CLOSED AND DENSE ELEMENTS OF BE-ALGEBRAS

M.Bala Prabhakar*, S.Kalesha Vali**, and M. Sambasiva Rao.***

ABSTRACT. The notions of closed elements and dense elements are introduced in BE-algebras. Characterization theorems of closed elements and closed filters are obtained. The notion of dense elements is introduced in BE-algebras. Dense BE-algebras are characterized with the help of maximal filters and congruences. The concept of D-filters is introduced in BE-algebras. A set of equivalent conditions is derived for every D-filter to become a closed filter.

1. Introduction

The notion of BE-algebras was introduced and extensively studied by H.S. Kim and Y.H. Kim in [5]. These classes of BE-algebras were introduced as a generalization of the class of BCK-algebras by K. Iseki and S. Tanaka [4]. Some properties of filters of BE-algebras were studied by S.S. Ahn and Y.H. Kim in [1] and by J.L. Meng in [6]. In [10], A. Walendziak discussed some relationships between congruence relations and normal filters of a BE-algebra. In [3], Gispert and Torrens defined the Boolean center and the Boolean skeleton of a bounded BCK-algebra and they used the Boolean skeleton to obtain a representation of bounded BCK-algebras. In [7], C. Muresan studied some properties of dense elements and the radical of residuated lattices. Later in 2011, D. Piciu and D. Tascau [8] developed a theory of localization for bounded commutative BCK-algebras.

In this paper, the notions of closed elements is introduced in BE-algebras. A set of equivalent conditions is derived for every element of a BE-algebra to become closed. The notion of closed filters is introduced in BE-algebras. Closed filters are characterized in terms of closed elements

Received Oct 22, 2018; Accepted Jan 10, 2019.

²⁰¹⁰ Mathematics Subject Classification: 06F35, 03G25, 08A30.

Key words and phrases: BE-algebra; maximal filter; closed element; closed filter; dense element; dense BE-algebra; D-filter.

^{***} The corresponding author.

of BE-algebras. The notions of dense elements and dense BE-algebras are introduced. Some characterization theorems of dense BE-algebras are derived in terms of maximal filters and congruences. The concept of D-filters is introduced in BE-algebras. A set of equivalent conditions is obtained for every D-filter of a BE-algebra to become a closed filter.

2. Preliminaries

In this section, we present certain definitions and results which are taken mostly from the papers [1], [2], [3] and [5] for the ready reference of the reader.

DEFINITION 2.1. [5] An algebra (X, *, 1) of type (2, 0) is called a BE-algebra if it satisfies the following properties:

```
(1) x * x = 1,
```

- (2) x * 1 = 1,
- (3) 1 * x = x,
- (4) x * (y * z) = y * (x * z) for all $x, y, z \in X$.

A BE-algebra X is called self-distributive if x*(y*z) = (x*y)*(x*z) for all $x,y,z\in X$. A BE-algebra X is called transitive if $y*z\leq (x*y)*(x*z)$ for all $x,y,z\in X$. Every self-distributive BE-algebra is transitive. A BE-algebra X is called implicative if (x*y)*x=x for all $x,y\in X$. A BE-algebra X is called commutative if (x*y)*y=(y*x)*x for all $x,y\in X$. We introduce a relation \le on a BE-algebra X by $x\le y$ if and only if x*y=1 for all $x,y\in X$. Clearly \le is reflexive and symmetric. If X is commutative, then \le is anti-symmetric and hence a partial order on X. Throughout this article, X stands for a partially ordered set.

Theorem 2.2. [6] Let X be a transitive BE-algebra and $x,y,z\in X$. Then

```
(1) 1 \le x implies x = 1,
```

```
(2) y \le z implies x * y \le x * z and z * x \le y * x.
```

DEFINITION 2.3. [1] A non-empty subset F of a BE-algebra X is called a filter of X if, for all $x, y \in X$, it satisfies the following properties:

```
(1) \ 1 \in F
```

```
(2) x \in F and x * y \in F imply that y \in F.
```

For any $a \in X$, $\langle a \rangle = \{x \in X \mid a^n * x = 1 \text{ for some } n \in \mathbb{N}\}$ is called the principal filter generated a. If X is self-distributive, then $\langle a \rangle = \{x \in X \mid a * x = 1\}$. Let (X, *, 0, 1) be a bounded BE-algebra, where 0 is the smallest element of X with respect to the ordering \leq . Hence 0 * x = 1 for all $x \in X$. For any $x \in X$, define a unary operation N on X as xN = x * 0, where xN is called the pseudo-complement of x. It is easily seen that 0N = 1 and 1N = 0.

PROPOSITION 2.4. [2] Let X be a transitive BE-algebra and $x, y \in X$. Then the following properties hold.

- (1) $x \leq xNN$,
- (2) $x \le y$ implies $yN \le xN$,
- (3) xNNN = xN,
- (4) x * yN = xNN * yN,
- (5) (x * yNN)NN = x * yNN,
- (6) $(x*y)NN \le xNN*yNN$.

THEOREM 2.5. [3] Let X be a BE-algebra and $a, b \in X$. Then a * c = 1 and b * c = 1 imply c = 1 for all $c \in X$ if and only if $\langle a \rangle \cap \langle b \rangle = \{1\}$.

An element x of X is called Boolean [3] if $\langle x \rangle \cap \langle xN \rangle = \{1\}$. Let us denote the set of all Boolean elements of a bounded BE-algebra X by $\mathcal{B}(X)$. Clearly $0, 1 \in \mathcal{B}(X)$.

PROPOSITION 2.6. [3] Let X be a transitive BE-algebra. Then for every $a \in \mathcal{B}(X)$ and $x, y \in X$, the following conditions hold.

- (1) aNN = a,
- (2) a * (a * x) = a * x,
- (3) a * (x * y) = (a * x) * (a * y).

3. Closed elements of BE-algebras

In this section, the notion of closed elements is introduced and studied their properties. A set of equivalent conditions is established for every element of a BE-algebra to become a Boolean element. A set of equivalent conditions is derived for every element of a BE-algebra to become a closed element.

DEFINITION 3.1. An element a of a BE-algebra is a closed element if aNN = a.

We denote by $\mathcal{C}(X)$ the set of all closed elements of a BE-algebra X. Obviously $0, 1 \in \mathcal{C}(X)$. In the following, a characterization of closed elements is derived.

Theorem 3.2. The following are equivalent in a transitive BE-algebra X:

- (1) Every element is closed;
- (2) for $x, y \in X$, xN = yN implies x = y;
- (3) for $x, y \in X$, xN * yN = y * x.

Proof. (1) \Leftrightarrow (2): Assume that every element of X is closed. Let $x, y \in X$ be such that xN = yN. Hence, it implies that x = xNN = yNN = y. Conversely, assume the condition (2). Let $x \in X$. By Proposition 2.4 (3), we have xNNN = xN. From the condition (2), we get xNN = x. Hence x is closed.

- (2) \Rightarrow (3): Assume that the condition (2) holds. Let $x, y \in X$ be two arbitrary elements. Hence xN * yN = (x*0)*(y*0) = y*((x*0)*0) = y*xNN = y*x.
- (3) \Rightarrow (1): Assume that the condition (3) holds. Let $a \in X$. Then, we get aNN = aN * 0 = aN * 1N = 1 * a = a. Therefore a is closed. \square

It is observed from Proposition 2.6 (1) that every Boolean element of a BE-algebra is a closed element. It is evident from the following example that every closed element of a BE-algebra need not be Boolean.

EXAMPLE 3.3. Let $X = \{1, a, b, c, d, 0\}$ be a non-empty set. Define a binary operation * on X as follows:

*	1	a	b	c	d	0
1	1	\overline{a}	b	\overline{c}	\overline{d}	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1 1 1 1 1 1	1	a	1	1	a
0	1	1	1	1	1	1

Clearly (X, *, 0, 1) is a bounded BE-algebra with smallest element 0. Observe that aNN = dN = a; bNN = cN = b; cNN = bN = c and dNN = aN = d. Therefore $\mathcal{C}(X) = X$. But the elements a and d of the BE-algebra X are not Boolean, because of $\langle a \rangle \cap \langle aN \rangle = \langle a \rangle \cap \langle d \rangle = \{1, a\} \cap \{1, d, a, c\} = \{1, a\} \neq \{1\}$ also $\langle d \rangle \cap \langle dN \rangle \neq \{1\}$.

Theorem 3.4. In an implicative BE-algebra, every closed element is Boolean.

Proof. Let X be an implicative BE-algebra. Let $a \in \mathcal{C}(X)$. Let $x \in X$ and suppose a * x = 1 and aN * x = 1. Then, it infers that $xN \leq aNN = a \leq x$. Since X is implicative, we get x = (x * 0) * x = xN * x = 1. Hence by Theorem 2.5, we get that $\langle a \rangle \cap \langle aN \rangle = \{1\}$. Therefore a is a Boolean element.

REMARK 3.5. For any transitive BE-algebra X, define the set $X^* = \{x \in X \mid x = aN \text{ for some } a \in X\}$. Since xNNN = xN for all $x \in X$, it is clear that $X^* = \mathcal{C}(X)$.

Theorem 3.6. Let X be a transitive BE-algebra. Then $\mathcal{C}(X)$ is closed under *.

Proof. From Proposition 2.4 (5), it is clear. \Box

For any two BE-algebras $(X_1, *, 0, 1)$ and $(X_2, *, 0', 1')$, it is clear that their product $X_1 \times X_2$ is a BE-algebra in which the pseudo-complement of any $(a, b) \in X_1 \times X_2$ is defined as (aN, bN). Then the following result is an easy consequence.

THEOREM 3.7. Let $(X_1, *, 0, 1)$ and $(X_2, *, 0, 1)$ be two bounded BE-algebras. Then a_1 and a_2 are closed elements of X_1 and X_2 respectively if and only if (a_1, a_2) is a closed element of $X_1 \times X_2$.

Proof. Let $a_1 \in X_1$ and $a_2 \in X_2$. Assume that a_1 and a_2 are closed elements of X_1 and X_2 respectively. Clearly (a_1, a_2) is a closed element of $X_1 \times X_2$. Conversely assume that (a_1, a_2) is a closed element of $X_1 \times X_2$. Consider the projections $\Pi_i : X_1 \times X_2 \longrightarrow X_i$ for i = 1, 2. Let $\Pi_i(a_1, a_2) = a_i$ for i = 1, 2. We now prove that a_1 and a_2 are closed elements of X_1 and X_2 respectively. Since (a_1, a_2) is a closed element of $X_1 \times X_2$, we get the following:

$$a_1NN = \Pi_1(a_1NN, 1) = \Pi_1(a_1NN, 1NN)$$

= $\Pi_1(a_1, 1)NN = \Pi_1(a_1, 1) = a_1.$

Therefore a_1 is a closed element of X_1 . Similarly a_2 is a closed element of X_2 .

The following corollary is a direct consequence of the above theorem.

COROLLARY 3.8. For any two BE-algebras X_1 and X_2 , $C(X_1 \times X_2) = C(X_1) \times C(X_2)$.

THEOREM 3.9. Let (X, *, 0, 1) and (Y, *, 0', 1') be two BE-algebras and $\alpha : X \to Y$ a BE-morphism. If a is a closed element of X, then $\alpha(a)$ is a closed element of Y.

Proof. Let $a \in \mathcal{C}(X)$. Then $\alpha(a)NN = \alpha(aNN) = \alpha(a)$. Therefore $\alpha(a) \in \mathcal{C}(Y)$.

In the following, the notion of *closed filters* of *BE*-algebras is introduced.

DEFINITION 3.10. A filter F of a BE-algebra X is called a closed filter if $xNN \in F$ implies $x \in F$ for any $x \in X$.

If every element of a BE-algebra is closed, then clearly every filter is a closed filter. However, in the following, closed filters of BE-algebras are characterized.

THEOREM 3.11. A filter F of a transitive BE-algebra X is closed if and only if for any $x, y \in X$, xN = yN and $x \in F$ imply $y \in F$.

Proof. Assume that F is a closed filter of X. Let $x, y \in X$ be such that xN = yN and $x \in F$. Since $x \in F$ and $x \leq xNN$, we get $yNN = xNN \in F$. Since F is closed, it yields that $y \in F$. Conversely, assume that the condition holds. Let $xNN \in F$ for $x \in X$. Since xNNN = xN, we get $x \in F$. Therefore F is a closed filter of X. \square

Proposition 3.12. Every maximal filter of a transitive BE-algebra is closed.

Proof. Let F be a maximal filter of a transitive BE-algebra X. Let $x,y\in X$ be such that xN=yN and $x\in F$. Suppose $y\notin F$. Then $\langle F\cup\{y\}\rangle=X$. Hence $0\in\langle F\cup\{y\}\rangle$, which implies that $y^n*0\in F$ for some positive integer n. Hence

$$y^{n} * 0 \in F \implies \underbrace{y * (y * (\cdots (y} * 0) \cdots)) \in F$$

$$\Rightarrow \underbrace{y * (y * (\cdots (y} * (y * 0)) \cdots)) \in F$$

$$\Rightarrow \underbrace{y * (y * (\cdots (y} * (x * 0)) \cdots)) \in F$$

$$\Rightarrow \underbrace{x * (y * (y * (\cdots (y} * 0)) \cdots)) \in F$$

$$\cdots$$

$$\cdots$$

$$\Rightarrow x^{n} * 0 \in F.$$

Since $x \in F$, we get that $0 \in F$, which is a contradiction. Hence, it infers $y \in F$. Therefore F is closed.

For any filter F of a self-distributive BE-algebra X, it was observed in [9] that θ_F defined by $(x,y) \in \theta_F \Leftrightarrow x * y \in F$ and $y * x \in F$ is the unique congruence whose kernel is F. If X is bounded, then the quotient algebra $X/F = \{F_x \mid x \in X\}$ (where F_x is the congruence class of x modulo θ_F) is also a bounded BE-algebra with smallest element F_0 in which $F_x * F_y = F_{x*y}$ and $F_x N = F_{xN}$ for all $x, y \in X$.

Theorem 3.13. The following are equivalent in a self-distributive BE-algebra X:

- (1) Every element of X is closed;
- (2) for any filter F, C(X/F) = X/F;
- (3) every filter is closed.

Proof. $(1) \Rightarrow (2)$: It is obvious.

- $(2) \Rightarrow (3)$: Assume that the condition (2) holds. Let F be a filter of X and $x \in X$. Suppose $xNN \in F$. For this $x \in X$, we get $F_x \in X/F$. By the condition (2), we get $F_{xNN} = F_xNN = F_x$. Hence $(xNN, x) \in \theta_F$, which gives $xNN * x \in F$. Since $xNN \in F$, it yields that $x \in F$. Therefore F is closed.
- (3) \Rightarrow (1): Assume that every filter is closed. Let $x \in X$. By (3), we get $\langle xNN \rangle$ is closed and $xNN \in \langle xNN \rangle$. Hence $x \in \langle xNN \rangle$. Thus $xNN \leq x$. Therefore xNN = x.

In the following theorem, properties of the homomorphic images and inverse images of closed filters of BE-algebras are studied.

THEOREM 3.14. Let X and Y be two BE-algebras and $\psi: X \to Y$ a bounded BE-morphism. If F is a closed filter of Y, then $\psi^{-1}(F)$ is a closed filter of X. Moreover, if ψ is onto, then $\psi(F)$ is a closed filter for any closed filter F of X.

Proof. Let F be a closed filter of Y. Clearly $\psi^{-1}(F)$ is a filter of X. Let $xNN \in \psi^{-1}(F)$. Then $\psi(x)NN = \psi(xNN) \in F$. Since F is a closed filter of Y, we get that $\psi(x) \in F$. Hence $x \in \psi^{-1}(F)$. Therefore $\psi^{-1}(F)$ is a closed filter of X. Suppose ψ is onto. Let F be a closed filter of X. Clearly $\psi(F)$ is a filter of Y. Let $xNN \in \psi(F)$ where $x \in Y$. Since ψ is onto, there exists $a \in X$ such that $\psi(a) = x$. Hence $\psi(aNN) = \psi(a)NN = xNN$. Hence $aNN \in F$. Since F is closed, it yields $a \in F$. Hence $x = \psi(a) \in \psi(F)$. Therefore $\psi(F)$ is a closed filter of Y.

In the following theorem, a set of equivalent conditions is derived for every filter of a BE-algebra to become a closed filter, which leads to a characterization of C(X).

THEOREM 3.15. Let X be a self-distributive BE-algebra. Then the following conditions are equivalent.

- (1) C(X) = X;
- (2) every element is closed;
- (3) every filter is closed;
- (4) every principal filter is closed.

Proof. $(1) \Leftrightarrow (2), (2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (2): Assume that every principal filter is closed. Let $x \in X$. Clearly $xNN \in \langle xNN \rangle$. Since $\langle xNN \rangle$ is a closed filter, it yields that $x \in \langle xNN \rangle$. Hence $xNN \leq x$. Since $x \leq xNN$, we get x = xNN. Therefore every element of X is closed.

4. Dense elements of BE-algebras

In this section, the notion of dense elements is introduced in BE-algebras. Some properties of the class of dense elements are studied. The concept of dense BE-algebras is introduced and characterized. The notion of D-filters is introduced and characterized with the help of closed elements.

DEFINITION 4.1. An element x of a BE-algebra X is called *dense* if xN = 0.

It is obvious that 1 is a dense element of X. Let us denote the class of all dense elements of a BE-algebra X by $\mathcal{D}(X)$. Then clearly $\mathcal{D}(X)$ is a subalgebra of X.

EXAMPLE 4.2. Let $X = \{1, a, b, 0\}$ be a set and * a binary operation defined on X as follows:

Clearly (X, *, 0, 1) is a bounded BE-algebra with smallest element 0. Observe that aN = a; bN = 0. Therefore b and 1 are dense but a is not a dense element.

PROPOSITION 4.3. For any transitive BE-algebra $X, \mathcal{D}(X)$ is a closed filter of X.

Proof. Clearly $1 \in \mathcal{D}(X)$. Let $x, x * y \in \mathcal{D}(X)$. Then xN = 0 and (x * y)N = 0. By Proposition 2.4 (6), we get $1 = 0N = (x * y)NN \le xNN * yNN = 0N * yNN = yNN$. Thus yN = 0, which yields $y \in \mathcal{D}(X)$. Therefore $\mathcal{D}(X)$ is a filter of X. Let $xNN \in \mathcal{D}(X)$. Then xN = xNNN = 0, which yields $x \in \mathcal{D}(X)$. Therefore $\mathcal{D}(X)$ is closed.

Theorem 4.4. The following conditions hold in a BE-algebra X:

- (1) $a \in \mathcal{D}(X)$ implies $aN \in \mathcal{B}(X)$,
- (2) $a \in \mathcal{D}(X)$ if and only if $aNN \in \mathcal{D}(X)$,
- (3) $\mathcal{D}(X)$ is a subalgebra of X,
- (4) if a is a dense element in X, then f(a) is a dense element in Y where $f: X \to Y$ is a bounded BE-morphism.

Proof. (1). Let $a \in \mathcal{D}(X)$. Then $\langle aN \rangle \cap \langle aNN \rangle = \langle 0 \rangle \cap \langle 1 \rangle = \{1\}$. Therefore $aN \in \mathcal{B}(X)$.

- (2). Since aNNN = aN, it follows immediately.
- (3). Let $a, b \in \mathcal{D}(X)$. Then from (2), it immediately infers $a * b \in \mathcal{D}(X)$.
- (4). Let $a \in \mathcal{D}(X)$. Then f(a)N = f(aN) = f(0) = 0. Therefore $f(a) \in \mathcal{D}(Y)$.

In the following, the notion of dense BE-algebras is introduced.

DEFINITION 4.5. A *BE*-algebra *X* is called a *dense BE*-algebra if every non-zero element of *X* is dense (i.e. xN = 0 for all $0 \neq x \in X$).

Clearly the two-element bounded BE-algebra $\{0,1\}$ is a dense BE-algebra. The bounded BE-algebra given in Example 4.2 is not a dense BE-algebra.

EXAMPLE 4.6. Let $X = \{1, a, b, c, 0\}$ be a non-empty set. Define a binary operation * on X as follows:

*	1	a	b	c	0
1	1	a	b	c	0
a	1	1	b	b	0
b	1	a	1	a	0
c	1	1	1	1	0
0	1	a 1 a 1 1	1	1	1

Clearly (X, *, 0, 1) is a bounded BE-algebra with smallest element 0. Observe that aN = bN = cN = 0. Hence $\mathcal{D}(X) = X - \{0\}$. Therefore X is a dense BE-algebra.

It is observed that the set $\mathcal{D}(X)$ is a filter in a transitive BE-algebra but it is not sure that $\mathcal{D}(X)$ is a filter in a BE-algebra. However, in the following theorem, a necessary and sufficient condition is derived for $\mathcal{D}(X)$ to become a maximal filter which leads to a characterization of dense BE-algebras.

THEOREM 4.7. A BE-algebra X is dense if and only if $\mathcal{D}(X)$ is a maximal filter.

Proof. Assume that X is dense. Clearly $1 \in \mathcal{D}(X)$. Let $a, a * b \in \mathcal{D}(X)$. Suppose b = 0. Since aN = 0, we get 0 = (a * b)N = (a * 0)N = 0N = 1. which is a contradiction. Therefore $b \neq 0$. Since X is dense, it yields bN = 0. Hence $b \in \mathcal{D}(X)$. Therefore $\mathcal{D}(X)$ is a filter of X. Suppose P is a proper filter of X such that $\mathcal{D}(X) \subset P$. Choose $x \in P - \mathcal{D}(X)$. Clearly $x \neq 0$. Since X is dense, it gives xN = 0. Hence $x \in \mathcal{D}(X)$, which is contradiction. Therefore $\mathcal{D}(X)$ is a maximal filter of X.

Conversely, assume that $\mathcal{D}(X)$ is a maximal filter of X. Suppose X is non-dense. Then there exists $0 \neq x \in X$ such that $xN \neq 0$. Hence $x \notin \mathcal{D}(X)$. Then $\mathcal{D}(X) \subset \langle \mathcal{D}(X) \cup \{x\} \rangle$. Since $\mathcal{D}(X)$ is maximal, we get $\langle \mathcal{D}(X) \cup \{x\} \rangle = X$. Hence x*(d*0) = d*(x*0) = 1 for some $d \in \mathcal{D}(X)$. Hence xN = 1. Thus x = 0, which is a contradiction. Therefore X is a dense BE-algebra.

THEOREM 4.8. Let X be a transitive BE-algebra. Then $\mathcal{D}(X)$ is contained in the intersection of all maximal filters of X.

Proof. Let $x \in \mathcal{D}(X)$ and M a maximal filter of X such that $x \notin M$. Then $\langle M \cup \{x\} \rangle = X$. Thus $0 \in \langle M \rangle \cup \{x\} \rangle$. Hence $x^n * 0 \in M$ for some $n \in \mathbb{Z}^+$. Since x * 0 = xN = 0, we get $x^n * 0 = x^{n-1} * (x*0) = x^{n-1} * 0 = x^{n-2} * (x*0) = \dots x * 0 = 0$. Hence $0 = xN = x * 0 = x^n * 0 \in M$, which is a contradiction. Thus $x \in M$ for all maximal filters of X. Therefore $\mathcal{D}(X) \subseteq M$ for all maximal filters of X.

The following result is an immediate consequence of the above two results.

Theorem 4.9. The following are equivalent in a transitive and dense BE-algebra X.

- (1) X has a unique maximal filter;
- (2) $\mathcal{D}(X)$ is maximal;
- (3) $\mathcal{D}(X)$ is the intersection of all maximal filters.

In the following theorem, a set of equivalent conditions is derived for every BE-algebra to become a dense BE-algebra.

Theorem 4.10. The following are equivalent in a transitive BE-algebra X.

- (1) X is dense;
- (2) (a * b)N = (b * a)N for all $0 \neq a, b \in X$;
- (3) a * bNN = b * aNN for all $0 \neq a, b \in X$;
- (4) aNN * bNN = bNN * aNN for all $0 \neq a, b \in X$.

Proof. (1) \Rightarrow (2): Assume that X is dense. Let $0 \neq a, b \in X$. Suppose a*b=0. Then we get $b \leq a*b=0$, which is a contradiction. Hence, it yields $a*b \neq 0$. Similarly $b*a \neq 0$. Then there exist $0 \neq c \in X$ and $0 \neq d \in X$ such that a*b=c and b*a=d. Since X is dense and $c \neq 0$, we get (a*b)N=cN=0. Similarly, we can obtain (b*a)N=dN=0. Therefore (a*b)N=(b*a)N for all $0 \neq a, b \in X$. (2) \Rightarrow (3): Assume that (a*b)N=(b*a)N for all $0 \neq a, b \in X$. Then

$$1 = (b * bNN)NN$$
$$= (bNN * b)NN$$
$$< ((a * bNN) * (a * b))NN$$

 $\leq ((a*bNN)*(a*b))NN$

 $\leq ((a*bNN)*(a*b)NN)NN$ = (a*bNN)*(a*b)NN

Hence, it yields that $a*bNN \le (a*b)NN$. Again, since $b \le bNN$, we get $(a*b)NN \le (a*bNN)NN = a*bNN$. From the above two observations, it is concluded that (a*b)NN = a*bNN. Therefore

(3) \Rightarrow (4): Assume that the condition (3) holds. Let $a, b \in X - \{0\}$. Then by Proposition 2.4 (4), it follows that aNN * bNN = a * bNN = b * aNN = bNN * aNN.

a*bNN = (a*b)NN = (b*a)NN = b*aNN for all $0 \neq a, b \in X$.

 $(4) \Rightarrow (1)$: Assume that the condition (4) holds. Let $0 \neq a \in X$. Then by Proposition 2.4 (4), it implies that aNN = 1*aNN = 1NN*aNN = aNN*1NN = a*1NN = a*1 = 1. Hence, it yields that aN = 0. Therefore X is dense.

If X is dense, then it can be routinely verified that X/F is also dense. Though the converse of this statement is not true, in the following, a necessary and sufficient condition is derived for the quotient algebra X/F to become dense.

THEOREM 4.11. If F is a maximal filter of a self-distributive BE-algebra X, then X/F is dense.

Proof. Let F be a maximal filter of a self-distributive BE-algebra X. Clearly $a \in F$ for all $0 \neq a \in X$. Hence $aNN \in F$ for all $0 \neq a \in X$. Let $F_0 \neq F_x \in X/F$ be a non-zero element. Then clearly $x \neq 0$. Since F is maximal, we get $x \in F$ and hence $xNN \in F$. Since $1 \in F$ and F is a congruence class, it yields $F_{xNN} = F_1$. It implies $F_xN = F_{xN} = F_0$. Thus F_x is a dense element in X/F. Therefore X/F is dense.

For any $x \in F$, it can be seen that $F_x = F_{xNN}$. For, consider $x \in X$. Then clearly $x * xNN \in F$. Since $x \in F$, we get $xNN \in F$. Therefore it concludes that $(x, xNN) \in \theta_F$. In the following theorem, a set of equivalent conditions is derived for every closed filter of a self-distributive BE-algebra to become a maximal filter.

Theorem 4.12. Let X be a self-distributive BE-algebra. Then the following conditions are equivalent.

- (1) X is dense;
- (2) for every filter F, X/F is dense;
- (3) every closed filter is maximal;
- (4) $\mathcal{D}(X)$ is maximal.

Proof. $(1) \Rightarrow (2)$: It is obvious.

- $(2) \Rightarrow (3)$: Assume that the condition (2) holds. Let F be a closed filter of X. Then by the hypothesis, we get X/F is dense. Let $0 \neq x \in X$. It is enough to show that $x \in F$. Since $x \neq 0$, we get $F_x \neq F_0$. Since X/F is dense, it yields $F_{xN} = F_x N = F_0$. Hence $F_{xNN} = F_{0N} = F_1$ and so $(xNN, 1) \in \theta_F$. Thus $xNN = 1 * xNN \in F$. Since F is a closed filter of X, it yields that $x \in F$. Therefore F is a maximal filter of X.
- $(3) \Rightarrow (4)$: Since $\mathcal{D}(X)$ is closed, it follows immediately.
- (4) \Rightarrow (1): Assume that $\mathcal{D}(X)$ is maximal. By Theorem 4.10, it is clear.

The notion of D-filters of BE-algebras is now introduced in the following:

DEFINITION 4.13. A proper filter F of a BE-algebra is called D-filter if $\mathcal{D}(X) \subseteq F$.

In any BE-algebra X, clearly $\mathcal{D}(X)$ is a D-filter and every closed filter is a D-filter. Since every maximal filter of a transitive BE-algebra is closed it is also a D-filter. In the following theorem, some equivalent conditions are derived for every filter of a transitive BE-algebra to become D-filter.

Theorem 4.14. The following conditions are equivalent in a transitive BE-algebra.

- (1) Every filter is a D-filter;
- (2) every principal filter is a *D*-filter;
- (3) X has a unique dense element.

Proof. $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (3)$: Assume that every principal filter is a D-filter. Hence, we get that $\langle 1 \rangle$ is a D-filter of X. Thus, it implies that $\mathcal{D}(X) \subseteq \langle 1 \rangle$. Hence, it concludes that $\mathcal{D}(X) = \{1\}$. Therefore X has the unique dense element, precisely 1.

$$(3) \Rightarrow (1)$$
: It is obvious.

For any transitive BE-algebra X, define a mapping $\nu: X \to X/\mathcal{D}(X)$ by $\nu(x) = \mathcal{D}(X)_x$ for all $x \in X$. Then clearly ν is an epimorphism. In the following theorem, we derive a set of equivalent conditions for ν to become an isomorphism.

Theorem 4.15. The following are equivalent in a transitive BE-algebra X.

- (1) Every filter is a D-filter;
- (2) for any $x, y \in X$, (x * y)N = 0, (y * x)N = 0 implies x = y;
- (3) X is isomorphic to $X/\mathcal{D}(X)$.
- *Proof.* (1) \Rightarrow (2): Assume that every filter of X is a D-filter. Then by above theorem, X has a unique dense element. Let $x,y\in X$. Assume that (x*y)N=0 and (y*x)N=0. Hence $x*y\in \mathcal{D}(X)=\{1\}$ and $y*x\in \mathcal{D}(X)=\{1\}$. Hence x*y=1 and y*x=1. Therefore, it concludes that x=y.
- (2) \Rightarrow (3): Assume that condition (2) holds. Clearly $\nu: X \to X/\mathcal{D}(X)$ is an epimorphism. Let $x, y \in X$ be such that $\mathcal{D}(X)_x = \mathcal{D}(X)_y$. Hence $x*y \in \mathcal{D}(X)$ and $y*x \in \mathcal{D}(X)$, which yield (x*y)N = 0 and (y*x)N = 0. Then by condition (2), we get x = y. Therefore ν is one-one and so ν is an isomorphism.
- (3) \Rightarrow (1): Assume that X is isomorphic to $X/\mathcal{D}(X)$. Let $x, y \in \mathcal{D}(X)$. Clearly $x * y, y * x \in \mathcal{D}(X)$. Hence $\mathcal{D}(X)_x = \mathcal{D}(X)_y$. Since ν is an isomorphism, it yields x = y. Hence X has a unique dense element. Thus every filter of X is a D-filter.

It is clear that every closed filter of a BE-algebra is a D-filter but the converse is not true. For consider the filter $F = \{1, b, c\}$ of the BE-algebra X given in the Example 4.6. Clearly F is a D-filter but not closed. However, in the following theorem, a set of equivalent conditions is derived for every D-filter to become closed.

Theorem 4.16. The following are equivalent in a self-distributive BE-algebra X.

- (1) Every D-filter is closed;
- (2) $\mathcal{D}(X)_x = \mathcal{D}(X)_{xNN}$ for all $x \in X$;
- (3) for any D-filter F, $xNN * x \in F$ for all $x \in X$.
- *Proof.* (1) \Rightarrow (2): Assume that every *D*-filter is a closed. Let $x \in X$. Clearly $\langle \mathcal{D}(X) \cup \{xNN\} \rangle$ is a *D*-filter of *X*. By the hypothesis, $\langle \mathcal{D}(X) \cup \{xNN\} \rangle$ is closed. Since $xNN \in \langle \mathcal{D}(X) \cup \{xNN\} \rangle$, we get $x \in \langle \mathcal{D}(X) \cup \{xNN\} \rangle$. Therefore $xNN * x \in \mathcal{D}(X)$. Clearly $x * xNN = 1 \in \mathcal{D}(X)$. Hence $(x, xNN) \in \theta_{\mathcal{D}(X)}$. Therefore $\mathcal{D}(X)_x = \mathcal{D}(X)_{xNN}$.
- (2) \Rightarrow (3): Assume that $\mathcal{D}(X)_x = \mathcal{D}(X)_{xNN}$ for all $x \in X$. Let F be a D-filter of X. Let $x \in X$. Then by (2), we get $(x, xNN) \in \theta_{\mathcal{D}(X)}$. Therefore $xNN * x \in \mathcal{D}(X) \subseteq F$.
- $(3) \Rightarrow (1)$: Assume that the condition (3) holds. Let F be a D-filter of X. Let $x \in X$ and $xNN \in F$. By condition (3), we get that $xNN * x \in F$. Since F is a filter, it yields that $x \in F$. Therefore F is closed. \square

References

- [1] S. S. Ahn, Y. H. Kim, and J. M. Ko, Filters in commutative BE-algebras, Commun. Korean. Math. Soc. 27 (2012), no.2, 233-242.
- [2] Z. Ciloglu and Y. Ceven, Commutative and bounded BE-algebras, Algebra, 2013 (2013), Article ID 473714, 5 pages.
- [3] J. Gispert and A. Torrens, Boolean representation of bounded BCK-algebras, Soft Comput. 12 (2008), 941-954.
- [4] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1979), no.1, 1-26.
- [5] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (2007), no.1, 113-116.
- [6] B. L. Meng, On filters in BE-algebras, Sci. Math. Japon, Online, e-2010, 105-111.
- [7] C. Muresan, Dense Elements and Classes of Residuated Lattices, Bull. Math. Soc. Sci. Math. Roumanie Tome 53 (2010), no. 1, 11-24.
- [8] D. Piciu and D. D. Tascau, The localization of commutative bounded BCK-algebras, Adv. Pure Math. 1 (2011), 367-377.
- [9] Y. H. Yon, S. M. Lee, and K. H. Kim, On congruences and BE-relations in BE-algebras, Int. Math. Forum, 5 (2010), no.46, 2263-2270.
- [10] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. 69 (2009), no.2, 281-284.

*

Department of Mathematics, Aditya Engineering College(A), Surampalem, Kakinada, Andhra Pradesh, India-533 437. $E\text{-}mail\text{:} \ \text{prabhakar_mb@yahoo.co.in}$

**

Department of Mathematics, JNTUK University College of Engineering, Vizianagaram, Andhra Pradesh, India-535003. E-mail: valijntuv@gmail.com

Department of Mathematics, MVGR College of Engineering(A), Vizianagaram, Andhra Pradesh, India-535005. E-mail: mssraomaths35@rediffmail.com