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THE m-STEP COMPETITION GRAPHS OF d-PARTIAL

ORDERS

Jihoon Choi*

Abstract. The notion of m-step competition graph was intro-
duced by Cho et al. in 2000 as an interesting variation of com-
petition graph. In this paper, we study the m-step competition
graphs of d-partial orders, which generalizes the results obtained
by Park et al. in 2011 and Choi et al. in 2018.

1. Introduction

In this paper, all the graphs and digraphs are assumed to be finite
and simple unless otherwise stated. We write u→ v for an arc (u, v) in
a digraph.

The competition graph of a given digraph D, denoted by C(D), is de-
fined to be the graph such that V (C(D)) = V (D) and E(C(D)) = {xy |
(x, z), (y, z) ∈ A(D) for some z ∈ A(D)}. Since its introduction, a lot of
variations of competition graph have been introduced and studied (see
[1, 2, 8, 9, 10, 13] for reference). One example is the m-step competition
graph, which was introduced by Cho et al. [4]. Let D be a digraph and
m be a positive integer. A vertex y is called an m-step prey of a vertex
x in D if there is a directed walk from x to y of length m. The m-step
competition graph of D, denoted by Cm(D), is defined to be the graph
such that V (Cm(D)) = V (D) and xy is an edge in Cm(D) if and only
if there exists an m-step common prey of u and v in D. The readers
may refer to [4, 9, 11] for the structural properties of m-step competition
graphs, [1, 8, 13] for the characterizations of paths and cycles which are
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realizable as the m-step competition graph, and [2, 7, 10, 12] for the
matrix sequence {Cm(D)}∞m=1.

Let d be a positive integer. For x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd)
∈ Rd, we write x ≺ y if xi < yi for each i = 1, . . . , d. If x ≺ y
or y ≺ x, then we say that x and y are comparable in Rd. Other-
wise, we say that x and y are incomparable in Rd. For a finite sub-
set S of Rd, let DS denote the digraph defined by V (DS) = S and
A(DS) = {(x, v) | v, x ∈ S, v ≺ x}. A digraph is called a d-partial order
if D = DS for a finite subset S of Rd. It is clear that every d-partial
order is transitive, and therefore acyclic.

A 2-partial order is called a doubly partial order, which was intro-
duced by Cho and Kim [3]. They proved that the interval graphs are
exactly the graphs with “partial order competition dimensions” at most
two, by showing that every competition graph of a doubly partial or-
der is an interval graph, and that every interval graph together with
some additional isolated vertices is the competition graph of a doubly
partial order. Park el al. [11] characterized the graphs which can be
represented as the m-step competition graphs of doubly partial orders
by adding sufficiently many isolated vertices. In this paper, we study
the m-step competition graphs of d-partial orders, which generalizes the
results obtained by Park et al.

2. A characterization of the m-step competition graphs of
d-partial orders

Let 1 denote the all-one vector (1, 1, . . . , 1) in Rd. For x ∈ Rd, the

dot product of x and 1 is defined by x · 1 =
∑d

i=1 xi. Let

Hd = {x ∈ Rd | x · 1 = 0}, Hd+ := {x ∈ Rd | x · 1 > 0}.

For a point p in Hd+, let 4d−1(p) be the intersection of the closed cone

{x ∈ Rd | xi ≤ pi (i = 1, . . . , d)} and the hyperplane Hd. For a subset
A of Rd, int(A) denotes the interior of A with respect toe the standard
topology in Rd. Then the following are true.

Lemma 2.1 ([6]). For p ∈ Hd+, the set 4d−1(p) is a regular (d− 1)-
simplex.

Proposition 2.2 ([6]). For p,q ∈ Hd+, 4d−1(p) ⊂ int(4d−1(q)) if
and only if p ≺ q.
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Two geometric figures in Rd are said to be homothetic if one can be
mapped into the other by dilation and translation. Then the following
is true.

Proposition 2.3 ([6]). For p,q ∈ Hd+, 4d−1(p) and 4d−1(q) are
homothetic.

Let Fd−1 denote the set of regular (d− 1)-simplices in Rd contained
in Hd and homothetic to 4d−1(1). Then there is a one to one corre-
spondence between Hd+ and Fd−1.

Corollary 2.4 ([6]). For each integer d ≥ 2, the function 4d−1 :
Hd+ → Fd−1 mapping p to 4d−1(p) is bijective.

As an analogue of Theorem 2.9 in [6], we characterize the m-step
competition graph of a d-partial order as follows.

Theorem 2.5. Let m and d be positive integers. Then a graph G
is the m-step competition graph of a d-partial order if and only if there
exist a subset F of Fd−1 and a bijection f : V (G)→ F such that

(?) two vertices v and w are adjacent in G if and only if there exist
two sequences (v0, v1, . . . , vm) and (w0, w1, . . . , wm) on V (G) such
that v0 = v, w0 = w, vm = wm, and for each i = 1, 2, . . . ,m,
f(vi) ⊂ int(f(vi−1)) and f(wi) ⊂ int(f(wi−1)).

Proof. (⇒) Assume that G is the m-step competition graph of some
d-partial order D. For a positive real number k which is large enough,
we translate all the vertices of D by T : v 7→ v + k1 so that we may
assume V (D) ⊂ Hd+. Let F = {4d−1(v) | v ∈ V (D)}. Then F ⊂ Fd−1.
Let f : V (G) → F be the function defined by f(v) = 4d−1(v). Then
f is a bijection by Corollary 2.4. The property (?) immediately follows
from the definition of m-step competition graph and Proposition 2.2.

(⇐) Assume there exist F ⊂ Fd−1 and a bijection f : V (G) → F
such that the property (?) is true. By Corollary 2.4, each element in
F can be written in the form of 4d−1(p) for some p ∈ Hd+. Take two
vertices v and w in G. Then, by the property (?) and Proposition 2.2, v
and w are adjacent in G if and only if v and w have an m-step common
prey in the d-partial order DS where S = {p ∈ Rd | 4d−1(p) ∈ F}.
Thus G = Cm(DS).
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3. Partial order m-step competition dimensions of graphs

We denote by Z>0 and Z≥0 the set of positive integers and the set of
nonnegative integers, respectively. In addition, Ik denotes the set of k
isolated vertices for each k ∈ Z≥0.

To study the competition graphs of d-partial orders, Choi et al. [6]
introduced the notion of the partial order competition dimension of a
graph.

Definition 3.1 ([6]). The partial order competition dimension of a
graph G, denoted by dimpoc(G), is defined to be the smallest positive
integer d such that G together with k additional isolated vertices is the
competition graph of some d-partial order D for some k ∈ Z≥0, i.e.,

dimpoc(G) := min{d ∈ Z>0 | ∃k ∈ Z≥0,∃S ⊂ Rd s.t. G ∪ Ik = C(DS)}.

In this section, we introduce the notion of partial order m-step com-
petition dimension of a graph to generalize that of partial order compe-
tition dimension and investigate basic properties of m-step competition
graphs of d-partial orders in terms of it.

Lemma 3.2. For a transitive digraph D and a positive integer m,
every m-step prey of x in D is a k-step prey of x for each k = 1, . . . ,m.

Proof. It easily follows from the transitivity of D.

Lemma 3.3. Every d-partial order is isomorphic to a (d + 1)-partial
order.

Proof. We mimic the proof of Proposition 3.1 in [6]. Let D be a
d-partial order. For each v = (v1, . . . , vd) ∈ V (D) ⊂ Rd, we define

ṽ ∈ Rd+1 by ṽ =
(
v1, . . . , vd,

∑d
i=1 vi

)
. Let Ṽ = {ṽ | v ∈ V (D)}. Then

DṼ is a (d+1)-partial order. Take v = (v1, . . . , vd) and w = (w1, . . . , wd)
in D. Then

ṽ ≺ w̃ ⇔ vi < wi (i = 1, . . . , d) and

d∑
i=1

vi <

d∑
i=1

wi

⇔ vi < wi (i = 1, . . . , d)

⇔ v ≺ w,

and therefore D is isomorphic to D̃.

The following proposition is an immediate consequence of Lemma 3.3.
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Proposition 3.4 ([6]). For positive integers m and d, the m-step
competition graph of a d-partial order is (isomorphic to) the m-step
competition graph of a (d+ 1)-partial order.

Let G be a graph. A clique of G is a vertex subset in which all the
vertices are pairwise adjacent in G. For a clique K and an edge e of G,
we say that K covers e if K contains the two end vertices of e. An edge
clique cover of G is a family of cliques of G which cover all the edges of
G. The minimum cardinality of an edge clique cover of G is called the
edge clique cover number of G and denoted by θe(G).

Theorem 3.5. Let G be a graph and m be a positive integer. Then
there exist a positive integer d and a nonnegative integer k such that
G together with k additional isolated vertices is the m-step competition
graph of some d-partial order.

Proof. Let v1, . . . , vn be the vertices of D. We define a map φ :
V (D) → Rn so that the jth coordinate of φ(vi) (i = 1, . . . , n) is given
by

φ(vi)j =

{
2 if j = i;

4 if j 6= i.

Let θ = θe(G) and C = {C1, C2, . . . , Cθ} be an edge clique cover of G
consisting of maximal cliques. For each t ∈ {1, 2, . . . ,m}, we define a
map ψt : C → Rn so that the jth coordinate of ψt(Cl) (l = 1, . . . , θ) is
given by

(ψt(Cl))j =

{
1− t

m+1 if vj ∈ Cl;
3− t

m+1 if vj 6∈ Cl.

Let V = {φ(vi) | i = 1, 2, . . . , n} ∪ {ψt(Cl) | t = 1, 2, . . . ,m, l =
1, 2, . . . , θ} ⊆ Rn. Then, in the d-partial order DV , it easily be checked
that the vertex ψt(Cl) has no m-step prey whereas the set m-step preys
of the vertex φ(vi) is {ψm(Cl) | vi ∈ Cl}. Thus Cm(D) = G ∪ Imθ. We
take d = n and k = mθ to complete the proof.

By Proposition 3.4 and Theorem 3.5, we can define the notion the
partial order m-step competition dimension of a graph.

Definition 3.6. For a graph G and a positive integer m, the partial
order m-step competition dimension dimpoc(G;m) of G is defined as
the smallest positive integer d such that G together with k additional
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isolated vertices is the m-step competition graph of some d-partial order
and some nonnegative integer k, i.e.,

dimpoc(G;m) = min{d ∈ Z>0 | ∃k ∈ Z≥0, ∃S ⊂ Rd, s.t. G∪Ik = Cm(DS)}.
For every graphG, it easily follows from the definition that dimpoc(G; 1) =
dimpoc(G).

Proposition 3.7. For a graphG and a positive integerm, dimpoc(G;m) ≤
|V (G)|.

Proof. It follows from the construction of DV in the proof of Theo-
rem 3.5.

Choi et al. [6] characterized the graphs having partial order competi-
tion dimensions 1 or 2, and then presented some graphs having partial
order competition dimensions at most three.

Proposition 3.8 ([6]). For a graph G, dimpoc(G) = 1 if and only if
G = Kt or G = Kt ∪K1 for some positive integer t.

Proposition 3.9 ([6]). For a graph G, dimpoc(G) = 2 if and only if
G is an interval graph which is neither Kt nor Kt ∪K1 for any positive
integer t.

It is natural to ask which graphs have small partial order m-step com-
petition dimensions. It is easy to characterize graphsG with dimpoc(G;m)
≤ 1 for a given positive integer m.

Proposition 3.10. Let G be a graph and m be a positive integer m.
Then dimpoc(G;m) = 1 if and only if G = Kt ∪ Is for some nonnegative
integers t and s with t ≥ 1 and s ≤ m.

Proof. (⇒) Assume dimpoc(G;m) = 1. Then G ∪ Ik = Cm(D) for
some 1-partial order D and k ∈ Z≥0. Let v1, . . . , vn be the vertices of
D. We may assume that v1 < v2 < · · · < vn in R. Then, the vertices
v1, v2, . . . , vm does not have an m-step prey in D, so they are isolated in
Cm(D). In addition, the vertices vm+1, vm+2, . . . , vn has v1 as an m-step
prey, so they form a clique in Cm(D). Therefore, Cm(D) consists of a
clique together with some isolated vertices.

(⇐) Assume G = Kt ∪ Is for some t ≥ 1 and s ≤ m. We denote the
vertices in Kt by x1, . . . , xt and the vertices in Is by y1, . . . , ys if s 6= 0.
We assign a coordinate in R to each vertex of G by yi = i for i = 1, . . . , s
and xj = j + s for j = 1, . . . , t. Let J be a set of m − s negative real
numbers. Then the set V (G) ∪ J ⊂ R induces a 1-partial order whose
m-step competition graph is G∪Im−s. Therefore dimpoc(G;m) ≤ 1.
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Park et al. [11] studied the m-step competition graphs of 2-partial
orders and obtained the following results.

Theorem 3.11 ([11]). For a positive integer m, the m-step competi-
tion graph of a 2-partial order is an interval graph.

Theorem 3.12 ([11]). For a positive integer m, an interval graph
together with some additional vertices is the m-step competition graph
of a 2-partial order.

We can restated the results of Park et al. [11] in terms of dimpoc(G;m)
as follows:

Proposition 3.13. For a graphG and a positive integerm, dimpoc(G;m)
≤ 2 if and only if G is an interval graph.

Proof. (⇒) Assume dimpoc(G;m) ≤ 2. Then G ∪ Ik = Cm(D) for
some 2-partial order D and k ∈ Z≥0. By Theorem 3.11, G ∪ Ik is an
interval graph and so is G.

(⇐) It immediately follows from Theorem 3.12.

The following proposition tells us that deleting isolated vertices from
a graph does not increase the partial order m-step competition dimen-
sion.

Proposition 3.14. For a graph G and positive integers k and m,
dimpoc(G;m) ≤ dimpoc(G ∪ Ik;m).

Proof. Let d = dimpoc(G ∪ Ik;m). Then (G ∪ Ik) ∪ Is = Cm(D) for
some d-partial order D and s ∈ Z≥0. Since (G ∪ Ik) ∪ Is = G ∪ Ik+s,
dimpoc(G;m) ≤ d.

As a matter of fact, the equality in Proposition 3.14 mostly holds
except for some specific graphs.

Proposition 3.15. For a graph G and positive integers m and k,
dimpoc(G ∪ Ik;m) > dimpoc(G;m) if and only if G = Kt ∪ Is for some
nonnegative integers t and s with t ≥ 1 and m− k < s ≤ m.

Proof. (⇐) Suppose G = Kt∪Is for some nonnegative integers t and s
with t ≥ 1 and m−k < s ≤ m. Since G∪Ik = Kt∪Is+k and s+k > m ≥
s, Proposition 3.10 tells us that dimpoc(G;m) = 1 < dimpoc(G ∪ Ik;m).

(⇒) Let d = dimpoc(G;m). Then G∪ Is = Cm(D) for some d-partial
order D and s ∈ Z≥0. Suppose, to the contrary, that d ≥ 2. Let

α = max{v1 | (v1, v2, . . . , vd) ∈ V (D)},
β = min{v2 | (v1, v2, . . . , vd) ∈ V (D)}.
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Let zi = (α + i, β − i, 0, . . . , 0) ∈ Rd for each i = 1, . . . , k and let
S = V (D) ∪ {z1, . . . , zk}. Then DS is a d-partial order. By definition,
no vertex in {z1, . . . , zk} is comparable with any vertex of DS in Rd.
Therefore Cm(DS) = Cm(D) ∪ Ik = (G ∪ Is) ∪ Ik = (G ∪ Ik) ∪ Is.
Thus dimpoc(G ∪ Ik;m) ≤ d, which contradicts the hypothesis that
dimpoc(G ∪ Ik;m) > dimpoc(G;m). Hence d = 1. By Proposition 3.10,
G = Kt ∪ Is for some nonnegative integers t and s with t ≥ 1 and
s ≤ m. Then G ∪ Ik = (Kt ∪ Is) ∪ Ik = Kt ∪ Is+k. If s + k ≤ m,
then dimpoc(G ∪ Ik;m) = 1 by Proposition 3.10 and this contradicts
the assumption that dimpoc(G ∪ Ik;m) > dimpoc(G;m) = 1. Therefore
s+ k > m or m− k < s.

4. dimpoc(G;m) in the aspect of dimpoc(G)

In this section, we will investigate the behavior of dimpoc(G;m) when
m varies and then present a relation between dimpoc(G;m) and dimpoc(G).

Definition 4.1. A d-partial order D is said to satisfy the distinct
coordinate property (DC-property for short) provided that, for each i =
1, . . . , d, the ith coordinates of the vertices of D are all distinct.

For example, the 3-partial order on the three vertices (1, 2, 3), (2, 3, 4),
(3, 4, 5) satisfies the DC-property while the 3-partial order on the three
vertices (1, 2, 3), (2, 3, 4), (1, 4, 5) does not satisfies the DC-property.

For a d-partial order D and an ordered pair (i, k) ∈ {1, . . . , d} × R,
we partition V (D) into three disjoint subsets

Vi,k(D) = {(a1, . . . , ad) ∈ V (D) | ai = k},
V +
i,k(D) = {(a1, . . . , ad) ∈ V (D) | ai > k},

V −i,k(D) = {(a1, . . . , ad) ∈ V (D) | ai < k},

and let Γ(D) = {(i, k) ∈ {1, . . . , d} × R | |Vi,k(D)| ≥ 2}. Clearly, a
d-partial order D satisfies the DC-property if and only if Γ(D) = ∅.

Proposition 4.2. For a positive integer d, every d-partial order is
isomorphic to a d-partial order satisfying the DC-property.

Proof. LetD be a d-partial order. There is nothing to prove if Γ(D) =
∅. Assume Γ(D) 6= ∅. Take (i, k) ∈ Γ(D). Let Vi,k = {v1, . . . , vl} (l ≥ 2)

and V ∗i,k = {v∗1, . . . , v∗` } where v∗j is the point in Rd−1 obtained from

vj ∈ Rd by deleting its ith coordinate. Then V ∗i,k induces a (d − 1)-
partial order D∗, i.e., D∗ = DV ∗i,k

. Since D∗ is acyclic, we may assume
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that the vertices in Vi,k are labeled so that v∗j ≺ v∗j′ in D∗ only if j <

j′. Now we construct a new d-partial order Di,k with the vertex set

{φi,k(v) ∈ Rd | v ∈ V (D)} so that

φi,k(v) =


v if v ∈ V −i,k,
v + jei, if v ∈ Vi,k and v = vj ,

v + lei if v ∈ V +
i,k,

where ei denotes the ith standard basis vector in Rd. By the way of
construction, Di,k is isomorphic to D and |Γ(Di,k)| = |Γ(D)| − 1. If
Γ(Di,k) = ∅, then Di,k is a desired d-partial order. Otherwise, we repeat
this process until we obtain a d-partial order D′ which is isomorphic to
D and satisfies Γ(D′) = ∅.

The length of a directed path P is the number of arcs in P , and denoted
by `(P ).

Lemma 4.3. Let G be the m-step competition graph of a d-partial D
for some positive integers m and d. If two vertices u and v are adjacent
in G, then they have an m-step common prey which has outdegree 0 in
D.

Proof. Take two adjacent vertices u and v in G. By the definition
Cm(D), u and v have an m-step common prey, say z, in D. Take a
longest directed path P starting from z in D and let w be its terminus.
It is clear that w has outdegree 0 in D and w is an (m + `(P ))-step
common prey of u and v. Then w is an m-step common prey of u and
v by Lemma 3.2.

The following theorem is one of our main results.

Theorem 4.4. For a graphG and a positive integerm, dimpoc(G;m) ≥
dimpoc(G;m+ 1).

Proof. Let d = dimpoc(G;m). Then G ∪ Ik = Cm(D) for some d-
partial order D and k ∈ Z≥0. By Proposition 4.2, we may assume D
satisfies the DC-property. Then

δ := min
i
{|ai−bi| : (a1, . . . , ad) and (b1, . . . , bd) are distinct vertices of D}

is a positive real number. Let Y be the set of vertices ofD with outdegree
0. Since D is acyclic, Y 6= ∅. For each y ∈ Y , let φ(y) = y− δ

2(1, . . . , 1) ∈
Rd and Z = {φ(y) | y ∈ Y }. Then the set S := V (D) ∪ Z induces the
d-partial order DS . By the transitivity of D and by the choice of δ, it is
easy to see that N−DS

(φ(y)) = {y} ∪N−D (y) and N+
DS

(φ(y)) = ∅ for each
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y ∈ Y . Furthermore, the set of vertices of outdegree 0 in DS is Z and
the set of vertices of outdegree 1 in DS is Y .

We claim that Cm(D) and Cm+1(DS) have the same edge set. Take
an edge uv in Cm(D). By Lemma 4.3, u and v have a common m-step
prey y which has outdegree 0 in D. Since y ∈ Y , y → φ(y) in DS and
so φ(y) is an (m + 1)-step common prey of u and v in DS . Thus uv is
an edge in Cm+1(DS).

Conversely, take an edge uv in Cm+1(DS). By Lemma 4.3, u and
v have an (m + 1)-step common prey z which has outdegree 0 in DS .
Then there exist two directed paths

Pu : u = u0 → u1 → · · · → um−1 → um → um+1 = z

and
Pv : v = v0 → v1 → · · · → vm−1 → vm → vm+1 = z

of length m+1 in DS . Since Z is the set of vertices of DS with outdegree
0, z ∈ Z and so z = φ(y) for some y ∈ Y . Since DS is transitive and
um−1 → um → φ(y) in DS , we have um−1 → φ(y). Then um−1 ∈
N−DS

(φ(y)) = {y} ∪ N−D (y). However, um−1 6= y, for otherwise um−1
has outdegree 1 in DS , which is impossible as um−1 → um and um−1 →
φ(y). Therefore um−1 ∈ N−D (y). Thus the sequence P ′u : u = u0 →
u1 → · · · → um−1 → y is a directed path in D of length m. Similarly,
P ′v : v = v0 → v1 → · · · → vm−1 → y is a directed path in D of length
m. Then y is an m-step common prey of u and v in D, and therefore
uv is an edge in Cm(D).

We have shown that Cm(D) and Cm+1(DS) have the same edge set.
Since Cm(D) = G ∪ Ik, we have Cm+1(DS) = (G ∪ Ik) ∪ I` = G ∪ Ik+`
where ` = |Z|. Hence dimpoc(G;m+ 1) ≤ d.

By applying induction on m, we have the following corollary.

Corollary 4.5. For every graph G and every positive integer m,
dimpoc(G) ≥ dimpoc(G;m).

5. Partial order competition exponents of graphs

In this section, we introduce an analogue concept of exponent for a
graph in the aspect of partial order m-step competition dimension.

It is well known that, for a {0, 1}-matrix A with Boolean operation,
the matrix sequence {Am}∞m=1 converges to the all-one matrix J if and
only if A is primitive. The smallest positive integer M satisfying Am = J
for all m ≥M is called the exponent of A.
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LetG be a graph. Then the integer-valued sequence {dimpoc(G;m)}∞m=1

is bounded by Proposition 3.7 and decreasing by Theorem 4.4. Therefore
there exists a positive integer M such that dimpoc(G;m) is constant for
any m ≥M . We call the smallest such M the partial order competition
exponent of G and denote it by exppoc(G).

Proposition 5.1. For any graphG with dimpoc(G; 1) = 1, exppoc(G) =
1.

Proof. Since {dimpoc(G;m)}∞m=1 is decreasing, 1 = dimpoc(G; 1) ≥
dimpoc(G; 2) ≥ · · · and so dimpoc(G;m) = 1 for any m ∈ Z>0. Therefore
exppoc(G) = 1.

Proposition 5.2. For any positive integer M , there exists a graph
G such that dimpoc(G; 1) = 2 and exppoc(G) = M .

Proof. Let G be an interval graph which is not of the form Kt ∪ Is
for any t ∈ Z>0 and s ∈ Z≥0. Then dimpoc(G;m) = 2 for any m ∈ Z>0

by Propositions 3.10 and 3.13. Therefore exppoc(G) = 1.
Take a positive integer M ≥ 2. Consider H = Kt ∪ IM where t is an

arbitrary positive integer. Then, by Proposition 3.10, dimpoc(H;M −
1) = 2 and dimpoc(H;M) = 1. Therefore exppoc(H) = M .

Proposition 5.3. For any graphG with dimpoc(G; 1) = 3, exppoc(G) =
1.

Proof. Since dimpoc(G; 1) = 3 > 2, G is not an interval graph as
shown by As shown by Cho and Kim [3]. Thus dimpoc(G;m) > 2 for
any m ∈ Z>0 by Proposition 3.13. On the other hand, by Corollary 4.5,
dimpoc(G;m) ≤ dimpoc(G; 1) = 3 and so dimpoc(G;m) = 3 for any
m ∈ Z>0. Thus exppoc(G) = 1.
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