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CLOSED AND DENSE ELEMENTS OF BE-ALGEBRAS

M.Bala Prabhakar*, S.Kalesha Vali**, and M. Sambasiva
Rao.***

Abstract. The notions of closed elements and dense elements are
introduced in BE-algebras. Characterization theorems of closed el-
ements and closed filters are obtained. The notion of dense elements
is introduced in BE-algebras. Dense BE-algebras are characterized
with the help of maximal filters and congruences. The concept of
D-filters is introduced in BE-algebras. A set of equivalent condi-
tions is derived for every D-filter to become a closed filter.

1. Introduction

The notion of BE-algebras was introduced and extensively studied
by H.S. Kim and Y.H. Kim in [5]. These classes of BE-algebras were
introduced as a generalization of the class of BCK-algebras by K. Iseki
and S. Tanaka [4]. Some properties of filters of BE-algebras were stud-
ied by S.S. Ahn and Y.H. Kim in [1] and by J.L. Meng in [6]. In [10],
A. Walendziak discussed some relationships between congruence rela-
tions and normal filters of a BE-algebra. In [3], Gispert and Torrens
defined the Boolean center and the Boolean skeleton of a bounded BCK-
algebra and they used the Boolean skeleton to obtain a representation of
bounded BCK-algebras. In [7], C. Muresan studied some properties of
dense elements and the radical of residuated lattices. Later in 2011, D.
Piciu and D. Tascau [8] developed a theory of localization for bounded
commutative BCK-algebras.
In this paper, the notions of closed elements is introduced inBE-algebras.
A set of equivalent conditions is derived for every element of a BE-
algebra to become closed. The notion of closed filters is introduced in
BE-algebras. Closed filters are characterized in terms of closed elements
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of BE-algebras. The notions of dense elements and dense BE-algebras
are introduced. Some characterization theorems of dense BE-algebras
are derived in terms of maximal filters and congruences. The concept of
D-filters is introduced in BE-algebras. A set of equivalent conditions is
obtained for every D-filter of a BE-algebra to become a closed filter.

2. Preliminaries

In this section, we present certain definitions and results which are
taken mostly from the papers [1], [2], [3] and [5] for the ready reference
of the reader.

Definition 2.1. [5] An algebra (X, ∗, 1) of type (2, 0) is called a
BE-algebra if it satisfies the following properties:

(1) x ∗ x = 1,
(2) x ∗ 1 = 1,
(3) 1 ∗ x = x,
(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

A BE-algebra X is called self-distributive if x∗(y∗z) = (x∗y)∗(x∗z)
for all x, y, z ∈ X. A BE-algebra X is called transitive if y ∗ z ≤
(x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X. Every self-distributive BE-algebra is
transitive. A BE-algebra X is called implicative if (x ∗ y) ∗x = x for all
x, y ∈ X. A BE-algebra X is called commutative if (x∗y)∗y = (y∗x)∗x
for all x, y ∈ X. We introduce a relation ≤ on a BE-algebra X by x ≤ y
if and only if x ∗ y = 1 for all x, y ∈ X. Clearly ≤ is reflexive and
symmetric. If X is commutative, then ≤ is anti-symmetric and hence
a partial order on X. Throughout this article, X stands for a partially
ordered set.

Theorem 2.2. [6] Let X be a transitive BE-algebra and x, y, z ∈ X.
Then

(1) 1 ≤ x implies x = 1,
(2) y ≤ z implies x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x.

Definition 2.3. [1] A non-empty subset F of a BE-algebra X is
called a filter of X if, for all x, y ∈ X, it satisfies the following properties:

(1) 1 ∈ F ,
(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .
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For any a ∈ X, 〈a〉 = {x ∈ X | an ∗ x = 1 for some n ∈ N} is
called the principal filter generated a. If X is self-distributive, then
〈a〉 = {x ∈ X | a ∗ x = 1}. Let (X, ∗, 0, 1) be a bounded BE-algebra,
where 0 is the smallest element of X with respect to the ordering ≤.
Hence 0 ∗ x = 1 for all x ∈ X. For any x ∈ X, define a unary operation
N on X as xN = x ∗ 0, where xN is called the pseudo-complement of
x. It is easily seen that 0N = 1 and 1N = 0.

Proposition 2.4. [2] Let X be a transitive BE-algebra and x, y ∈ X.
Then the following properties hold.

(1) x ≤ xNN ,
(2) x ≤ y implies yN ≤ xN ,
(3) xNNN = xN ,
(4) x ∗ yN = xNN ∗ yN ,
(5) (x ∗ yNN)NN = x ∗ yNN ,
(6) (x ∗ y)NN ≤ xNN ∗ yNN .

Theorem 2.5. [3] Let X be a BE-algebra and a, b ∈ X. Then
a ∗ c = 1 and b ∗ c = 1 imply c = 1 for all c ∈ X if and only if
〈a〉 ∩ 〈b〉 = {1}.

An element x of X is called Boolean [3] if 〈x〉 ∩ 〈xN〉 = {1}. Let us
denote the set of all Boolean elements of a bounded BE-algebra X by
B(X). Clearly 0, 1 ∈ B(X).

Proposition 2.6. [3] Let X be a transitive BE-algebra. Then for
every a ∈ B(X) and x, y ∈ X, the following conditions hold.

(1) aNN = a,
(2) a ∗ (a ∗ x) = a ∗ x,
(3) a ∗ (x ∗ y) = (a ∗ x) ∗ (a ∗ y).

3. Closed elements of BE-algebras

In this section, the notion of closed elements is introduced and stud-
ied their properties. A set of equivalent conditions is established for
every element of a BE-algebra to become a Boolean element. A set of
equivalent conditions is derived for every element of a BE-algebra to
become a closed element.

Definition 3.1. An element a of a BE-algebra is a closed element
if aNN = a.
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We denote by C(X) the set of all closed elements of a BE-algebra
X. Obviously 0, 1 ∈ C(X). In the following, a characterization of closed
elements is derived.

Theorem 3.2. The following are equivalent in a transitiveBE-algebra
X:

(1) Every element is closed;
(2) for x, y ∈ X, xN = yN implies x = y;
(3) for x, y ∈ X, xN ∗ yN = y ∗ x.

Proof. (1) ⇔ (2): Assume that every element of X is closed. Let
x, y ∈ X be such that xN = yN . Hence, it implies that x = xNN =
yNN = y. Conversely, assume the condition (2). Let x ∈ X. By
Proposition 2.4 (3), we have xNNN = xN . From the condition (2), we
get xNN = x. Hence x is closed.
(2) ⇒ (3): Assume that the condition (2) holds. Let x, y ∈ X be two
arbitrary elements. Hence xN ∗ yN = (x ∗ 0) ∗ (y ∗ 0) = y ∗ ((x ∗ 0) ∗ 0) =
y ∗ xNN = y ∗ x.
(3) ⇒ (1): Assume that the condition (3) holds. Let a ∈ X. Then, we
get aNN = aN ∗ 0 = aN ∗ 1N = 1 ∗ a = a. Therefore a is closed.

It is observed from Proposition 2.6 (1) that every Boolean element of a
BE-algebra is a closed element. It is evident from the following example
that every closed element of a BE-algebra need not be Boolean.

Example 3.3. Let X = {1, a, b, c, d, 0} be a non-empty set. Define a
binary operation ∗ on X as follows:

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra with smallest element 0.
Observe that aNN = dN = a; bNN = cN = b; cNN = bN = c and
dNN = aN = d. Therefore C(X) = X. But the elements a and d of
the BE-algebra X are not Boolean, because of 〈a〉 ∩ 〈aN〉 = 〈a〉 ∩ 〈d〉 =
{1, a} ∩ {1, d, a, c} = {1, a} 6= {1} also 〈d〉 ∩ 〈dN〉 6= {1}.

Theorem 3.4. In an implicative BE-algebra, every closed element
is Boolean.
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Proof. Let X be an implicative BE-algebra. Let a ∈ C(X). Let
x ∈ X and suppose a ∗ x = 1 and aN ∗ x = 1. Then, it infers that
xN ≤ aNN = a ≤ x. Since X is implicative, we get x = (x ∗ 0) ∗ x =
xN ∗ x = 1. Hence by Theorem 2.5, we get that 〈a〉 ∩ 〈aN〉 = {1}.
Therefore a is a Boolean element.

Remark 3.5. For any transitive BE-algebra X, define the set X∗ =
{x ∈ X | x = aN for some a ∈ X}. Since xNNN = xN for all x ∈ X,
it is clear that X∗ = C(X).

Theorem 3.6. Let X be a transitive BE-algebra. Then C(X) is
closed under ∗.

Proof. From Proposition 2.4 (5), it is clear.

For any two BE-algebras (X1, ∗, 0, 1) and (X2, ∗, 0′, 1′), it is clear that
their product X1×X2 is a BE-algebra in which the pseudo-complement
of any (a, b) ∈ X1×X2 is defined as (aN, bN). Then the following result
is an easy consequence.

Theorem 3.7. Let (X1, ∗, 0, 1) and (X2, ∗, 0, 1) be two bounded BE-
algebras. Then a1 and a2 are closed elements of X1 and X2 respectively
if and only if (a1, a2) is a closed element of X1 ×X2.

Proof. Let a1 ∈ X1 and a2 ∈ X2. Assume that a1 and a2 are closed
elements of X1 and X2 respectively. Clearly (a1, a2) is a closed element
of X1 × X2. Conversely assume that (a1, a2) is a closed element of
X1 × X2. Consider the projections Πi : X1 × X2 −→ Xi for i = 1, 2.
Let Πi(a1, a2) = ai for i = 1, 2. We now prove that a1 and a2 are closed
elements of X1 and X2 respectively. Since (a1, a2) is a closed element of
X1 ×X2, we get the following:

a1NN = Π1(a1NN, 1) = Π1(a1NN, 1NN)

= Π1(a1, 1)NN = Π1(a1, 1) = a1.

Therefore a1 is a closed element of X1. Similarly a2 is a closed element
of X2.

The following corollary is a direct consequence of the above theorem.

Corollary 3.8. For any two BE-algebras X1 and X2, C(X1×X2) =
C(X1)× C(X2).

Theorem 3.9. Let (X, ∗, 0, 1) and (Y, ∗, 0′, 1′) be two BE-algebras
and α : X → Y a BE-morphism. If a is a closed element of X, then
α(a) is a closed element of Y .
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Proof. Let a ∈ C(X). Then α(a)NN = α(aNN) = α(a). Therefore
α(a) ∈ C(Y ).

In the following, the notion of closed filters of BE-algebras is introduced.

Definition 3.10. A filter F of a BE-algebra X is called a closed
filter if xNN ∈ F implies x ∈ F for any x ∈ X.

If every element of a BE-algebra is closed, then clearly every filter is
a closed filter. However, in the following, closed filters of BE-algebras
are characterized.

Theorem 3.11. A filter F of a transitive BE-algebra X is closed if
and only if for any x, y ∈ X, xN = yN and x ∈ F imply y ∈ F .

Proof. Assume that F is a closed filter of X. Let x, y ∈ X be such
that xN = yN and x ∈ F . Since x ∈ F and x ≤ xNN , we get
yNN = xNN ∈ F . Since F is closed, it yields that y ∈ F . Conversely,
assume that the condition holds. Let xNN ∈ F for x ∈ X. Since
xNNN = xN , we get x ∈ F . Therefore F is a closed filter of X.

Proposition 3.12. Every maximal filter of a transitive BE-algebra
is closed.

Proof. Let F be a maximal filter of a transitive BE-algebra X. Let
x, y ∈ X be such that xN = yN and x ∈ F . Suppose y /∈ F . Then
〈F ∪ {y}〉 = X. Hence 0 ∈ 〈F ∪ {y}〉, which implies that yn ∗ 0 ∈ F for
some positive integer n. Hence

yn ∗ 0 ∈ F ⇒ y ∗ (y ∗ (· · · (y︸ ︷︷ ︸
n times

∗0) · · · )) ∈ F

⇒ y ∗ (y ∗ (· · · (y︸ ︷︷ ︸
n-1 times

∗(y ∗ 0)) · · · )) ∈ F

⇒ y ∗ (y ∗ (· · · (y︸ ︷︷ ︸
n-1 times

∗(x ∗ 0)) · · · )) ∈ F

⇒ x ∗ (y ∗ (y ∗ (· · · (y︸ ︷︷ ︸
n-1 times

∗0)) · · · )) ∈ F

· · ·
· · ·

⇒ xn ∗ 0 ∈ F.

Since x ∈ F , we get that 0 ∈ F , which is a contradiction. Hence, it
infers y ∈ F . Therefore F is closed.
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For any filter F of a self-distributive BE-algebra X, it was observed
in [9] that θF defined by (x, y) ∈ θF ⇔ x ∗ y ∈ F and y ∗ x ∈ F is
the unique congruence whose kernel is F . If X is bounded, then the
quotient algebra X/F = {Fx | x ∈ X}(where Fx is the congruence class
of x modulo θF ) is also a bounded BE-algebra with smallest element F0

in which Fx ∗ Fy = Fx∗y and FxN = FxN for all x, y ∈ X.

Theorem 3.13. The following are equivalent in a self-distributive
BE-algebra X:

(1) Every element of X is closed;
(2) for any filter F, C(X/F ) = X/F ;
(3) every filter is closed.

Proof. (1)⇒ (2): It is obvious.

(2)⇒ (3): Assume that the condition (2) holds. Let F be a filter of X
and x ∈ X. Suppose xNN ∈ F . For this x ∈ X, we get Fx ∈ X/F . By
the condition (2), we get FxNN = FxNN = Fx. Hence (xNN, x) ∈ θF ,
which gives xNN ∗ x ∈ F . Since xNN ∈ F , it yields that x ∈ F .
Therefore F is closed.

(3) ⇒ (1): Assume that every filter is closed. Let x ∈ X. By (3), we
get 〈xNN〉 is closed and xNN ∈ 〈xNN〉. Hence x ∈ 〈xNN〉. Thus
xNN ≤ x. Therefore xNN = x.

In the following theorem, properties of the homomorphic images and
inverse images of closed filters of BE-algebras are studied.

Theorem 3.14. Let X and Y be two BE-algebras and ψ : X → Y
a bounded BE-morphism. If F is a closed filter of Y , then ψ−1(F ) is a
closed filter of X. Moreover, if ψ is onto, then ψ(F ) is a closed filter for
any closed filter F of X.

Proof. Let F be a closed filter of Y . Clearly ψ−1(F ) is a filter of X.
Let xNN ∈ ψ−1(F ). Then ψ(x)NN = ψ(xNN) ∈ F . Since F is a
closed filter of Y , we get that ψ(x) ∈ F . Hence x ∈ ψ−1(F ). Therefore
ψ−1(F ) is a closed filter of X. Suppose ψ is onto. Let F be a closed
filter of X. Clearly ψ(F ) is a filter of Y . Let xNN ∈ ψ(F ) where
x ∈ Y . Since ψ is onto, there exists a ∈ X such that ψ(a) = x. Hence
ψ(aNN) = ψ(a)NN = xNN . Hence aNN ∈ F . Since F is closed, it
yields a ∈ F . Hence x = ψ(a) ∈ ψ(F ). Therefore ψ(F ) is a closed filter
of Y .

In the following theorem, a set of equivalent conditions is derived for
every filter of a BE-algebra to become a closed filter, which leads to a
characterization of C(X).
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Theorem 3.15. Let X be a self-distributive BE-algebra. Then the
following conditions are equivalent.

(1) C(X) = X;
(2) every element is closed;
(3) every filter is closed;
(4) every principal filter is closed.

Proof. (1)⇔ (2), (2)⇒ (3) and (3)⇒ (4) are obvious.

(4) ⇒ (2): Assume that every principal filter is closed. Let x ∈ X.
Clearly xNN ∈ 〈xNN〉. Since 〈xNN〉 is a closed filter, it yields that
x ∈ 〈xNN〉. Hence xNN ≤ x. Since x ≤ xNN , we get x = xNN .
Therefore every element of X is closed.

4. Dense elements of BE-algebras

In this section, the notion of dense elements is introduced in BE-
algebras. Some properties of the class of dense elements are studied.
The concept of dense BE-algebras is introduced and characterized. The
notion of D-filters is introduced and characterized with the help of closed
elements.

Definition 4.1. An element x of a BE-algebra X is called dense if
xN = 0.

It is obvious that 1 is a dense element of X. Let us denote the class
of all dense elements of a BE-algebra X by D(X). Then clearly D(X)
is a subalgebra of X.

Example 4.2. Let X = {1, a, b, 0} be a set and ∗ a binary operation
defined on X as follows:

∗ 1 a b 0
1 1 a b 0
a 1 1 1 a
b 1 a 1 0
0 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra with smallest element 0.
Observe that aN = a; bN = 0. Therefore b and 1 are dense but a is not
a dense element.

Proposition 4.3. For any transitive BE-algebra X,D(X) is a closed
filter of X.
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Proof. Clearly 1 ∈ D(X). Let x, x ∗ y ∈ D(X). Then xN = 0
and (x ∗ y)N = 0. By Proposition 2.4 (6), we get 1 = 0N = (x ∗
y)NN ≤ xNN ∗ yNN = 0N ∗ yNN = yNN . Thus yN = 0, which
yields y ∈ D(X). Therefore D(X) is a filter of X. Let xNN ∈ D(X).
Then xN = xNNN = 0, which yields x ∈ D(X). Therefore D(X) is
closed.

Theorem 4.4. The following conditions hold in a BE-algebra X:

(1) a ∈ D(X) implies aN ∈ B(X),
(2) a ∈ D(X) if and only if aNN ∈ D(X),
(3) D(X) is a subalgebra of X,
(4) if a is a dense element in X, then f(a) is a dense element in Y

where f : X → Y is a bounded BE-morphism.

Proof. (1). Let a ∈ D(X). Then 〈aN〉 ∩ 〈aNN〉 = 〈0〉 ∩ 〈1〉 = {1}.
Therefore aN ∈ B(X).

(2). Since aNNN = aN , it follows immediately.

(3). Let a, b ∈ D(X). Then from (2), it immediately infers a∗b ∈ D(X).

(4). Let a ∈ D(X). Then f(a)N = f(aN) = f(0) = 0. Therefore
f(a) ∈ D(Y ).

In the following, the notion of dense BE-algebras is introduced.

Definition 4.5. A BE-algebra X is called a dense BE-algebra if
every non-zero element of X is dense (i.e. xN = 0 for all 0 6= x ∈ X).

Clearly the two-element bounded BE-algebra {0, 1} is a dense BE-
algebra. The bounded BE-algebra given in Example 4.2 is not a dense
BE-algebra.

Example 4.6. Let X = {1, a, b, c, 0} be a non-empty set. Define a
binary operation ∗ on X as follows:

∗ 1 a b c 0
1 1 a b c 0
a 1 1 b b 0
b 1 a 1 a 0
c 1 1 1 1 0
0 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra with smallest element 0.
Observe that aN = bN = cN = 0. Hence D(X) = X − {0}. Therefore
X is a dense BE-algebra.
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It is observed that the set D(X) is a filter in a transitive BE-algebra
but it is not sure that D(X) is a filter in a BE-algebra. However, in
the following theorem, a necessary and sufficient condition is derived for
D(X) to become a maximal filter which leads to a characterization of
dense BE-algebras.

Theorem 4.7. A BE-algebra X is dense if and only if D(X) is a
maximal filter.

Proof. Assume that X is dense. Clearly 1 ∈ D(X). Let a, a ∗ b ∈
D(X). Suppose b = 0. Since aN = 0, we get 0 = (a ∗ b)N = (a ∗ 0)N =
0N = 1. which is a contradiction. Therefore b 6= 0. Since X is dense,
it yields bN = 0. Hence b ∈ D(X). Therefore D(X) is a filter of
X. Suppose P is a proper filter of X such that D(X) ⊂ P . Choose
x ∈ P −D(X). Clearly x 6= 0. Since X is dense, it gives xN = 0. Hence
x ∈ D(X), which is contradiction. Therefore D(X) is a maximal filter
of X.

Conversely, assume that D(X) is a maximal filter of X. Suppose X
is non-dense. Then there exists 0 6= x ∈ X such that xN 6= 0. Hence
x /∈ D(X). Then D(X) ⊂ 〈D(X)∪{x}〉. Since D(X) is maximal, we get
〈D(X)∪{x}〉 = X. Hence x∗ (d∗0) = d∗ (x∗0) = 1 for some d ∈ D(X).
Hence xN = 1. Thus x = 0, which is a contradiction. Therefore X is a
dense BE-algebra.

Theorem 4.8. Let X be a transitive BE-algebra. Then D(X) is
contained in the intersection of all maximal filters of X.

Proof. Let x ∈ D(X) and M a maximal filter of X such that x /∈M .
Then 〈M ∪{x}〉 = X. Thus 0 ∈ 〈M〉∪{x}〉. Hence xn ∗0 ∈M for some
n ∈ Z+. Since x∗0 = xN = 0, we get xn ∗0 = xn−1 ∗(x∗0) = xn−1 ∗0 =
xn−2 ∗ (x∗0) = . . . x∗0 = 0. Hence 0 = xN = x∗0 = xn ∗0 ∈M , which
is a contradiction. Thus x ∈ M for all maximal filters of X. Therefore
D(X) ⊆M for all maximal filters of X.

The following result is an immediate consequence of the above two re-
sults.

Theorem 4.9. The following are equivalent in a transitive and dense
BE-algebra X.

(1) X has a unique maximal filter;
(2) D(X) is maximal;
(3) D(X) is the intersection of all maximal filters.
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In the following theorem, a set of equivalent conditions is derived for
every BE-algebra to become a dense BE-algebra.

Theorem 4.10. The following are equivalent in a transitive BE-
algebra X.

(1) X is dense;
(2) (a ∗ b)N = (b ∗ a)N for all 0 6= a, b ∈ X;
(3) a ∗ bNN = b ∗ aNN for all 0 6= a, b ∈ X;
(4) aNN ∗ bNN = bNN ∗ aNN for all 0 6= a, b ∈ X.

Proof. (1) ⇒ (2): Assume that X is dense. Let 0 6= a, b ∈ X.
Suppose a ∗ b = 0. Then we get b ≤ a ∗ b = 0, which is a contradiction.
Hence, it yields a ∗ b 6= 0. Similarly b ∗ a 6= 0. Then there exist 0 6=
c ∈ X and 0 6= d ∈ X such that a ∗ b = c and b ∗ a = d. Since X is
dense and c 6= 0, we get (a ∗ b)N = cN = 0. Similarly, we can obtain
(b ∗ a)N = dN = 0. Therefore (a ∗ b)N = (b ∗ a)N for all 0 6= a, b ∈ X.

(2)⇒ (3): Assume that (a ∗ b)N = (b ∗ a)N for all 0 6= a, b ∈ X. Then

1 = (b ∗ bNN)NN

= (bNN ∗ b)NN
≤ ((a ∗ bNN) ∗ (a ∗ b))NN
≤ ((a ∗ bNN) ∗ (a ∗ b)NN)NN

= (a ∗ bNN) ∗ (a ∗ b)NN
Hence, it yields that a ∗ bNN ≤ (a ∗ b)NN . Again, since b ≤ bNN ,
we get (a ∗ b)NN ≤ (a ∗ bNN)NN = a ∗ bNN . From the above two
observations, it is concluded that (a ∗ b)NN = a ∗ bNN . Therefore
a ∗ bNN = (a ∗ b)NN = (b ∗ a)NN = b ∗ aNN for all 0 6= a, b ∈ X.

(3) ⇒ (4): Assume that the condition (3) holds. Let a, b ∈ X − {0}.
Then by Proposition 2.4 (4), it follows that aNN ∗ bNN = a ∗ bNN =
b ∗ aNN = bNN ∗ aNN .

(4) ⇒ (1): Assume that the condition (4) holds. Let 0 6= a ∈ X. Then
by Proposition 2.4 (4), it implies that aNN = 1∗aNN = 1NN ∗aNN =
aNN ∗ 1NN = a ∗ 1NN = a ∗ 1 = 1. Hence, it yields that aN = 0.
Therefore X is dense.

If X is dense, then it can be routinely verified that X/F is also dense.
Though the converse of this statement is not true, in the following, a
necessary and sufficient condition is derived for the quotient algebra
X/F to become dense.

Theorem 4.11. If F is a maximal filter of a self-distributive BE-
algebra X, then X/F is dense.
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Proof. Let F be a maximal filter of a self-distributive BE-algebra X.
Clearly a ∈ F for all 0 6= a ∈ X. Hence aNN ∈ F for all 0 6= a ∈ X.
Let F0 6= Fx ∈ X/F be a non-zero element. Then clearly x 6= 0. Since
F is maximal, we get x ∈ F and hence xNN ∈ F . Since 1 ∈ F and F
is a congruence class, it yields FxNN = F1. It implies FxN = FxN = F0.
Thus Fx is a dense element in X/F . Therefore X/F is dense.

For any x ∈ F , it can be seen that Fx = FxNN . For, consider x ∈ X.
Then clearly x ∗ xNN ∈ F . Since x ∈ F , we get xNN ∈ F . Therefore
it concludes that (x, xNN) ∈ θF . In the following theorem, a set of
equivalent conditions is derived for every closed filter of a self-distributive
BE-algebra to become a maximal filter.

Theorem 4.12. Let X be a self-distributive BE-algebra. Then the
following conditions are equivalent.

(1) X is dense;
(2) for every filter F,X/F is dense;
(3) every closed filter is maximal;
(4) D(X) is maximal.

Proof. (1)⇒ (2): It is obvious.

(2)⇒ (3): Assume that the condition (2) holds. Let F be a closed filter
of X. Then by the hypothesis, we get X/F is dense. Let 0 6= x ∈ X. It
is enough to show that x ∈ F . Since x 6= 0, we get Fx 6= F0. Since X/F
is dense, it yields FxN = FxN = F0. Hence FxNN = F0N = F1 and so
(xNN, 1) ∈ θF . Thus xNN = 1 ∗ xNN ∈ F . Since F is a closed filter
of X, it yields that x ∈ F . Therefore F is a maximal filter of X.

(3)⇒ (4): Since D(X) is closed, it follows immediately.

(4) ⇒ (1): Assume that D(X) is maximal. By Theorem 4.10, it is
clear.

The notion ofD-filters ofBE-algebras is now introduced in the following:

Definition 4.13. A proper filter F of a BE-algebra is called D-filter
if D(X) ⊆ F .

In any BE-algebra X, clearly D(X) is a D-filter and every closed
filter is a D-filter. Since every maximal filter of a transitive BE-algebra
is closed it is also a D-filter. In the following theorem, some equiva-
lent conditions are derived for every filter of a transitive BE-algebra to
become D-filter.

Theorem 4.14. The following conditions are equivalent in a transi-
tive BE-algebra.
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(1) Every filter is a D-filter;
(2) every principal filter is a D-filter;
(3) X has a unique dense element.

Proof. (1)⇒ (2) is clear.

(2)⇒ (3): Assume that every principal filter is a D-filter. Hence, we get
that 〈1〉 is a D-filter of X. Thus, it implies that D(X) ⊆ 〈1〉. Hence, it
concludes that D(X) = {1}. Therefore X has the unique dense element,
precisely 1.

(3)⇒ (1): It is obvious.

For any transitive BE-algebra X, define a mapping ν : X → X/D(X)
by ν(x) = D(X)x for all x ∈ X. Then clearly ν is an epimorphism. In
the following theorem, we derive a set of equivalent conditions for ν to
become an isomorphism.

Theorem 4.15. The following are equivalent in a transitive BE-
algebra X.

(1) Every filter is a D-filter;
(2) for any x, y ∈ X, (x ∗ y)N = 0, (y ∗ x)N = 0 implies x = y;
(3) X is isomorphic to X/D(X).

Proof. (1) ⇒ (2): Assume that every filter of X is a D-filter. Then
by above theorem, X has a unique dense element. Let x, y ∈ X. Assume
that (x ∗ y)N = 0 and (y ∗ x)N = 0. Hence x ∗ y ∈ D(X) = {1} and
y ∗ x ∈ D(X) = {1}. Hence x ∗ y = 1 and y ∗ x = 1. Therefore, it
concludes that x = y.

(2) ⇒ (3): Assume that condition (2) holds. Clearly ν : X → X/D(X)
is an epimorphism. Let x, y ∈ X be such that D(X)x = D(X)y. Hence
x∗y ∈ D(X) and y∗x ∈ D(X), which yield (x∗y)N = 0 and (y∗x)N = 0.
Then by condition (2), we get x = y. Therefore ν is one-one and so ν is
an isomorphism.

(3)⇒ (1): Assume that X is isomorphic to X/D(X). Let x, y ∈ D(X).
Clearly x ∗ y, y ∗ x ∈ D(X). Hence D(X)x = D(X)y. Since ν is an
isomorphism, it yields x = y. Hence X has a unique dense element.
Thus every filter of X is a D-filter.

It is clear that every closed filter of a BE-algebra is a D-filter but the
converse is not true. For consider the filter F = {1, b, c} of the BE-
algebra X given in the Example 4.6. Clearly F is a D-filter but not
closed. However, in the following theorem, a set of equivalent conditions
is derived for every D-filter to become closed.
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Theorem 4.16. The following are equivalent in a self-distributive
BE-algebra X.

(1) Every D-filter is closed;
(2) D(X)x = D(X)xNN for all x ∈ X;
(3) for any D-filter F, xNN ∗ x ∈ F for all x ∈ X.

Proof. (1) ⇒ (2): Assume that every D-filter is a closed. Let x ∈
X. Clearly 〈D(X) ∪ {xNN}〉 is a D-filter of X. By the hypothesis,
〈D(X) ∪ {xNN}〉 is closed. Since xNN ∈ 〈D(X) ∪ {xNN}〉, we get
x ∈ 〈D(X)∪{xNN}〉. Therefore xNN ∗x ∈ D(X). Clearly x ∗xNN =
1 ∈ D(X). Hence (x, xNN) ∈ θD(X). Therefore D(X)x = D(X)xNN .

(2) ⇒ (3): Assume that D(X)x = D(X)xNN for all x ∈ X. Let F be
a D-filter of X. Let x ∈ X. Then by (2), we get (x, xNN) ∈ θD(X).
Therefore xNN ∗ x ∈ D(X) ⊆ F .

(3)⇒ (1): Assume that the condition (3) holds. Let F be aD-filter ofX.
Let x ∈ X and xNN ∈ F . By condition (3), we get that xNN ∗ x ∈ F .
Since F is a filter, it yields that x ∈ F . Therefore F is closed.
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