2

)n−k ∂2

∂x∂y
Pk(t, x, y),

T (5) = r

x ∂
∂x

∑
n≥0

Pn(t, x, y)δny
∂

∂y

∑
n≥0

Pn(t, x, y)δn −
∑
n≥0

Pn(t, x, y)δn


= r

∑
n≥0

(
x
∂

∂x
Pn(t, x, y) + y

∂

∂y
Pn(t, x, y)− Pn(t, x, y)

)
δn

→ r

(
x
∂

∂x
Pn(t, x, y) + y

∂

∂y
Pn(t, x, y)− Pn(t, x, y)

)
.
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Therefore, the sum of the five coefficients on δ with degree n is expressed
as:

(2.7)

LPn =
1

2
σ2
xx

2
n−1∑
k=0

(−1)n−k+1(log x)n−k

(n− k) !

∂2

∂x2
Pk(t, x, y)

+ ρσxσyxy

n−1∑
k=0

(−1)n−k+1(log x)n−k

2n−k(n− k) !

∂2

∂x∂y
Pk(t, x, y).

Finally, from the asymptotic expansion P (t, x, y) =
∑
n≥0

Pn(t, x, y)δn and

the final condition P (T, x, y) = h(x, y), we have the final condition cor-
responding to each PDE stated in (2.3)-(2.6).

We denote right-hand side of (2.7) as gn(t, x, y) in the following. The
following Lemma 2.1 and Theorem 2.2 provide the analytic solution for
PDE (2.2).

Lemma 2.2. Suppose that function P0(t, x, y) is a solution of PDE
(2.3) with the terminal condition P0(T, x, y) = h(x, y). Then, function
P0(t, x, y) is given by:

P0(t, x, y) =xΦ2(a1, a2, ρ)− e−r(T−t)KΦ2(b1, b2, ρ)

− (1− α)y

D
{xe(r+ρσxσy)(T−t)Φ2(c1, c2, ρ)−KΦ2(d1, d2, ρ)},

where

a1 =
log(x/K) +

(
r + σ2

x/2
)

(T − t)
σx
√
T − t

,

b1 =
log(x/K) +

(
r − σ2

x/2
)

(T − t)
σx
√
T − t

,

c1 =
log(x/K) +

(
r + σ2

x/2 + ρσxσy
)

(T − t)
σx
√
T − t

,

d1 =
log(x/K) +

(
r − σ2

x/2 + ρσxσy
)

(T − t)
σx
√
T − t

,
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a2 =
log(y/D∗) +

(
r − σ2

y/2 + ρσxσy
)

(T − t)
σy
√
T − t

,

b2 =
log(y/D∗) +

(
r − σ2

y/2+
)

(T − t)
σy
√
T − t

,

c2 =
log(y/D∗) +

(
r + σ2

y/2 + ρσxσy
)

(T − t)
σy
√
T − t

,

d2 =
log(y/D∗) +

(
r + σ2

y/2
)

(T − t)
σy
√
T − t

.

and Φ2(n1, n2,, ρ) is the cumulative bivariate normal distribution defined
by:

Φ2(n1, n2, ρ) =
1

2π
√

1− ρ2

∫ n1

−∞

∫ n2

−∞
exp

(
− 1

2(1− ρ2)
(u2 − 2ρuv + v2)

)
du dv.

Proof. See Yoon and Kim (2015) for a detailed proof.

Theorem 2.3. For each n ≥ 1:

Pn(t, x, y) = eαp(y)+βq(x,y)+γ(T−t)Λn(τ, p∗, q∗),

where

Λn(τ, p∗, q∗) =

∫ τ

ς=0

∫ ∞
ζ=−∞

∫ ∞
ξ=−∞

H(τ − ς, p∗ − ζ, q∗ − ξ)Gn(ς, ζ, ξ) dξdζdς,

H(ς, ζ, ξ) =
1

4πς
exp

(
−ζ

2 + ξ2

4ς

)
,

Gn(ς, ζ, ξ) = −eα
√
bζ+β

√
dξ+γςgn

(
T − ς, exp

(
σx
√
b

σ2
y

ζ −
√
d

σy
ξ

)
, exp

( √
b

ρσy
ζ

))
,

p(y) = ρσy log y, q(x, y) = ρσx log y − σy log x, τ = T − t,

α = − a

2b
, β = − c

2d
, γ = −a

2

4b
− c2

4d
− r,

p∗(y) =
p(y)√
b
, q∗(x, y) =

q(x, y)√
d

,

a = rρσy −
1

2
ρσ3

y , b =
1

2
ρ2σ4

y ,

c =
1

2
σ2
xσy −

1

2
ρσxσy + rρσx, d =

1

2
σ2
xσ

2
y(1− ρ2).
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Proof. If we find a solution for PDE (2.6) for each positive integer n,
the delta expansion of

∑
n≥0

Pn(t, x, y)δn is completely determined. There-

fore, P (t, x, y) is also induced. To solve PDE (2.6) for each positive
integer n, the transformation of variables is required as follows:

p = A log y, q = B log y + C log x, τ = T − t,
Vn(τ, p, q) = Pn(t, x, y).

Constants A, B, and C are positive numbers and will be calculated using
the subsequent process. The chain rule induces that:
(2.8)
∂Pn
∂t

= −∂Vn
∂τ

,

∂Pn
∂x

=
C

x

∂Vn
∂q

,

∂2Pn
∂x2

=
C

x2

(
C
∂2Vn
∂q2

− ∂Vn
∂q

)
,

∂Pn
∂y

=
1

y

(
A
∂Vn
∂p

+B
∂Vn
∂q

)
,

∂2Pn
∂y2

=
1

y2

(
A2∂

2Vn
∂p2

+B2∂
2Vn
∂q2

+ 2AB
∂2Vn
∂p ∂q

−A∂Vn
∂p
−B∂Vn

∂q

)
,

∂2Pn
∂x ∂y

=
C

xy

(
A
∂2Vn
∂p ∂q

+B
∂2Vn
∂q2

)
.

Substituting (2.8) into (2.7) drives the following PDE in terms of τ ,
p, and q:

LPn(t, x, y)

=
∂Pn
∂t

+
1

2
σ2
xx

2∂
2Pn
∂x2

+
1

2
σ2
yy

2∂
2Pn
∂y2

+ ρσxσyxy
∂2Pn
∂x ∂y

+ rx
∂Pn
∂x

+ ry
∂Pn
∂y
− rPn

= − ∂Vn
∂τ

+
1

2
σ2
xC

(
C
∂2Vn
∂q2

− ∂Vn
∂q

)
+

1

2
σ2
y

(
A2∂

2Vn
∂p2

+B2∂
2Vn
∂q2

+ 2AB
∂2Vn
∂p ∂q

−A∂Vn
∂p
−B∂Vn

∂q

)
+ ρσxσyC

(
A
∂2Vn
∂p ∂q

+B
∂2Vn
∂q2

)
+ rC

∂Vn
∂q

+ rA
∂Vn
∂p

+ rB
∂Vn
∂q
− rVn
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= − ∂Vn
∂τ

+

(
rA− 1

2
σ2
yA

)
︸ ︷︷ ︸

a

∂Vn
∂p

+

(
1

2
σ2
yA

2

)
︸ ︷︷ ︸

b

∂2Vn
∂p2

+

(
−1

2
σ2
xC −

1

2
σ2
yB + rC + rB

)
︸ ︷︷ ︸

c

∂Vn
∂q

+

(
1

2
σ2
xC

2 +
1

2
σ2
yB

2 + ρσxσyBC

)
︸ ︷︷ ︸

d

∂2Vn
∂q2

+
(
σ2
yAB + ρσxσyAC

)︸ ︷︷ ︸
e

∂2Vn
∂p ∂q

− rVn

= gn(t, x, y).

For convenience, we substitute the coefficients of the equation as above.
That is,

a = rA− 1

2
σ2
yA, b =

1

2
σ2
yA

2, c = −1

2
σ2
xC −

1

2
σ2
yB + rC + rB,

d =
1

2
σ2
xC

2 +
1

2
σ2
yB

2 + ρσxσyBC, e = σ2
yAB + ρσxσyAC.

Then, we have:

−∂Vn
∂τ

+ a
∂Vn
∂p

+ b
∂2Vn
∂p2

+ c
∂Vn
∂q

+ d
∂2Vn
∂q2

+ e
∂2Vn
∂p ∂q

− rVn = gn(t, x, y).

(2.9)

Defining Λn(τ, p, q) as Λn(τ, p, q) = e−(αp+βq+γτ)Vn(τ, p, q) and ap-
plying the chain rule induce:

(2.10)

∂Vn
∂τ

= eαp+βq+γτ
(
γΛn +

∂Λn
∂τ

)
,

∂Vn
∂p

= eαp+βq+γτ
(
αΛn +

∂Λn
∂p

)
,

∂2Vn
∂p2

= eαp+βq+γτ
(
α2Λn + 2α

∂Λn
∂p

+
∂2Λn
∂p2

)
,

∂Vn
∂q

= eαp+βq+γτ
(
βΛn +

∂Λn
∂q

)
,

∂2Vn
∂q2

= eαp+βq+γτ
(
β2Λn + 2β

∂Λn
∂q

+
∂2Λn
∂q2

)
,

∂2Vn
∂p ∂q

= eαp+βq+γτ
(
αβΛn + β

∂Λn
∂p

+ α
∂Λn
∂q

+
∂2Λn
∂p ∂q

)
.
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Substituting (2.10) into (2.9) induces:

− ∂Vn
∂τ

+ a
∂Vn
∂p

+ b
∂2Vn
∂p2

+ c
∂Vn
∂q

+ d
∂2Vn
∂q2

+ e
∂2Vn
∂p ∂q

− rVn

= eαp+βq+γτ
[
−
(
γΛn +

∂Λn
∂τ

)
+ a

(
αΛn +

∂Λn
∂p

)
+ b

(
α2Λn + 2α

∂Λn
∂p

+
∂2Λn
∂p2

)]
+ eαp+βq+γτ

[
c

(
βΛn +

∂Λn
∂q

)]
+ eαp+βq+γτ

[
d

(
β2Λn + 2β

∂Λn
∂q

+
∂2Λn
∂q2

)
+ e

(
αβΛn + β

∂Λn
∂p

+ α
∂Λn
∂q

+
∂2Λn
∂p∂q

)]
= gn(t, x, y).

Therefore, by multiplying both side by eαp+βq+γτ , it can be rewritten as
follows:

− ∂Λn
∂τ

+ (a+ 2αb+ βe)
∂Λn
∂p

+ b
∂2Λn
∂p2

+ (c+ 2βd+ αe)
∂Λn
∂q

+ d
∂2Λn
∂q2

+ e
∂2Λn
∂p∂q

+
(
−γ + αa+ α2b+ βc+ β2d+ αβe− r

)
Λn = e−(αp+βq+γτ)gn(t, x, y).

For the above expression to be a two-dimensional heat equation, it is

required the four coefficients on terms ∂Λ
∂p , ∂Λ

∂q ,∂
2Λn
∂p∂q , and Λn to be zero.

Hence, the next system of equations is obtained:
a+ 2αb+ βe = 0,

c+ 2βd+ αe = 0,

e = 0,

−γ + αa+ α2b+ βc+ β2d+ αβe− r = 0.

Therefore, it follows that:
a+ 2αb = 0,

c+ 2βd = 0,

−γ + αa+ α2b+ βc+ β2d− r = 0.

Here, we can obtain necessary coefficients as follows:

α = − a

2b
, β = − c

2d
, γ = −a

2

4b
− c2

4d
− r.

For a given equation to be a two-dimensional heat equation, coefficient
e = σ2

yAB + ρσxσyAC must disappear. As such, we use nonzero con-
stants B and C satisfying e = 0 as B = ρσx, and C = −σy. Further,
since p(y) = A log y has nothing to do with nonzero constant A, we can
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then write A as A = ρσy. Accordingly, we use the coefficients in Yang
et al. (2014). For this reason, we can determine coefficients a, b, c, and
d through A = ρσy, B = ρσx, and C = −σy as follows:

a = rρσy −
1

2
ρσ3

y , b =
1

2
ρ2σ4

y ,

c =
1

2
σ2
xσy −

1

2
ρσxσy + rρσx, d =

1

2
σ2
xσ

2
y(1− ρ2).

Now, replacing p(y), q(x, y), and −eα
√
bp∗(y)+β

√
dq∗(x,y)+γτgn(t, x, y) with

p∗(y) = p(y)√
b

,q∗(x, y) = q(x,y)√
d

and Gn(τ, p∗, q∗), respectively, we obtain

the heat equation with the initial condition:
∂Λn
∂τ

=
∂2Λn
∂p∗2

+
∂2Λn
∂q∗2

+Gn(τ, p∗, q∗),

Λn(0, p∗, q∗) = 0.

Using Duhamel’s principle for a two-dimensional heat equation, we de-
rive solution Λn(τ, p∗, q∗):

Λn(τ, p∗, q∗) =

∫ τ

ς=0

∫ ∞
ζ=−∞

∫ ∞
ξ=−∞

H(τ − ς, p∗ − ζ, q∗ − ξ)Gn(ς, ζ, ξ) dξ dζ dς,

where heat kernel H(ς, ζ, ξ) for a two-dimensional heat equation and
function Gn(ς, ζ, ξ) are respectively given by:

H(ς, ζ, ξ) =
1

4πς
exp

(
−ζ

2 + ξ2

4ς

)
,

Gn(ς, ζ, ξ) = −eα
√
bζ+β

√
dξ+γςgn(t(τ), x(

√
bζ,
√
dξ), y(

√
bζ))

= −eα
√
bζ+β

√
dξ+γςgn

(
T − ς, exp

(
σx
√
b

σ2
y

ζ −
√
d

σy
ξ

)
, exp

( √
b

ρσy
ζ

))
.

Therefore, we obtain the desired results.

Accuracy

The existence of asymptotic expansion of price function P (t, x, y) is
demonstrated from a similar method in Park and Kim (2011) : For each
positive integer M ≥ 1, there exists a positive constant K satisfying∣∣∣∣∣ P (t, x, y)−

∑
0≤n≤M

Pn(t, x, y)δn

∣∣∣∣∣ ≤ KδM+1
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Since 0 < δ � 1, the existence of asymptotic expansion of P (t, x, y) is
guaranteed.

Proof. See Park and Kim [10].

3. Conclusions

In this paper, we derive the analytic solution for vulnerable European
option pricing under the CEV model by using an asymptotic expansion
in terms of elasticity parameter θ. The CEV model with credit risk is
widely applied to model stocks, financial products and optimal portfo-
lio in many studies and works of finance. To obtain a more accurate
option price under that more research on vulnerable options with not
only constant volatility but also stochastic volatility in the CEV model
is required additionally.

References

[1] F. Black and M. Scholes, The pricing of options and corporate liabilities, Jour-
nal of political economy, 81 (1973), 637-654.

[2] J. C. Cox and S. A. Ross, The valuation of options for alternative stochastic
processes, Journal of financial economics, 3 (1976), 145-166.

[3] D. Davydov and V. Linetsky, Pricing and hedging path-dependent options under
the CEV process, Management science, 47 (2001), 949-965.

[4] D. C. Emanuel and J. D. Macbeth, Further results on the constant elasticity
of variance call option pricing model, Journal of Financial and Quantitative
Analysis, 17 (1982), 533-554.

[5] H. Geman and Y. F. Shih, Modeling commodity prices under the CEV model,
The Journal of Alternative Investments, 11 (2008), 65-84.

[6] M. -W. Hung and Y. -H. Liu, Pricing vulnerable options in incomplete markets,
Journal of Futures Markets : Futures, Options, and Other Derivative Products,
25 (2005), 135-170.

[7] J. Jeon, J.-H. Yoon, and M. Kang, Pricing vulnerable path-dependent options
using integral transforms, Journal of Computational and Applied Mathematics,
313 (2017), 259-272.

[8] H. Johnson and R. Stulz, The pricing of options with default risk, The Journal
of Finance, 42 (1987), 267-280.

[9] P. Klein, Pricing black-scholes options with correlated credit risk, Journal of
Banking & Finance, 20 (1996), 1211-1229.

[10] S.-H. Park and J.-H. Kim, Asymptotic option pricing under the CEV diffusion,
Journal of Mathematical Analysis and Applications, 375 (2011), 490-501.

[11] B. Peng and F. Peng, Pricing arithmetic asian options under the CEV process,
Journal of Economics, Finance & Administrative Science, 15 (2010), 8-13.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwj55JfrvrLpAhWQyYsBHaASCcwQFjABegQIARAB&url=https%3A%2F%2Fwww.cs.princeton.edu%2Fcourses%2Farchive%2Ffall09%2Fcos323%2Fpapers%2Fblack_scholes73.pdf&usg=AOvVaw0nQuG_7Zg2BYuS525TBIKo
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwit09T0vrLpAhXkxosBHZSGCEgQFjAAegQIBBAB&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2F0304405X76900234&usg=AOvVaw2Y2Dg14L43kPLoDLXzdDvY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjX4Pb9vrLpAhXMyYsBHRNRAOUQFjAAegQIBBAB&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F6cae%2Fcd012aa266a5f96e18c057493e7c75df441f.pdf&usg=AOvVaw0HBcVSJflrwsEr0KpXjk3-
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiqnIWGv7LpAhUpxYsBHdEbAi8QFjAAegQIAhAB&url=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2330906&usg=AOvVaw2DiHzMPkOglfhPRFv7Zj15
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwimmvSNv7LpAhWJGaYKHafKB6oQFjAAegQIBRAB&url=https%3A%2F%2Fjai.pm-research.com%2Fcontent%2F11%2F3%2F65&usg=AOvVaw3lL3maEKhBGObN9PxtpJH0
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjh24mUv7LpAhWSSJQKHQk1D_0QFjAAegQIBRAB&url=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Fabs%2F10.1002%2Ffut.20136&usg=AOvVaw3QegZNvPzRcHrCPF4Pqynm
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiz7Oulv7LpAhVKG6YKHQUhA4QQFjABegQIBRAB&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0377042716304447&usg=AOvVaw2uLaYYC1PNe-WOlDfdvxCV
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwj1i7iwv7LpAhVTI6YKHS8mDuQQFjAAegQIARAB&url=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2328252&usg=AOvVaw1CT8WfHMCC43oeb8zOC9ke
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjMg4G3v7LpAhUGw4sBHfgJCmEQFjAAegQIBhAB&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2F0378426695000526&usg=AOvVaw0Hd0L4l0RMNfj5IsdWoCs9
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjR9rq-v7LpAhVhyIsBHXonAx8QFjAAegQICRAC&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0022247X10008176&usg=AOvVaw28weBoCknXVBy3VHlHpjFe
https://poseidon01.ssrn.com/delivery.php?ID=832089093027124103112104092105092031050054000027004013125083083105111107110065125110107058000012017055113124088097086070115106062040012017050009005077112029092079018029071116110123118001098069097064019076122097095106067083074111088088074081086071099&EXT=pdf


The Pricing of Vulnerable Options under a CEV Model 195

[12] A.Wang, L. Yong, Y.Wang, and X. Luo, The CEV model and its application in
a study of optimal investment strategy, Mathematical Problems in Engineering,
2014 (2014), Article ID 317071.

[13] H. Y. Wong and J. Zhao, Valuing american options under the CEV model by
Laplace-carson transforms, Operations Research Letters, 38 (2010), 474-481.

[14] S.-J. Yang, M.-K. Lee, and J.-H. Kim, Pricing vulnerable options under a sto-
chastic volatility model, Applied Mathematics Letters, 34 (2014), 7-12.

[15] J.-H. Yoon and J.-H. Kim, The pricing of vulnerable options with double Mellin
transforms, Journal of Mathematical Analysis and Applications, 422 (2015),
838-857.

*
Department of Mathematics
Pusan National University
Busan 46241, Republic of Korea
E-mail : junhui.u.math@gmail.com

**
Department of Mathematics
Pusan National University
Busan 46241, Republic of Korea
E-mail : donghyunkim@pusan.ac.kr

***
Department of Mathematics
Pusan National University
Busan 46241, Republic of Korea
E-mail : yssci99@pusan.ac.kr

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwj4x_7mv7LpAhW6L6YKHQsGC7YQFjAAegQIAhAB&url=https%3A%2F%2Fwww.hindawi.com%2Fjournals%2Fmpe%2F2014%2F317071%2F&usg=AOvVaw0Jb9PweYdwLMMaRhEa1Ggj
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiy0pvvv7LpAhXyyIsBHZA4D8sQFjAAegQIAxAB&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0167637710000854&usg=AOvVaw3TrFhklIMnGu_wGcmQNgbJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwih_6v3v7LpAhWlIaYKHbmCBoIQFjABegQIAxAB&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS089396591400072X&usg=AOvVaw1k_Xzf4yWLjtUyvhV5Z7JY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiT5Jb-v7LpAhXxKKYKHVMOCIAQFjAAegQICRAC&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0022247X14008397&usg=AOvVaw0x0Kn7etofZdlis207EqKH

