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VARIOUS CENTROIDS OF QUADRILATERALS

WITHOUT SYMMETRY

Incheon Kim* and Dong-Soo Kim**

Abstract. For a quadrilateral P , we consider the centroid G0 of
the vertices of P , the perimeter centroid G1 of the edges of P and
the centroid G2 of the interior of P , respectively. It is well known
that P satisfies G0 = G1 or G0 = G2 if and only if it is a parallelo-
gram. In this paper, we investigate various quadrilaterals satisfying
G1 = G2. As a result, we establish some characterization theorems.
One of them asserts the existence of convex quadrilaterals satisfying
G1 = G2 without symmetry.

1. Introduction

Suppose that P denotes a quadrilateral. We consider the centroid G0

of the vertices of P , the centroid G1 of the edges of P and the centroid
G2 of the interior of P , respectively. The centroid G1 of the edges of
P is also called the perimeter centroid of P ([3, 4]). Then, in ([10]) the
following characterization theorem was given:

Proposition 1.1. Let P denote a quadrilateral. Then the following are
equivalent.

(1) P satisfies G0 = G1.

(2) P satisfies G0 = G2.

(3) P is a parallelogram.

Obviously, every parallelogram satisfies G0 = G1 = G2(= M), where
M denotes the intersection point of diagonals.

Hence, it is quite natural to ask the following ([10]):
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Question 1.2. Which quadrilaterals satisfy G1 = G2?

In this regard, we have the following characterization ([8]).

Proposition 1.3. Suppose that P denotes a convex quadrilateral whose
two diagonals are perpendicular to each other. We denote by M the
intersection point of diagonals of P . Then we have the following.

(1) P satisfies G1 = G2(= M) if and only if P is a rhombus.

(2) If P satisfies G1 = G2(6= M), then P is a kite.

A kite is a quadrilateral whose four sides can be grouped into two
pairs of equal-length sides that are adjacent to each other. A kite, as
defined above, may be either convex or concave, but the word kite is
often restricted to the convex variety. A concave kite is called an ar-
rowhead. A convex quadrilateral is a kite if and only if one diagonal is
the perpendicular bisector of the other diagonal. In [8], kites satisfying
G1 = G2 were completely classified. See also Proposition 1.4 below.

Furthermore, recently in [14] following the study in [1, 8, 10], the
following characterizations were established. For graphs, see Figure 1
and 2.

Proposition 1.4. Let us denote by P a kite or an arrowhead. Then P
satisfies G1 = G2 if and only if it is one of the following:

(1) P is a rhombus.

(2) P is similar to the following quadrilateral ABCD defined by

A(1, 0), B(s, t), C(−1, 0), D(s,−t),

where B(s, t) is a point on the ellipse E : x2/3 + y2/2 = 1 with
s 6= 0 and t > 0.

Proposition 1.5. A trapezoid P = ABCD with AD ‖ BC satisfies
G1 = G2 if and only if it is one of the following:

(1) P is a parallelogram.

(2) P is an isosceles trapezoid with AB = CD = AD +BC.

Proposition 1.6. Let us denote by P a circumscribed quadrilateral. If
P satisfies G1 = G2, then it is a kite.
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Figure 1. A kite(s = 1/2) and an arrowhead (s = 3/2)
satisfying G1 = G2(= G).

Figure 2. An isosceles trapezoid satisfying G1 = G2(= G).

Proposition 1.7. Suppose that a convex quadrilateral P has two pairs
of adjacent edges such that the total length of a pair equals to that of
the other pair. If P satisfies G1 = G2, then it is one of the following:

(1) P is a parallelogram.

(2) P is a kite.

Note that every quadrilateral satisfying G1 = G2 given in the above
Propositions has a symmetry.

Thus, it is also quite natural to ask the following:

Question 1.8. Does there exist a convex quadrilateral without symme-
try satisfying G1 = G2?
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In this paper, we investigate various quadrilaterals satisfying G1 =
G2. First of all, in Section 2 we prove the following characterization
theorem.

Proposition A. Suppose that a convex quadrilateral P has a pair of
opposite edges of equal length. If P satisfies G1 = G2, then it is one of
the following:

(1) P is a parallelogram.

(2) P is an isosceles trapezoid.

For an isosceles trapezoid satisfying G1 = G2, see Proposition 1.5.

Next, surprisingly enough in Section 3 we answer Question 1.8 af-
firmatively. In fact, we prove the following characterization theorem
which asserts the existence of convex quadrilaterals satisfying G1 = G2

without symmetry.

Theorem B. Suppose that a convex quadrilateral P has a pair of adja-
cent edges of equal length. If P satisfies G1 = G2, then it is one of the
following:

(1) P is a kite.

(2) P is similar to the following quadrilateral ABCD given by

A(x, y), B(0, a), C(−1, 0), D(0,−a),

where for a constant a ∈ (1/
√

3, 1/
√

2), x and y are defined by
(1.1)

x =
1

a2
{1− a2 −

√
(1− 2a2)(1 + a2)}, 2y2 = (2a2 − x)(2x+ 1).

Conversely, such quadrilaterals are convex ones satisfying G1 = G2

without symmetry.

For a kite satisfying G1 = G2, see Proposition 1.4.

Finally, in Section 4 we investigate concave quadrilaterals with a pair
of adjacent edges of equal length which satisfy G1 = G2. In contrast to
the convex case in Theorem B, we prove the following characterization
theorem.

Theorem C. Suppose that a concave quadrilateral P has a pair of
adjacent edges of equal length. If P satisfies G1 = G2, then it is an
arrowhead.
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Figure 3. A convex quadrilateral without symmetry
satisfying G1 = G2(= G).

For an arrowhead satisfying G1 = G2, see Proposition 1.4.

In [11], it was proved that among quadrilaterals parallelograms are
the only ones satisfying G1 = M , where M is the intersection point of
diagonals.

Suppose that P is a triangle. Then the centroid G1 coincides with the
center of the Spieker circle, which is the incircle of the triangle formed by
connecting midpoint of each side of the original triangle P ([3, p. 249]).
In this case, the centroid G0 always coincides with the centroid G2(= G),
where G = (A + B + C)/3. Furthermore, the perimeter centroid G1 of
P satisfies G1 = G2 if and only if the triangle P is equilateral ([13,
Theorem 2]).

Now suppose that P is a polygon. Then the geometric method to find
the centroid G2 of P was given in [5]. In [12], mathematical definitions
of centroid G2 of planar bounded domains were given. For higher di-
mensions, it was shown that the centroid G0 of the vertices of a simplex
in an n-dimensional space always coincides with the centroid Gn of the
interior of the simplex ([2, 13]).

Archimedes established some area properties of parabolic sections and
then formulated the centroid of parabolic sections ([15]). Using these
properties, some characterizations of parabolas were given in [6, 7, 9].
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2. Preliminaries and Proposition A

In this section, first of all we recall the various centroids of a quadri-
lateral. For various centroids of a quadrilateral ABCD, we have the
following.

Lemma 2.1. Let us denote by P the (convex or concave) quadrilateral
ABCD. Then we have the following.

(1) The centroid G0 of P is given by

(2.1) G0 =
A+B + C +D

4
.

(2) The centroid G1 of P is given by

(2.2) G1 =
(l4 + l1)A+ (l1 + l2)B + (l2 + l3)C + (l3 + l4)D

2l
,

where we put l1 = AB, l2 = BC, l3 = CD, l4 = DA and l =
l1 + l2 + l3 + l4.

(3) If the area of the quadrilateral ABCD is given by m = β ± δ,
where β = 4BCD and δ = 4ABD, then the centroid G2 of P is
given by

(2.3) G2 =
±δA+mB + βC +mD

3m
.

Proof. It is straightforward to prove (1), (2) and (3) or see [5, 10].

Now, we prove Proposition A stated in Section 1.

Suppose that a convex quadrilateral P has a pair of opposite edges
of equal length. That is, the quadrilateral P = ABCD satisfies BC =
AD. Using a similarity transformation if necessary, we may introduce a
coordinates system so that the vertices of P are given by

(2.4) A(x, y), B(0, a), C(−1, 0), D(0,−b),

where a, b and x are positive real numbers.
It follows from Lemma 2.1 that the perimeter centroid G1 of P is

given by
(2.5)

G1 =
1

2l
(x(l1 + l4)− (l2 + l3), y(l1 + l4) + a(l1 + l2)− b(l3 + l4)),



Various centroids of quadrilaterals without symmetry 435

where we put by l the perimeter of P with
(2.6)

l1 =
√
x2 + (y − a)2, l2 =

√
a2 + 1, l3 =

√
b2 + 1, l4 =

√
x2 + (y + b)2.

The centroid G2 of P is given by

(2.7) G2 =
1

3(x+ 1)
(x2 − 1, xy + (a− b)(x+ 1)).

Since the quadrilateral P satisfies BC = AD, we have

(2.8) l4 = l2.

Now, G1 = G2 is equivalent to the following:

(2.9) l1 + l4 =
2x+ 1

x+ 2
(l2 + l3),

(2.10) al1 − bl4 =
−y + (a− 2b)x− 2b

x+ 2
l2 +

−y + (2a− b)x+ 2a

x+ 2
l3.

It follows from (2.8) and (2.9) that

(2.11) l1 =
x− 1

x+ 2
l2 +

2x+ 1

x+ 2
l3.

Let us substitute l1 and l4 in (2.11) and (2.8) resp., into (2.10). Then,
we get

(2.12) (y + bx− a)(l2 + l3) = 0.

It follows from (2.12) that y = −bx+a, and hence the edges AB and
CD are parallel to each other. Hence, Proposition 1.5 implies that the
quadrilateral P is either a parallelogram or an isosceles trapezoid. This
completes the proof of Proposition A.

3. Convex quadrilaterals with a pair of adjacent edges of
equal length

In this section, we prove Theorem B stated in Section 1.
Suppose that P = ABCD denotes a convex quadrilateral with a pair

of adjacent edges of equal length. Then, we may assume that BC =
CD. Using a similarity transformation if necessary, we may introduce a
coordinates system so that the vertices of P are given by

(3.1) A(x, y), B(0, a), C(−1, 0), D(0,−a),
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where a and x are positive real numbers. Using the symmetry with
respect to the x-axis, we may assume that y ≥ 0. In case y = 0, the
quadrilateral is a kite. Hence, hereafter we assume that y > 0.

It follows from Lemma 2.1 that the perimeter centroid G1 of P is
given by

(3.2) G1 =
1

2l
(xl1 + xl4 − l2 − l3, yl1 + yl4 + al1 − al4),

where we put by l the perimeter of P with

(3.3) l1 =
√
x2 + (y − a)2, l2 = l3 =

√
a2 + 1, l4 =

√
x2 + (y + a)2.

The centroid G2 of P is given by

(3.4) G2 =
1

3(x+ 1)
(x2 − 1, xy).

Suppose that G1 = G2. Then we have

(3.5) l1 + l4 = 2
√
a2 + 1

2x+ 1

x+ 2

and

(3.6) −l1 + l4 = 2
√
a2 + 1

y

a(x+ 2)
.

Combining (3.5) and (3.6), we get

(3.7) l1 =
√
a2 + 1

a(2x+ 1)− y
a(x+ 2)

,

and

(3.8) l4 =
√
a2 + 1

a(2x+ 1) + y

a(x+ 2)
.

Squaring both of (3.7) and (3.8) and using the definitions of l1 and l4 in
(3.3) resp., we obtain
(3.9)
y2(a2x2 + 4a2x+ 3a2 − 1)

− 2ay{a2x2 + 2(a2 − 1)x+ 3a2 − 1}+ a2(x2 − 1)(x2 + 4x− 3a2 + 1) = 0.

and
(3.10)
y2(a2x2 + 4a2x+ 3a2 − 1)

+ 2ay{a2x2 + 2(a2 − 1)x+ 3a2 − 1}+ a2(x2 − 1)(x2 + 4x− 3a2 + 1) = 0.

It follows from (3.9) and (3.10) that

(3.11) 4ay{a2x2 + 2(a2 − 1)x+ 3a2 − 1} = 0.
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Since a and y are positive, (3.11) implies that x is a positive root of
the following quadratic polynomial

(3.12) a2x2 + 2(a2 − 1)x+ 3a2 − 1 = 0.

Hence, from D/4 = (1− 2a2)(a2 + 1) we have

(3.13) a2 ≤ 1

2

and x is given by

(3.14) x =
1

a2

(
1− a2 ±

√
1− a2 − 2a4

)
.

Together with (3.12), (3.10) shows

(3.15) y2(a2x2 + 4a2x+ 3a2 − 1) = a2(1− x2)(x2 + 4x− 3a2 + 1).

It follows from (3.12) and (3.15) that

(3.16) 2y2 = a2(1− x2)(x+ 2).

With the help of (3.12), (3.16) can be rewritten as

(3.17) 2y2 = (2a2 − x)(2x+ 1).

Now, we consider the following two cases.

Case 1.

(3.18) x =
1

a2

(
1− a2 +

√
1− a2 − 2a4

)
.

Then we have

(3.19) 2a2 − x =
1

a2
{f(a2)−

√
−f(a2)},

where we put f(s) = 2s2 +s−1. Since a2 ≤ 1/2, we get f(a2) ≤ 0. This
shows that 2a2 − x ≤ 0, which contradicts (3.17) because y > 0. Thus,
this case can not occur.

Case 2.

(3.20) x =
1

a2

(
1− a2 −

√
1− a2 − 2a4

)
.

Since x > 0, it follows from (3.20) that 1/3 < a2. Hence, we get from
(3.13) that

(3.21)
1

3
< a2 ≤ 1

2
.
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If a2 = 1/2, then (3.20) shows that x = 1. Hence, it follows from (3.16)
that y = 0, which leads a contradiction. Thus, we have

(3.22)
1

3
< a2 <

1

2
.

In this case, (3.20) implies

(3.23) 2a2 − x =
1

a2
{f(a2) +

√
−f(a2)},

where f(s) = 2s2 + s− 1. If we put t = f(s) = 2s2 + s− 1, then we have

(3.24)
1

3
< s <

1

2
⇔ −4

9
< t < 0.

Note that the function g(t) = t +
√
−t satisfies g(t) > 0 for all t ∈

(−4/9, 0). Hence, for every positive number a satisfying (3.22), there
exist positive numbers x and y satisfying (3.20) and (3.17), respectively.

Next, we show that for every positive number a satisfying (3.22), the
quadrilateral is convex. Note that the quadrilateral is convex if and
only if

(3.25)
slope of

←→
AB < slope of

←→
BC

⇔ y − a
x

< a⇔ y < a(x+ 1).

Using (3.17), it is straightforward to show that

(3.26) y < a(x+ 1).

This implies that the quadrilateral is convex.

Conversely, we show that for every positive number a satisfying (3.22),
the convex quadrilateral satisfies G1 = G2. For every positive number
a satisfying (3.22), the positive numbers x and y defined by (3.20) and
(3.17), respectively satisfies (3.12), and hence it is straightforward to
show that x and y satisfy (3.9) and (3.10). Note that the right hand
side of (3.8) is positive. It follows from (3.26) that the right hand side
of (3.7) is also positive. Hence, x and y satisfies (3.7) and (3.8), which
implies that the convex quadrilateral satisfies G1 = G2.

Furthermore, it is straightforward to show that opposite edges of the
convex quadrilateral defined above are not parallel to each other, respec-
tively. Thus, we see that the convex quadrilateral has no symmetries.
This completes the proof of Theorem B.



Various centroids of quadrilaterals without symmetry 439

Example 3.1. We put a2 = 0.4. Then, it follows from (3.17) and (3.20)
that

(3.28) a
.
= 0.64, x

.
= 0.38, y

.
= 0.46.

Hence, we get

(3.29) A
.
= (0.38, 0.46), B

.
= (0, 0.64), C

.
= (−1, 0), D

.
= (0,−0.64)

and

(3.30) G1 = G2 = G
.
= (−0.21, 0.04).

See Figure 3 in Section 1.

4. Concave quadrilaterals with a pair of adjacent edges of
equal length

In this section, we prove Theorem C stated in Section 1.
For concave quadrilaterals, in a similar argument as in the proof of

Theorem B in Section 3, we proceed to prove Theorem C as follows.

Suppose that P = ABCD denotes a concave quadrilateral with a
pair of adjacent edges of equal length. Then, we may assume that BC =
CD. Using a similarity transformation if necessary, we may introduce a
coordinates system so that the vertices of P are given by

(4.1) A(x, y), B(0, a), C(−1, 0), D(0,−a),

where a is a positive real number. Using the symmetry with respect to
the x-axis, we may assume that y ≥ 0. In case y = 0, the quadrilateral
is an arrowhead. Hence, hereafter we suppose that y > 0.

If P = ABCD is a concave quadrilateral with x > 0, that is, the
vertex B lies in the interior of the triangle ACD, then the proof of The-
orem B shows that P = ABCD can not satisfy G1 = G2. Henceforth,
we assume that x < 0.

It follows from Lemma 2.1 that the perimeter centroid G1 of P is
given by

(4.2) G1 =
1

2l
(xl1 + xl4 − l2 − l3, yl1 + yl4 + al1 − al4),

where we put by l the perimeter of P with

(4.3) l1 =
√
x2 + (y − a)2, l2 = l3 =

√
a2 + 1, l4 =

√
x2 + (y + a)2.
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Even if x < 0, it follows from Lemma 2.1 that the centroid G2 of the
concave quadrilateral P is also given by

(4.4) G2 =
1

3(x+ 1)
(x2 − 1, xy).

Suppose that G1 = G2. Then we have

(4.5) l1 + l4 = 2
√
a2 + 1

2x+ 1

x+ 2

and

(4.6) −l1 + l4 = 2
√
a2 + 1

y

a(x+ 2)
.

Combining (4.5) and (4.6), we get

(4.7) l1 =
√
a2 + 1

a(2x+ 1)− y
a(x+ 2)

,

and

(4.8) l4 =
√
a2 + 1

a(2x+ 1) + y

a(x+ 2)
.

Squaring both of (4.7) and (4.8) and using the definitions of l1 and l4 in
(4.3) resp., we obtain
(4.9)
y2(a2x2 + 4a2x+ 3a2 − 1)

− 2ay{a2x2 + 2(a2 − 1)x+ 3a2 − 1}+ a2(x2 − 1)(x2 + 4x− 3a2 + 1) = 0.

and
(4.10)
y2(a2x2 + 4a2x+ 3a2 − 1)

+ 2ay{a2x2 + 2(a2 − 1)x+ 3a2 − 1}+ a2(x2 − 1)(x2 + 4x− 3a2 + 1) = 0.

It follows from (4.9) and (4.10) that

(4.11) 4ay{a2x2 + 2(a2 − 1)x+ 3a2 − 1} = 0.

Since a and y are positive, (4.11) shows that x is a negative root of
the following quadratic polynomial

(4.12) a2x2 + 2(a2 − 1)x+ 3a2 − 1 = 0.

Hence, from D/4 = (1− 2a2)(a2 + 1) ≥ 0 we have

(4.13) a2 ≤ 1

2
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and x is given by

(4.14) x =
1

a2

(
1− a2 ±

√
(1− 2a2)(1 + a2)

)
.

Together with (4.12), (4.10) shows

(4.15) y2(a2x2 + 4a2x+ 3a2 − 1) = a2(1− x2)(x2 + 4x− 3a2 + 1).

It follows from (4.12) and (4.15) that

(4.16) 2y2 = a2(1− x2)(x+ 2).

With the help of (4.12), (4.16) can be rewritten as

(4.17) 2y2 = (2a2 − x)(2x+ 1).

Now, we consider the following two cases.

Case 1.

(4.18) x =
1

a2

(
1− a2 +

√
(1− 2a2)(1 + a2)

)
.

Then we have

(4.19) 2a2 − x =
1

a2
{(2a2 − 1)(1 + a2)−

√
(1− 2a2)(1 + a2)}.

Since a2 ≤ 1/2, from (4.19) we get 2a2 − x ≤ 0. This is a contradiction
because x < 0. Thus, this case can not occur.

Case 2.

(4.20) x =
1

a2

(
1− a2 −

√
(1− 2a2)(1 + a2)

)
.

Since x < 0, it follows from (4.20) that

(4.21) 0 < a2 <
1

3
.

Furthermore, (4.17) shows that

(4.22) −1

2
< x < 0.

For every positive number a satisfying (4.21), there exist a negative
number x and a positive number y satisfying (4.20) and (4.17), respec-
tively. Hence the point A(x, y) is well defined.
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Finally, for a fixed positive number a satisfying (4.21) we show that
ABCD can not form a quadrilateral as follows. Since y > 0, it follows
from (4.22) that ABCD is a concave quadrilateral if and only if

(4.23)
slope of

←→
BC < slope of

←→
AB

⇔ a <
y − a
x

⇔ y < a(x+ 1).

Suppose that ABCD is a concave quadrilateral. Then (4.23) shows that

(4.24) 2y2 < 2a2(x+ 1)2.

It follows from (4.17) that (4.24) is equivalent to

(4.25) 2(a2 + 1)x+ 1 < 0.

Together with (4.20), this shows that for s = a2 ∈ (0, 1/3)

(4.26) g(s) > h(s) > 0,

where we put

(4.27) g(s) = 2(s+ 1)
√

(1− 2s)(1 + s), h(s) = 2 + s− 2s2.

On the other hand, a simple computation shows

(4.28) g(s)2 − h(s)2 = −s2(12s2 + 16s+ 5) < 0,

which contradicts (4.26). This contradiction implies that ABCD cannot
be a quadrilateral. Thus we must have y = 0, and hence the quadrilat-
eral is an arrowhead. This completes the proof of Theorem C.

Remark 4.1. We put a = 0.5. Then, it follows from (4.20) and (4.17)
that

(4.29) x
.
= −0.46, y

.
= 0.69.

Hence, we get

(4.30) A
.
= (−0.46, 0.69), B

.
= (0, 0.5), C

.
= (−1, 0), D

.
= (0,−0.5).

See Figure 4.



Various centroids of quadrilaterals without symmetry 443

Figure 4. ABCD is not a quadrilateral.
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