
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 19, No. 4, December 2006

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN
HETEROGENEOUS MEDIA

Hee Chul Pak*

Abstract. The homogenization of non-stationary Navier-Stokes
equations on anisotropic heterogeneous media is investigated. The
effective coefficients of the homogenized equations are found. It
is pointed out that the resulting homogenized limit systems are
of the same form of non-stationary Navier-Stokes equations with
suitable coefficients. Also, steady Stokes equations as cell problems
are identified.

A compactness theorem is proved in order to deal with time
dependent homogenization problems.

1. Introduction

In this paper, we address the problem of the homogenization of non-
stationary Navier-Stokes equations;

ρ
∂

∂t
u + (u,∇)u + E(u) +∇p = f ,

div u = 0

in heterogeneous media. Here u(x, t) = (u1, u2, · · · , un) is the Eulerian
velocity of a fluid flow and (u,∇)uk =

∑n
i=1 ui

∂
∂xi

uk, k = 1, 2, · · ·n (the
elasticity operator E is described in Section 2).

The homogenized problems for fluid flows governed by steady Stokes
equations and Navier-Stokes equations have been extensively studied by
many authors - for example, C. Conca, T. Levy, Sanchez-Palencia, G.
Allaire, A. Mikeli, Firdaouss-Guermond et al.
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Compared with other studies, we focus on the homogenization of non-
stationary Navier-Stokes systems with distinct coefficients on anisotropic
materials - these general situations provide a bunch of cell problems of
matrix type. We identify that the limit systems are of the same form of
non-stationary Navier-Stokes equations with effective coefficients. It is
also very interesting to get accessible cell problems - we find the classical
Stokes equations on a flat torus as the cell problems which provide the
homogenized effective elasticity tensor.

In Section 2, we construct the ε-model and present terminology to
explain well-posedness and a-priori estimates. In Section 3, we briefly
review the two-scale convergence, and introduce the two-scale limit of
the stain operator, and prove a compactness theorem which is useful to
deal with time dependent problems. In the last section, the homogenized
equations for the ε-model of non-stationary Navier-Stokes equations are
investigated .

2. The εεε-model

We consider a structure consisting of fissures and matrices periodi-
cally distributed in a domain Ω in Rn with period εY , where ε > 0 and
Y ≡ [0, 1]n is the unit cube. Let Y be given in complementary parts,
Y1 and Y2, which represent the fissure and matrix, respectively. Denote
by χm(y) the characteristic function of Ym for m = 1, 2, extended Y -
periodically to all of Rn. Thus, χ1(y) + χ2(y) = 1. We shall assume
that the set {y ∈ Rn : χ1(y) = 1} is connected and smooth.

The domain Ω is thus divided into the two subdomains, Ωε
1 and Ωε

2,
representing the fissure and matrix, respectively, and given by

Ωε
m =

{
x ∈ Ω : χm

(x

ε

)
= 1

}
, m = 1, 2.

Let Γε
12 ≡ ∂Ωε

1 ∩ Ωε
2 ∩ Ω be the part of the interface of Ωε

1 with Ωε
2 that

is interior to Ω, and let Γ12 ≡ ∂Y1 ∩ ∂Y2 ∩ Y be the corresponding part
in the cell Y . Likewise, let Γ22 ≡ Y2∩∂Y and denote by Γε

22 its periodic
extension which forms the interface with those parts of the matrix Ωε

2

which lie within neighboring εY - cells. These are the local blocks and we
denote them by Y ε

2 .
We construct a system consisting of a non-stationary incompressible

Navier-Stokes system in Ωε
1 coupled across the interface Γε

12 to another
non-stationary Navier-Stokes system in Ωε

2. The structure of fissured
medium produces very high frequency spatial variations of pressures
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in the matrix and fissures, and so leads to corresponding variations of
velocity fields.

In order to describe these, the fluid pressures in Ωε
m are denoted

by pε
m(x, t) at the position x ∈ Ωε

m, m = 1, 2 at time t. We let
um = (um1, um2, · · · , umn) be the velocity field at x ∈ Ωε

m, m = 1, 2
and time t, and εkl(u) ≡ 1

2

(
∂

∂xk
ul + ∂

∂xl
uk

)
be the (linearized) strain

tensor, which measures the local deformation of velocity. The stress σ(u)
is a necessarily symmetric tensor that represents the internal forces on
surface elements resulting from such deformations, and we assume that
the material is governed by the generalized Hooke’s law

σm
ij (um) =

n∑

k,l=1

am
ijklεkl(um), m = 1, 2.

The positive definite symmetric elasticity tensor aijkl provides a model
for general anisotropic materials. We assume that am

ijkl(x, y) (m = 1, 2)
are bounded continuous functions such that

c1

n∑

i,j,k,l=1

ηij ηkl ≤
n∑

i,j,k,l=1

am
ijkl(x, y)ηij ηkl ≤ c2

n∑

i,j,k,l=1

ηij ηkl,(1)

where (ηij) is an arbitrary symmetric matrix, x ∈ Ω and c1, c2 >
0. The boundary conditions will involve with the surface density of

forces or traction
n∑

j=1

σij nj determined by the unit normal vector n =

(n1, n2, . . . , nn) on any boundary or interface. The normal will be di-
rected out of Ωε

2. The elastic structure is described by bilinear forms

eε
m(u,v) ≡

n∑

i,j,k,l=1

∫

Ωε
m

am
ijkl(x,

x

ε
)εkl(u)εij(v)dx,

m = 1, 2, on the space

V ≡ {
v ∈ H1(Ω)n : v = 0 on Γ0

}
, Γ0 ⊂ ∂Ω

of admissible velocity fields of fluid. The local description is obtained by
means of Green’s theorem

eε
m(u,v)=

∫

Ωε
m

Eε
m(u(x))·v(x)dx+(−1)m

n∑

i,j=1

∫

Γε
12

σm
ij

(
x,

x

ε

)
(u(s))njvi(s)dS,
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where the formal operator is given by

Eε
m(u)i = −

n∑

j=1

n∑

k,l=1

∂j am
ijkl(x,

x

ε
) εkl(u), 1 ≤ i ≤ n, m = 1, 2,

whenever u,v ∈ V and Em(u) ∈ [L2(Ωε
m)]n.

Now, we are in the position to present the ε-model originated from
the high frequency spatial variations of pressures and velocity fields in
the matrix and fissures. The ε-model for diffusion on a Navier-Stokes
fissured medium is as follows:

(1.1.a) ρ1
∂

∂t
uε

1 + (uε
1,∇)uε

1 + Eε
1(uε

1) +∇pε
1 = f1 in Ωε

1,

(1.1.b) div uε
1 = 0,

(1.2.a) uε
1 = uε

2, pε
1 = pε

2,

(1.2.b)
n∑

j=1

σij(uε
1)nj =

n∑

j=1

σij(uε
2)nj , 1 ≤ i ≤ n,

(1.2.c) (uε
1 ⊗ uε

1) · n = (uε
2 ⊗ uε

2) · n on Γε
12,

(1.3.a) ρ2
∂

∂t
uε

2 + (uε
2,∇)uε

2 + Eε
2(uε

2) +∇pε
2 = f2 in Ωε

2,

(1.1.b) div uε
2 = 0.

Remark 2.1. (i) The global pressure on Ω is given as

pε(x) = χ1

(x

ε

)
pε
1(x) + χ2

(x

ε

)
pε
2(x),

and the global stress is given as

σε
ij(u) = χ1

(x

ε

)
σ1

ij(u1) + χ2

(x

ε

)
σ2

ij(u2).

(ii) We need to supplement (1.1) with boundary conditions on ∂Ω. Only
those prescribed for pε

1 and uε will survive the limit process as ε → 0.
(iii) The equations (1.2) are just of the continuity of velocity fields,
pressure, stress and inertia.
(iv) The components of (1.3.a) are given by

ρ1
∂

∂t
uε

2i +
n∑

j=1

uε
2j

∂

∂xj
uε

2i −
n∑

k,l=1

∂

∂xi
aijkl

(
x,

x

ε

)
εkl(uε

2) +
∂pε

2

∂xi
= fi,

i = 1, 2, · · · , n and (1.1.a) is similar.
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(v) We can allow the quasi-static cases ρm = 0 which are examples
of degenerate evolution equations. Also we could modify the model to
include a scaling by any positive power of ε for ρm, and then these
would be lost in the limit. In this discussion we permit only an elliptic
condition on ρm:

0 < c3 ≤ ρm(x), x ∈ Ωε
m

for some constant c3.

A variational (weak) formulation of Navier-Stokes equations (1.1)∼ (1.3)
is to find

uε
m ∈ L2([0, T ];H1(Ωε

m)n)
⋂

CW ([0, T ];L2(Ωε
m)n), m = 1, 2

with pε
1 = pε

2 and uε
1 = uε

2 on Γε
12 such that

2∑

m=1

[∫

Ωε
m

ρm
∂

∂t
uε

m · vm + (uε
m,∇)uε

m · vmdx + eε
m(um,vm)

]

=
2∑

m=1

∫

Ωε
m

fm · vmdx(2)

and
2∑

m=1

[∫

Ωε
m

( div uε
m) ϕmdx

]
= 0(3)

for all divergence free vector fields vm ∈ C1([0, T ]; H1(Ωε
m)n), m = 1, 2

with v1 = v2 on Γε
12 and all ϕm ∈ C1([0, T ];H1(Ωε

m)), m = 1, 2 with
ϕ1 = ϕ2 on Γε

12.
The space CW ([0, T ]; L2(Ωε

m)n) is a subspace of L∞([0, T ]; L2(Ωε
m)n) con-

sisting of functions which are weakly continuous:
∫
Ωε

m
u(t, x) · h(x)dx is

a continuous function, for all h ∈ L2(Ωε
m)n.

In the following discussion, the function space Vdiv is defined by

Vdiv = {v ∈ V : div v = 0} .

Theorem 2.2. For each ε > 0 and T > 0, there is a solution

uε ∈ L2([0, T ];Vdiv)
⋂

CW ([0, T ];L2(Ω)n)

of the variational formulation (2) and (3) for every given f = f0 + divF
with

f0 ∈ L1([0, T ]; L2(Ω)n), F ∈ L2([0, T ]; L2(Ω)n2
)

and divergence free initial vector field uε(0) = uε
0 ∈ Vdiv.
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Proof. The proof is originally discussed by J. Leray and there are
several approaches to the existence of solutions, for example, see [3], [4],
[6], [7], [12], [13]. All of these sources have used mainly the Galerkin
approximation.

We substitute v1 = uε
1, v2 = uε

2 into (2) to get
2∑

m=1

[
1
2
‖√ρm uε

m(t)‖2
L2(Ωε

m)n +
∫ t

0
eε
m(um(τ),um(τ))dτ

]

≤
2∑

m=1

[
1
2
‖√ρm uε

m(0)‖2
L2(Ωε

m)n +
∫ t

0

∫

Ωε
m

fm · umdxdτ

]

≤
2∑

m=1

[
1
2
‖√ρm uε

m(0)‖2
L2(Ωε

m)n+
∫ t

0
‖fm‖L2(Ωε

m)n‖um‖L2(Ωε
m)ndxdτ

]
.(4)

Applying Korn’s inequality([9]) we see that

‖uε
1‖L2([0,T ];L2(Ωε

1)n) and ‖uε
2‖L2([0,T ];L2(Ωε

2)n)

are bounded. These facts, in turn, imply that

‖ekl(uε
1)‖L2([0,T ];L2(Ωε

1)n2
)
, ‖ekl(uε

2)‖L2([0,T ];L2(Ωε
2)n2

)
,

‖uε
1‖L∞([0,T ];L2(Ωε

1)n), ‖uε
2‖L∞([0,T ];L2(Ωε

2)n)

are bounded.

3. Two-Scale Convergence

We briefly review the two-scale convergence, and introduce the two-
scale limit for the stain operator and prove a compactness theorem which
is useful to deal with time dependent problems.

Definition 3.1. A sequence of functions {uε} in L2(Ω) is said to
two-scale converge to a limit u0(x, y) ∈ L2(Ω × Y ) (we denote it by

uε
2−→ u0(x, y)) if for any test function ψ(x, y) in C∞

0 (Ω; C∞
] (Y )), we

have∫

Ω
uε(x)ψ(x,

x

ε
)dx −→

∫

Ω

∫

Y
u0(x, y)ψ(x, y)dydx as ε → 0.

This definition makes sense due to Nguetseng’s compactness theorem,
whose proof can be found in Allaire [1].
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Remark 3.1. 1. (Nguetseng) Any bounded sequence {uε} in L2(Ω)
has two-scale convergent subsequence.
2. Let {uε} be a bounded sequence in H1(Ω). Then there are u0 ∈
H1(Ω) and U(x, y) ∈ L2(Ω;H1

] (Y )) such that, up to a subsequence,

{uε} two-scale converges to u0(x) and {∇uε} two-scale converges to
∇u0(x) +∇yU(x, y).
3. Suppose a sequence of vector fields {uε} and {div uε} are bounded
in L2(Ω)n and L2(Ω), respectively. Then there are u0 ∈ H1(Ω)n and
U(x, y) ∈ L2(Ω; H1

] (Y ))n such that, up to a subsequence, {uε} two-

scale converges to u0 and {div uε} two-scale converges to div u0 +
divy U(x, y).

We present two-scale strain behavior of bounded vector fields for
which its strain is bounded. We denote the strain operator by e(u), that
is, the i-j component e(u)ij of e(u) is e(u)ij = εij(u) = 1

2

(
∂ui
∂xj

+ ∂uj

∂xi

)
,

and also e(u)y =
(

1
2

(
∂ui
∂yj

+ ∂uj

∂yi

))
.

Proposition 3.1. Suppose that a sequence of vector fields {uε} is
bounded in L2(Ω)n and the sequence of matrices {e(uε)} is bounded in
L2(Ω)n×n, respectively. Then there is a subsequence {uεj} of {uε} such
that {uεj} two-scale converges to u and e(uεj ) two-scale converges to

e(u0) + ey(U), for some u(x) ∈ L2(Ω)n and U ∈ L2(Ω;H1
] (Y ))n.

Proof. It can be proved by Korn’s inequality and Remark 3.1-2. (For
a complete discussion about Korn’s inequality, we refer [9]).

In order to deal with the homogenized property for parabolic equations,
we prove the following compactness theorem which generalizes the com-
pactness theorem for elliptic problems described in Remark 3.1.

Theorem 3.2. Let 0 < T ≤ ∞. Suppose that {uε} is a bounded
sequence of forms in L2([0, T );L2(Ω)). Then there are a subsequence
{uεj} of {uε} and U0(t, x, y) ∈ L2

(
[0, T );L2(Ω× Y )

)
such that for any

ψ(t, x, y) ∈ L2
(
[0, T );C∞

0 (Ω; C∞
] (Y ))

)

lim
εj→0

∫ T

0

∫

Ω
uεj (t, x) ψ

(
t, x,

x

εj

)
dxdt=

∫ T

0

∫

Ω×Y
U0(t, x, y) ψ(t, x, y)dxdydt.

Proof. We have a given bounded sequence {uε} in L2([0, T );L2(Ω)).
There is a positive constant C such that ‖uε‖L2([0,T );L2(Ω)) ≤ C. Then
let Fε(Ψ) ≡ ∫ T

0

∫
Ω uε(t, x)Ψ(t, x, x

ε )dxdt and D ≡ L2(Ω; C](Y )). We
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notice that

| Fε(Ψ) |≤
∫ T

0
‖uε(t)‖L2(Ω)

∥∥∥Ψ
(
t, x,

x

ε

)∥∥∥
L2(Ω)

dt

≤ C

[∫ T

0

(
max
y∈Y

‖ Ψ(t, x, y) ‖L2(Ω)

)2

dt

] 1
2

= C

{∫ T

0
‖ Ψ(t) ‖2

D dt

} 1
2

for every Ψ ∈ L2 ([0, T );D). This leads to Fε ∈
(
L2([0, T );D)

)′. So a
subsequence {Fεj} is weak∗-convergent to some U0 ∈

(
L2([0, T );D)

)′.
Therefore from the fact that for Ψ ∈ L2([0, T );D),∥∥∥∥Ψ

(
t, x,

x

εj

)∥∥∥∥
L2(Ω)

≤ ‖ Ψ(t) ‖D, t ∈ [0, T )

together with Lebesgue Dominated Convergence Theorem, we have

| U0(Ψ) |= lim
εj→0

| Fεj (Ψ) |

≤ lim sup
εj→0

∫ T

0
‖ uεj (t) ‖L2(Ω)

∥∥∥∥Ψ
(

t, x,
x

εj

)∥∥∥∥
L2(Ω)

dt

≤ C

[∫ T

0
lim sup

εj→0

∥∥∥∥Ψ
(

t, x,
x

εj

)∥∥∥∥
2

L2(Ω)

dt

] 1
2

= C

[∫ T

0
‖ Ψ(t) ‖2

L2(Ω×Y ) dt

] 1
2

.

Since L2([0, T );D) is dense in L2([0, T );L2(Ω×Y )) = L2([0, T )×Ω×Y ),
it follows that U0 is in L2([0, T ) × Ω × Y )′. By Riesz Representation
Theorem, we have

U0(Ψ) =
[∫ T

0
〈U0(t), Ψ(t)〉2L2(Ω×Y ) dt

] 1
2

, Ψ ∈ L2([0, T )× Ω× Y )

for some U0 ∈ L2
(
[0, T );L2(Ω× Y )

)
. Therefore we get

lim
εj→0

∫ T

0

∫

Ω
uεj (t, x)Ψ

(
t, x,

x

εj

)
dxdt ≡ lim

εj→0
Fεj(Ψ) = U0(Ψ)

=
∫ T

0

∫

Y

∫

Ω
U0(t, x, y)Ψ(t, x, y)dxdydt.

4. Homogenized Navier-Stokes system

We will consider the limit equations for Navier-Stokes system.
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Let us denote the scaled characteristic functions by

χε
m ≡ χm

(x

ε

)
, m = 1, 2.

Firstly, Remark 3.1, Proposition 3.1 and a priori estimates yield the
existence of subsequences (it is also denoted by uε) which two-scale
converge to some

u ∈ L∞([0, T ]; H1(Ω)n), U ∈ L∞([0, T ]; L2(Ω,H1
] (Y )n))

as follows:

uε(t, x) 2−→ u(t, x), ekl(uε) 2−→ ekl(u) + ey
kl(U(x, y)),

wherein ey
kl(U) ≡ 1

2(∂Ul
∂yk

+ ∂Uk
∂yl

). Secondly, by virtue of Korn’s inequality,
we get that

‖uε
1‖L∞([0,T ];H1(Ωε

1)n), ‖uε
2‖L∞([0,T ];H1(Ωε

2)n)

are bounded, so then Rellich Theorem yields uε(t) converges strongly
u(t) in L2(Ω)n, for each t ∈ [0, T ]. Thirdly, the divergence free condition
of velocity fields uε

m yields;

div u(x) + divy U(x, y) = 0(5)

on Ω(Remark 3.1-3). We take the weak limit on the condition (3) to get
div u = 0. Therefore, from (5), we have divy U(x, y) = 0.

The ε-equation (2) can be displayed as;

∫

Ω
χε

1(x)
{

ρ1(x)
∂

∂t
uε

1(x) · vε
1(x) + (uε

1(x),∇)uε
1(x) · vε

1(x)
}

dx

+
∫

Ω

{
χε

2(x)ρ2(x)
∂

∂t
uε

2(x) · vε
2(x) + χε

2(x)(uε
2(x),∇)uε

2(x) · vε
2(x)

}
dx

+eε
1(u1,vε

1) + eε
2(u2,vε

2)

=
∫

Ω
χε

1(x)f1(x) · vε
1(x)dx +

∫

Ω
χε

2(x)f2(x) · vε
2(x)dx,(6)
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for all divergence free fields vε
m ∈ C1([0, T ]; H1(Ωε

m)n), m = 1, 2 with
v1 = v2 on Γε

12 and v1(T ) = v2(T ) = 0. We rewrite (6) as;
∫ T

0

∫

Ω
χε

1(x)ρ1(x) uε
1(t, x) · ∂

∂t
vε

1(t, x)dxdt +
∫ T

0
eε
1(u1(t),vε

1(t))dt

+
∫ T

0

∫

Ω
χε

1(x) {uε
1(t, x)⊗ uε

1(t, x)} · ∇vε
1(t, x)dxdt

+
∫ T

0

∫

Ω
χε

2(x)ρ2(x) uε
2(t, x) · ∂

∂t
vε

2(t, x)dxdt +
∫ T

0
eε
2(u2,vε

2)dt

+
∫ T

0

∫

Ω
χε

2(x) {uε
2(t, x)⊗ uε

2(t, x)} · ∇vε
2(t, x)dxdt(7)

=
∫

Ωε
1

ρ1(x) uε
1(0, x) · vε

1(0, x)dx +
∫

Ωε
2

ρ2(x) uε
2(0, x) · vε

2(0, x)dxdt

+
∫ T

0

∫

Ω
χε

1(x)f1(t, x) · vε
1(t, x)dxdt +

∫ T

0

∫

Ω
χε

2(x)f2(t, x) · vε
2(t, x)dxdt.

Applying any divergence free test field v ∈ H1(Ω)n in the place of v1

and v2, we have the (weak) limit of ε-equation (7);
∫ T

0

∫

Ω

{
ρ(x)

∂u
∂t

(t, x) · v(t, x) + {u(t, x)⊗ u(t, x)} · ∇v(t, x)
}

dxdt

+
∫ T

0
e(u(t) + U(t),v(t))dt =

∫ T

0

∫

Ω
f(t, x) · v(t, x)dxdt(8)

with the effective coefficients given by

ρ(x) = |Y1|ρ1(x) + |Y2|ρ2(x), f(x) = |Y1|f1(x) + |Y2|f2(x)(9)

and the homogenized elasticity bilinear form is defined by;

e(u + U,v) ≡
n∑

i,j,k,l=1

∫

Y

∫

Ω
aijkl(x, y)

{
εkl(u) +ey

kl(U(x, y))
}

εij(v)dxdy,

where the corresponding effective elasticity tensor is

aijkl(x, y) = χ1(y)a1
ijkl(x, y)+χ2(y)a2

ijkl(x, y).

In order to investigate the cell problem of the limit system, we apply
divergence free test fields εV

(
x, x

ε

)
, where V(x, y) ∈ C∞

0 (Ω;C∞
] (Y )n)

in the place of vm on (6) to have its two-scale limit;
n∑

i,j,k,l=1

∫

Ω

∫

Y
aijkl(x, y)[εkl(u(x))+εy

kl(U(x, y))]εy
ij(V(x, y))dydx=0.(10)
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Indeed, we can note the two-scale limit of the nonlinear term as follows;∫

Ωε
1

(uε
1(x),∇)uε

1(x) · εV
(
x,

x

ε

)
dx+

∫

Ωε
2

(uε
2(x),∇)uε

2(x) · εV
(
x,

x

ε

)
dx

=
2∑

m=1

∫

Ωε
m

{uε
m(x)⊗ uε

m(x)} ·
{

ε∇xV
(
x,

x

ε

)
+∇yV

(
x,

x

ε

)}
dx

2−→
∫

Ω×Y
divy {u(x)⊗ u(x)} ·V (x, y) dxdy = 0.

By density, (10) holds for all divergence free fields V ∈ L2(Ω;H1
] (Y )n).

Therefore, the corresponding strong formulation of (10) is;

−
n∑

j=1

n∑

k,l=1

∂

∂yj
aijkl(x, y)

[
εkl(u) + εy

kl(U(x, y))
]
+

∂

∂yi
q=0,(11)

1 ≤ i ≤ n, for some scalar function q(x). This leads to the
Cell Problem. Find X(y) ∈ H1

] (Y )n3
, Π(y) ∈ H1

] (Y )n2
such that





−
n∑

j,k,l=1

∂

∂yj
aijkl(x, ·) [

δrs
kl + εy

kl(Xrs)
]

+
∂

∂yi
Πrs = 0, 1 ≤ i, r, s ≤ n, x ∈ Ω

n∑

m=1

∂

∂ym
Xm

rs = 0, 1 ≤ r, s ≤ n,

(12)

where we set

δrs
kl =

{
1 when r = k and s = l
0 otherwise.

The above cell problem is nonhomogeneous Stokes equations. In fact,
the equation (12) can be rewritten as; for each 1 ≤ r, s ≤ n

−
n∑

j,k,l=1

∂

∂yj
aijkl(x, ·)εy

kl(Xrs)+
∂

∂yi
Πrs =

n∑

j=1

∂

∂yj
aijrs(x, ·), 1 ≤ i ≤ n.

We notice that Xrs and Πrs are symmetric; that is,

Xrs = Xsr, Πrs = Πsr,

for all r, s. Now, we let

U ≡
n∑

r,s=1

Xrsεrs(u) and q ≡
n∑

r,s=1

Πrsεrs(u)
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to find U, q that satisfy the cell equation (11). The following observa-
tion:

e(u + U,v) =
n∑

i,j,k,l=1

∫

Y

∫

Ω
aijkl(x, y)

{
εkl(u)+ ey

kl(U(x, y))
}

εij(v)dxdy

=
n∑

i,j,k,l=1

∫

Ω





n∑

r,s=1

∫

Y
aijrs(x, y)

[
δkl
rs + εy

rs(Xkl)
]
dy



 εkl(u) εij(v)dx.

allows us to define the homogenized effective elasticity tensor

bijkl(x) ≡
n∑

r,s=1

∫

Y
aijrs(x, y)

[
δkl
rs + εy

rs(Xkl)
]
dy,(13)

and the homogenized effective elasticity operator E

E(u)i = −
n∑

j=1

n∑

k,l=1

∂j bijkl(x) εkl(u), 1 ≤ i ≤ n,(14)

whenever u ∈ V. Therefore, the strong formulation of (8) is

ρ
∂

∂t
u + (u,∇)u + E(u) +∇p = f ,

for some potential function p(t, x).

We summarize the homogenizing process as follows;

Theorem 4.1. The homogenizing process for the Navier-Stokes sys-
tems (1.1) ∼ (1.3) gives rise to the same type of Navier-Stokes systems
displayed as

ρ
∂

∂t
u + (u,∇)u + E(u) +∇p = f ,

div u = 0,

with the effective coefficients (9), (13) and (14). It also produces the cell
problems (12) which are the classical Stokes equations of matrix-type on
torus.
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