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GALOIS POLYNOMIALS

Ji-Eun Lee* and Ki-Suk Lee**

Abstract. We associate a positive integer n and a subgroup H
of the group G(n) with a polynomial Jn,H(x), which is called the
Galois polynomial. It turns out that Jn,H(x) is a polynomial with
integer coefficients for any n and H. In this paper, we provide
an equivalent condition for a subgroup H to provide the Galois
polynomial which is irreducible over Q.

1. Introduction

Let n be a positive integer and ζn be the n-th primitive root of unity,

that is ζn = e
2πi
n . It is well known that the n-th Cyclotomic polynomial

Φn(x) is equal to

Φn(x) =
∏

k∈G(n)

(x− ζkn),

where G(n) is the multiplicative group of invertible integers modulo n.

SupposeH be a subgroup ofG = G(n) andG/H = {h1H,h2H, · · · , hlH}
be its corresponding quotient group. For each k = 1, · · · , l, define ak =∑

h∈H ζ
hkh. We now consider the monic polynomial having a1, · · · , al

as its roots, denoted by Jn,H(x). Then the polynomial

Jn,H(x) = (x− a1)(x− a2) · · · (x− al)
is called Galois polynomial.

In this paper, the irreducibility of Galois polynomials is studied. If
n is square-free, Jn,H(x) is irreducible over Q for any subgroup H([1],
Theorem3.6). However, it is not always true if n has a squared factor.
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Here, we modify Evans’ criterion([5]) and prove the condition of H to
get an irreducible Galois polynomial when n is general.

2. Irreducibility of Galois polynomials

Throughout the paper, r is the product of the distinct prime factors
of n, or twice that, according as 8 - n or 8 | n. Let H be a subgroup
of G(n) and define η =

∑
h∈H σh(ζ). Write n = pα ·m where p is the

largest prime factor of n > 1 with p - m, α ≥ 1.

In this section, we study the irreducibility of Jn,H(x) when n is gen-
eral. If n is not square-free, the condition of H to get an irreducible
Galois polynomial is not simple. We will show that if no nontrivial el-
ement of H ≡ 1 (mod r), the Galois polynomial Jn,H(x) is irreducible.
First, we prove the following Lemma which will be used proving main
Theorem.

Lemma 2.1. Suppose that k ∈ Z with p - k and that pB‖(x − 1)

where B ≥ 1, but B > 1 when p = 2. Then pA+B‖(xkpA − 1) for each
integer A ≥ 0.

Proof. We can write x = mpB + 1 with p - m and prove the Lemma
by induction on A.

When A = 0,

xk − 1 = (mpB + 1)k − 1

= (mpB)k + kC1(mp
B)k−1 + · · ·+ kCk−1(mp

B) + 1− 1

= mpB{(mpB)k−1 + · · ·+ kCk−2(mp
B) + kCk−1}

= mpB{(mpB)k−1 + · · ·+ kCk−2(mp
B) + k}.

Since p - k, pB | (xk− 1) and pB+1 - (xk− 1), that is pB ‖ (xk− 1).
When A = 1,

xkp − 1 = (mpB + 1)kp − 1

= (mpB)kp + kp(mpB)kp−1 + · · ·+ kp(mpB) + 1− 1

= {(mpB)kp + kp(mpB)kp−1 · · ·+ kpC2(mp
B)2 + kmpB+1}.

Since p - km, pB+1 ‖ kmpB+1. Therefore pB+1 ‖ (xkp − 1).
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Now, assume that Lemma is true for A, we will show that it is true for
A+ 1.

xkp
A+1 − 1 = (xkp

A − 1)(xkp
A(p−1) + xkp

A(p−2) + · · ·+ xkp
A

+ 1)

As we assumed, pA+B ‖ (xkp
A − 1), we will check if p ‖ (xkp

A(p−1) +

xkp
A(p−2) + · · ·+ xkp

A
+ 1).

xkp
A(p−1) = (1 +mpB)kp

A(p−1) = · · ·+ kpA(p− 1)mpB + 1,

xkp
A(p−2) = (1 +mpB)kp

A(p−2) = · · ·+ kpA(p− 2)mpB + 1,

...

xkp
A

= (1 +mpB)kp
A

= · · ·+ kpAmpB + 1.

Therefore,

xkp
A(p−1) + xkp

A(p−2) + · · ·+ xkp
A

+ 1 = · · ·+ k(
(p− 1)p

2
)mpA+B + p

= p(· · ·+ k(
(p− 1)p

2
)mpA+B−1 + 1).

So we get pA+B+1 ‖ (xkp
A+1 − 1).

Lemma 2.2. Let x ∈ Z, x ≡ 1 (mod r) and x 6= 1 (mod n). Then
for some d > 0 and some prime t such that t2 | n, xd ≡ 1 (mod n

t ) and

xd 6= 1 (mod n).

Proof. We proceed by induction on the number of distinct prime fac-
tors of n. Since t2|n is a condition, we may assume n = pα, a ≥ 2 for the
first step of induction. Then x = pα−1 +1 and d = 1 will work. Now, we
assume that n = pα ·m with (p,m) = 1 and consider two cases; when
pα | (x− 1) and pα - (x− 1).

Case 1: pα | (x− 1)
Since x ≡ 1(mod r0) and x 6= 1(mod m), the induction hy-
pothesis yields some d > 0 and some prime t such that t2|m,
xd ≡ 1(mod m/t), and xd 6= 1(mod m). Thus xd ≡ 1(mod n

t ) and

xd 6= 1(mod n).
Case 2: pα - (x− 1)

Since x ≡ 1(mod r), we have pB‖(x − 1). where α > B ≥ 1
and B > 1 when p = 2. Since p is the largest prime factor of n,
p - φ(m). Define d = φ(m)pA, where A = α − B − 1. Note that
A ≥ 0. By Lemma 2.1, pα−1 ‖ (xd−1). Also xd ≡ 1(mod m) since
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φ(m)|d. Therefore xd ≡ 1(mod n
t ) and xd 6= 1(mod n) holds with

t = p. Finally note that p2|n since α > B ≥ 1.

Lemma 2.3. If no nontrivial element of H is ≡ 1(mod r) and H =
G(n), then η = ±1.

Proof. If no nontrivial element of H is ≡ 1(mod r) and H = G(n), n
is square free. The Ramanujan’s sum

∑
x∈G ζ

x
n equals µ(n), where µ is

the Möbius function. Since n is square free, µ(n) = ±1, so η = ±1.

Theorem 2.4. Suppose that no nontrivial element ofH is≡ 1(mod r).
Then η 6= σc(η) for all c ∈ G−H.

Proof. We proceed by induction on the number of distinct prime fac-
tors of n. For the first step, let p be any prime number. If n = p, we get
η 6= σc(η) since Galois polynomial Jn,H(x) is always irreducible since all

roots of Jn,H(x) are distinct([1], Theorem2.5). If n = pk, with k ≥ 2,
we get η 6= σc(η)([4], Theorem3.7).

Now, we consider when n has more than one prime factor. We may
write n = pα ·m, where (p,m) = 1. Let the subgroup I ⊂ H defined by

I = {x ∈ H : x ≡ 1 (mod pα)}.
Reduction (mod m) maps I isomorphically onto a subgroup J ⊂ Gm.
Write

H =
k⋃
i=1

xiI,

a disjoint union of cosets with x1 = 1. Then

R := σm+pα(η) =
∑
h∈H

ζhmζ
h
pα =

k∑
i=1

σxi{ζpα
∑
x∈I

σx(ζm)} =
k∑
i=1

σxi (δζpα) ,

where η =
∑

h∈H σh(ζn) and δ =
∑

x∈I σx(ζm).
Since δ =

∑
x∈I σx(ζm) =

∑
x∈J σx(ζm), and m has one less distinct

prime factors than n, by induction hypothesis, τw(δ) 6= δ for all w ∈
Gm − J .

For 1 ≤ i ≤ k, write

xi = psi + ri, cxi = ps′i + r′i (0 < ri, r
′
i < p).

We proceed to show that

r1, · · · , rk are distinct and r′1, · · · , r′k are distinct.



Galois polynomials 175

If xi ≡ xj (mod p) with i 6= j, then x := xix
−1
j ≡ 1 (mod p). Since the

cosets are different, x 6= 1 (mod pα). Thus

pB‖(x− 1) with 1 ≤ B < α.

By Lemma 2.1,

xp
α−B ≡ 1 (mod pα).

Since xϕ(r) ≡ 1 (mod r) and xϕ(r) ∈ H, xϕ(r) ≡ 1 (mod n). Therefore

xϕ(r) ≡ 1(mod pα). Since the exponents pα−B and ϕ(r) are relatively
prime, x ≡ 1 (mod pα). This is a contradiction. So, similarly we can
prove that r′1, · · · , r′k are different. If cxi ≡ cxj(mod p), then xi ≡
xj(mod p).

We will prove that η 6= σc(η) if c ∈ G−H. Suppose that η = σc(η).
We want to show that c ∈ H. If η = σc(η), then R is σc(R).

k∑
i=1

σxi(δ)ζ
xi
pα = R = σc(R) =

k∑
i=1

σcxi(δ)ζ
cxi
pα .

k∑
i=1

(
ζpsipα σxi(δ)

)
ζripα =

k∑
i=1

(
ζ
ps′i
pα σcxi(δ)

)
ζ
r′i
pα .

Since ζpα , ζ
2
pα , · · · , ζ

p−1
pα comprise a part of a basis for Q(ζn) over

Q(ζpn), r′i = r1 = 1 for some i, and

ζps1pα σx1(δ) = ζ
ps′i
pα σcxi(δ).

Note that x1 = 1, r1 = 1, and s1 = 0. Then we get δ = ζd−1pα σd(δ), where

d := cxi = ps′i + 1.

So, σd(δ) = ζ1−dpα δ.

Assume for the purpose of contradiction that d 6= 1 (mod pα). Then
pB‖(1− d) for some B with 1 ≤ B < α, and B > 1 when p = 2. Define

dA = dϕ(m)pA , where A = α−B − 1.

By Lemma 2.1,

(2.1) pα−1‖(dA − 1).

Since dϕ(m) ≡ 1 (mod m), m divides dA−1. Consequently mpα−1‖(dA−
1). Applying σd successively to σd(δ) = ζ1−dpα δ, we get σdA(δ) = δζ1−dApα .

Therefore, δ ≡ δζ1−dApα , and δ(1 − ζ1−dApα ) = 0. This implies that
1 − dA ≡ 0 (mod pα), which contradicts to (2.1). So we have that
d ≡ 1 (mod pα).
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Reduction (mod m) maps d to an element y ∈ Gm. Since y ≡
d (mod m) and δ ∈ Q(ζm), we get

τy(δ) = σd(δ).

Also, d ≡ 1 (mod pα) implies that σd(δ) = ζ1−dpα δ is equal to δ. Therefore
τyδ = δ and m has one less prime factors than n, we get by induction
assumption, y ∈ J . Since I and J are isomorphic, there exists h ∈ I
such that h ≡ y (mod m). This implies that d ≡ h (mod m). Also
have h ≡ 1 (mod pα) because h ∈ I. Since d ≡ h ≡ 1 (mod pα) and
d ≡ h (mod m), we get d ≡ h (mod n). Therefore d = h in Gn and
d is in H, since h is in I. Finally we get c ∈ H, because d = cxi and
xi ∈ H.

Theorem 2.5. No nontrivial element of H is ≡ 1 (mod r) if and only
if η 6= 0.

Proof.

=⇒ If G = H, then η 6= 0 by Lemma2.3. If G 6= H, then η 6= 0 by
Theorem2.4.

⇐= If there exists a nontrivial element of H which is ≡ 1 (mod r),
then by Lemma2.2, there exist integers d, t with t prime such that
t2 | n, xd ≡ 1(mod n

t ) and xd 6= 1(mod n). Define K = {h ∈
H|h ≡ 1 (mod n

t )}. And express η by using the cosets of K in H.
Then we can show that η = 0.

Theorem 2.6. If η 6= 0, then η has degree e = |G\H| over Q.

Proof. Suppose that η 6= 0. By Theorem2.5, no nontrivial elements
of H is ≡ 1 (mod r). Then by Theorem2.4, η 6= σc(η) for c ∈ H. Thus η
is fixed by exactly |H| automorphisms σc in Gal(Q(ζ)) so η has degree
e over Q.

Note: This means that Galois polynomial is irreducible if and only
if η 6= 0, or equivalently if and only if no nontrivial element of H is
≡ 1 (mod r).
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