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A REDUCED-ORDER MODELLING FOR

ROSENAU-RLW EQUATION WITH B-SPLINE

GALERKIN FINITE ELEMENT METHOD*

Li-Jiao Jia** and Guang-Ri Piao***

Abstract. We apply a reduced-order method based on B-spline
Galerkin finite elements formulation to Rosenau-RLW equation for
the first time and explain their process in detail. The ensemble of
snapshots is very large generally, and it is difficult to apply POD
to the ensemble of snapshots directly. Hence, we try to pick up
important snapshots among the whole data. In this paper, we rep-
resent three different reduced-order schemes. First, the classical
POD technique is examined. Second, (equally sampled snapshots)
are exploited for POD technique. Finally, afterward sampling snap-
shots by CVT, for those snapshots, POD technique is implemented
again.

1. Introduction

In the study of the dynamics of dense discrete systems, the case
of wave-wave and wave-wall interactions cannot be described using the
well-known Korteweg-de Vries (KdV) equation which describes nonlin-
ear wave propagation phenomena. To overcome this flaw of the KdV
equation, Rosenau [24, 25] proposed the so-called Rosenau equation.
On the other hand, as an alternative to the KdV equation the regular-
ized long wave (RLW) equation has been studied by Benjamin et al.[2]
and others[3, 14, 15, 16, 18]. Considering the nonlinear wave further in
the mathematical model, one can include the viscous term −uxxt in the

Received September 13, 2018; Accepted December 27, 2018.
2010 Mathematics Subject Classification: Primary 49J20,76D05; Secondary

49B22.
Key words and phrases: B-spline Galerkin finite element method, proper orthog-

onal decomposition, centroidal Voronoi tessellation, Rosenau-RLW equation.
*This work was supported by Jilin Provincial Natural Science Foundation of China

(20180101215JC).
***Corresponding author.



262 Li-Jiao Jia and Guang-Ri Piao

Rosenau equation, i.e.,

ut + uxxxxt − uxxt + ux + uux = 0.

This equation is usually called the Rosenau-RLW equation. The exis-
tence and uniqueness of the solution and its error analysis of approximate
finite element solution are given by Atouani et al.[1]. Zuo et al.[26] have
proposed a Crank-Nicolson finite difference method for the RRLW equa-
tion. Pan et al.[17] also have presented a three-level difference scheme
for the Rosenau-RLW equation.

One of the main contribution of this work is to attempt to determine
accurate approximate solutions of a complex system using very few de-
grees of freedom based on quadratic B-spline finite element Galerkin
approximation for the following Rosenau-RLW equation:

(1.1)


ut + uxxxxt − uxxt + ux + uux = 0, x ∈ (0, L), t ∈ (0, T ],

u(0, t) = u(L, t) = 0, ux(0, t) = ux(L, t) = 0, , t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ [0, L].

Spline functions yield smooth interpolating curves which are less
likely to exhibit the large oscillation characteristics of high-degree poly-
nomials. This method gives an interpolating polynomial that is smoother
and has smaller error than some other interpolating polynomials such
as Lagrange polynomial and Newton polynomial. An approximation of
the Rosenau-Burgers equation using quadratic B-spline finite element
method and related error analysis are studied by Piao et al.[22]. Here,
we exploit quadratic B-spline finite element method again to approxi-
mate the solution of the Rosenau-RLW equation.

Another important contribution of this work is to develop a reduced
-order model for the Rosenau-RLW equation with a new technique deal-
ing with a large snapshot set. When studying turbulent and chaotic
systems and in the real-time feedback control of complex systems, one
recognizes model reduction improves an efficiency in computation of
complex system. For the past decades, the proper orthogonal decompo-
sition (POD) has been one of the most popular reduced-order modeling
technique in many studies and it is a main tool for model reduction; see
[10, 4, 5, 21]. The POD starts with a set of snapshots that are gen-
erated by evaluating the computational solution of transient problems
at several instants of time or by evaluating the computational solution
for several values of the parameters appearing in the problem descrip-
tion. A combination of the two is sometimes used and the snapshots
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must contain sufficient information to accurately represent the dynam-
ics of solutions of the PDEs. Thereafter, the well-known singular value
decomposition (SVD) is applied to the snapshot matrices and POD ba-
sis is then given by the left singular vectors corresponding to the most
dominant singular values of the matrix having the snapshot vectors as
its columns. However, the size of the snapshot matrices are sometimes
very large and it consumes a lot of time or even not to derive the POD
bases directly from those matrices. Thus, some people would like to
select a part of the snapshots from the original snapshots set , then
construct more smaller size matrix. For such a matrix, one can use the
SVD method to get the POD bases. So far, one of the common method
is the uniform selection method [4, 5, 13], which is to choose snapshots
in equally orderded way. That method brings a quite good result, but
it is not the method of optimal selection.

Meanwhile, the centroidal Voronoi tessellation (CVT) has the prop-
erty of the systematically extracting best representatives in some optimal
sense. In CVT sampling, we start with a snapshot set just as is done
in a POD-based setting. We then construct a special Voronoi cluster-
ing of the snapshot set for which the means of the clusters are also the
generators of the corresponding Voronoi clusters, then the generators of
the Voronoi clustering make up a new snapshots set. Therefore, we use
the compressed snapshots set by CVT for POD method to construct re-
duced bases to determine a very low-dimensional approximation to the
solution of the complex dynamical system. To do so, we must develop
basis functions that are in some way closely related to the problem being
approximated in in such reduced models. Once a very low-dimensional
reduced basis has been determined, we can employ it to solve the com-
plex system by applying a Galerkin method. In general, reduced bases
are globally supported so that the discrete systems are dense in low-
dimension but the lack of sparsity in the discrete system.

The rest of paper goes as follows. In Section 2, we describe the B-
spline finite element approximation of a solution of the Rosenau-RLW
equation. In Section 3, we show how CVT bases are defined and con-
structed and how they are used to determine very low-dimensional ap-
proximations. For a comparison reason, we also briefly review POD-
based reduced-order bases and its reduced-order approximations. In
Section 3, we compute an example to show how snapshots sets can be
generated and to compare and contrast the performance of CVT and
POD based reduced-order modeling. In Section 4, we apply a CVT
based reduced-model to a distributed feedback control problem for the
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Rosenau-RLW equation, which is our main purpose. Some numerical
results for a distributed feedback control problem are also given.

2. Finite element approximation of the Rosenau-RLW equa-
tion

Standard Lagrangian finite element basis functions offer only sim-
ple C0-continuity and therefore they cannot be used for the spatial dis-
cretization of the higher-order differential equations(e.g., third-order dif-
ferential equation or forth-order differential equation), but the B-spline
basis function can at least achieve C1-continuous globally, and its basis
function is often used to solve the higher order differential equations.

Let us consider the Rosenau-RLW equation with boundary conditions
and the initial condition. We use a variational formulation to define a
finite element method to approximate (1.1). A variational formulation
of the problem (1.1) is as the following: find u ∈ L2(0, T ;H2

0 (0, L)) such
that

(2.1)



∫ L

0
utvdx+

∫ L

0
uxxtv

′′dx+

∫ L

0
uxtv

′dx

+ α

∫ L

0
uxv

′dx+ β

∫ L

0
uxvdx+

∫ L

0
uuxvdx

=

∫ L

0
fvdx for all v ∈ H1

0 (0, L),

u(0, x) = u0(x) in [0, L],

where H2
0 = {v ∈ H2(0, L) : v(0) = v(1) = 0, v′(0) = v′(1) = 0} and

H2(0, L) = {v ∈ L2(0.L) : v′ ∈ L2(0, L), v′′ ∈ L2(0, L)}. We write
the first spatial derivative as “ d

dx = ′” and the second spatial derivative

as “ d2

dx2 = ′′” here. We assume that u is sufficiently smooth in time
throughout this paper.

A typical finite element approximation of (2.1) is defined as follows:
we first choose conforming finite element subspaces V h ⊂ H2(0, L) and
then define V h

0 = V h ∩H2
0 (0, L). One then seeks uh(t, ·) ∈ V h

0 such that
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(2.2)



∫ L

0
uht v

hdx+

∫ L

0
uhxxt(v

h)′′dx+

∫ L

0
uhxt(v

h)′dx

+ α

∫ L

0
uhx(vh)′dx+ β

∫ L

0
uhxv

hdx+

∫ L

0
uhuhxv

hdx

=

∫ L

0
fvhdx for all vh ∈ V h

0 (0, L),

uh(0, x) = uh0(x) in [0, L],

where uh0(x) ∈ V h
0 is an approximation, e.g., a projection, of u0(x).

The interval [0, L] is divided into n finite elements of equal length h
by the knots xi such that 0 = x0 < x1 < · · · < xn = L. The set of splines
{η−1, η0, · · · , ηn} form a basis for functions defined on [0, L]. Quadratic
B-splines ηi(x) with the required properties are defined by [23],

ηi(x) =
1

h2


(xi+2 − x)2 − 3(xi+1 − x)2 + 3(xi − x)2), [xi−1, xi],

(xi+2 − x)2 − 3(xi+1 − x)2, [xi, xi+1],

(xi+2 − x)2, [xi+1, xi+2],

0, otherwise,

where h = xi+1 − xi, i = −1, 0, · · · , n.

The quadratic spline and its first derivative vanish outside the interval
[xi−1, xi+2]. Then the spline function values and its first derivative at
the knots are given by

(2.3)

{
ηi(xi−1) = ηi(xi+2) = 0, ηi(xi) = ηi(xi+1) = 1;

η
′
i(xi−1) = η

′
i(xi+2) = 0, η

′
i(xi) = η

′
i(xi+1) = 1.

Thus an approximate solution can be written in terms of the qua-
dratic spline functions as

(2.4) uh(x, t) =

n∑
i=−1

ai(t)ηi(x),

where ai(t) are yet undetermined coefficients.

Each spline covers three intervals so that three splines ηi−1(x), ηi(x), ηi+1(x)
cover each finite element [xi, xi+1]. All other splines are zero in this re-
gion. Using Eq.(2.4) and spline function properties (2.3), the nodal
values of function uh(x, t) and its derivative at the knot xi and fixed
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time t̃ can be expressed in terms of the coefficients ai(t̃) as

(2.5) uh(xi, t̃) = ai−1(t̃) + ai(t̃),
∂uh(x, t̃)

∂x

∣∣∣
x=xi

=
2

h
(ai(t̃)− ai−1(t̃)).

From (2.5) and homogeneous boundary conditions we get a−1(t) =
−a0(t) and an(t) = −an−1(t). Hence we have

(2.6) uh(x, t) =
n−1∑
i=0

ai(t)ξi(x),

where ξ0(x) = (η0(x)−η−1(x)), ξi(x) = ηi(x)(i = 1, 2, · · · , n−2), ξn−1(x) =
ηn−1(x)− ηn(x). Hence n unknowns ai(t)(i = 0, 1, · · · , n− 1) for every
moment of t must be determined.

According to Galerkin method the test function vh(x) in (2.2) is cho-
sen to be vhi (x) = ξi(x)(i = 0, 1, · · · , n−1). Substituting (2.6) into (2.2)
we obtain



n−1∑
i=0

(∫ L

0
ξiξjdx

)
dai(t)

dt
+

n−1∑
i=0

(∫ L

0
ξ
′′
i ξ

′′
j dx

)
dai(t)

dt

+
n−1∑
i=0

(∫ L

0
ξ
′
iξ

′
jdx

)
dai(t)

dt
+ α

n−1∑
i=0

(∫ L

0
ξ
′
iξ

′
jdx

)
ai(t)

+ β
n−1∑
i=0

(∫ L

0
ξ
′
iξjdx

)
ai(t) +

n−1∑
i=0

n−1∑
k=0

(∫ L

0
ξiξ

′
kξjdx

)
ai(t)ak(t)

=

∫ L

0
fξjdx,

n−1∑
i=0

(∫ L

0
ξiξjdx

)
ai(0) =

∫ L

0
u0(x)ξjdx, j = 0, 1, · · · , n− 1,

which can be written in matrix form as

(2.7)

(M +W + S)
da

dt
+ (αS + βC)a + (a)TNa = f ,

Ma0 = u0,

where a = (a0, a1, · · · , an−1)T and a0 = (a00, a
0
1, · · · , a0n−1)T . Elements

of the n × n matrices M , W , S, C, the n × n × n nonlinear tensor N ,
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and vectors f and u0 are given by

Mij =

∫ L

0
ξiξjdx, Wij =

∫ L

0
ξ
′′
i ξ

′′
j dx, Sij =

∫ L

0
ξ
′
iξ

′
jdx,

Cij =

∫ L

0
ξ
′
iξjdx, Nijk =

∫ L

0
ξiξ

′
kξjdx, fj =

∫ L

0
fξjdx,

u0j =

∫ L

0
u0(x)ξjdx, i, j, k = 0, 1, · · · , n− 1.

The system of nonlinear ordinary differential equations (2.7) consists
of n equations with n unknowns. Moreover, the system (2.7) can be
written as standard first order nonlinear ordinary differential equations
with initial condition becauseM and (M+W+S) are invertible matrices,

(2.8)
da

dt
= (M +W + S)−1(f − (αS + βC)a− (a)TNa), a0 = u0,

where, for the sake of simplicity, denoting u0 = M−1u0 again. The
terms in the right hand side of the first equation of the system (2.8) are
continuously differentiable with respect to time, furthermore the whole
system (2.8) has the only one solution and its solution has equilibrium
when forcing term f(x, t) tends to zero with an infinite time horizon.
In conclusion, we take advantage of the Newton method starting from a
given initial condition to obtain the equilibrium solution of the system
numerically and generate the snapshots i.e. the m snapshot vectors

a = [ a0(tj) a1(tj) · · · an−1(tj) ]T , j = 1, . . . ,m,

which are determined by evaluating the approximate solution of the
system (2.8) at m equally spaced time values tj from t1 = 0 to tm = T .

One can recall that ‘nodal value’ means the solution of the differ-
ential equations at the knot, and ‘coefficient’ refers to any coefficient
appearing in equations (2.5) and (2.6). The property (2.5) will be used
in an apprixmated solution uh, so the nodal values of the full-order and
reduced-order solutions at a knot xi equal the sum of the coefficients at
the knots xi−1 and xi execpt the boundary points.

3. Reduced-order bases from the snapshot set

3.1. POD reduced-order bases

We briefly describe reduced-order bases using POD method here.
Given a discrete set of snapshot vectors Ã = {aj}mj=1 belonging to Rn,
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where m < n, we form the n×m snapshot matrix A whose columns are
the snapshot vectors ym:

A = (a1 a2 · · · am).

Let

UTAV =

( ∑
0

0 0

)
,

where U and V are n× n and m×m orthogonal matrices, respectively,
and

∑
= diag(σ1, . . . , σm̃) with σ1 ≥ σ2 ≥ · · · ≥ σm̃ and m̃ ≤ m be the

singular value decomposition of A. Here, m̃ is the rank of A, i.e., the
dimension of the snapshot set Ỹ , which would be less than m whenever
the snapshot set is linearly dependent. It is well-known [8] that if

U = (u1 u2 · · · un) and V = (v1 v2 · · · vm),

then

Avi = σiui and ATui = σivi for i = 1, . . . , m̃

so that also

Y TAvi = σiui and AATui = σivi for i = 1, . . . , m̃

so that σ2i , i = 1, . . . , m̃, are the nonzero eigenvalues of ATA (and
also of AAT) arranged in nondecreasing order. Note that the matrix
C = ATA is simply the correlation matrix for the set of snapshot vectors
Ã = {aj}mj=1, i.e., we have that Cij = aTi aj .

In the reduced-order modeling context, given a set of snapshots Ã =
{aj}mj=1 belonging to Rn, the POD reduced-basis of dimension d ≤ m <

n is the set {wk}dk=1 of vectors also belonging to Rn consisting of the first
d left singular vectors of the snapshot matrix A. Thus, one can determine
the POD basis by computing the (partial) singular value decomposition
of the n × m matrix A. Alternately, one can compute the (partial)

eigensystem {σ2k,vk}dk=1 of the m×m correlation matrix C̃ = ATA and
then set ui = Av, k = 1, . . . , d.

The d-dimensional POD basis has the obvious property of orthono-
mality. It also has several other important properties which we now
mention. Let {qk}dk=1 be an arbitrary set of d orthonormal vectors in
Rn and let projS(a) denote the projection of a vector a ∈ Rn onto the
set S = span({qk}dk=1). Further, let

E(q1, . . . ,qd ) =

n∑
j=1

|aj − projS(aj)|2,
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i.e., E is the sum of the squares of the error between each snapshot vector
aj and its projection projS(aj) onto the S. Then, it can be shown that

the POD basis {wk}dk=1 minimize E(q1, . . . ,qd ) subject to any given

d-dimensional orthonormal basis {qk}dk=1.

In practical computations of real problems, one may obtain the en-
semblem of snapshots from physical system, which is drawn from ex-
periments, statistics, and etc. Their sizes of data are usually huge. For
example, for weather forecast, one can use the previous weather pre-
diction results to construct the ensemble of snapshots, and then try to
restructure the optimal reduced-order basis for the ensemblem of snap-
shots by using the POD method, but he may encounters the difficulty
for applying POD to enormous numbers of snapshots directly because
of the limit of storage and computational speed. One of the ways to
overcome this difficulty is smlply to select the snapshot from original
massive data in an equally oderdered manner. It is, however, not an
optimal technique.

Centroidal Voronoi tessellation (CVT) has the propety of clustering
data set and sampling representatives from that set in some sense of an
optimal manner. Du et al.[7] have devised the idea to combine POD and
CVT. In this work, we also propose to use CVT to reduce the original
snapshot sets, and then apply POD to that set and actually implement
a computiation for the Rosenau-RLW equation. The mixture of CVT
and POD-CVOD method is described in detail below.

3.2. CVOD reduced-order bases

The definition of centroidal Voronoi tessellation (CVT) for a snapshot

set begins with a set Ã = {aj}mj=1 consisting of m vectors belonging to
Rn. The definition also requires us to introduce the notion of clustering
or tessellation, which in our context is defined to be a subdivision of the
set {Vk}lk=1 is called a clustering or a tessellation of Ã if Vk ∩ Vj = ξ for

k 6= j and
⋃l

k=1 Vk = Ã. Given a set of points {zk}lk=1 belonging to Rn,
the Voronoi region Vk corresponding to the point zk is defined by

Vk =
{
a ∈ Ã : |a− zk| < |a− zj |, for j = 1, . . . , l, k 6= j

}
.

The points are called generators. The set {Vk}lk=1 is a Voronoi tessella-

tion or Voronoi diagram of Ã, and each Vk is referred to as the cluster
corresponding to zk. If the cardinality of cluster Vk is denoted by mk;
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clearly,
∑l

k=1mk = m, the cardinality of the set Ã. The vectors

z∗k =
1

mk

∑
a∈Vk

a, k = 1, . . . ,m

are called the cluster means or cluster centroids. In this situation, z∗k 6=
zk in general. Given a set Ã of l vectors in Rn and positive integer
l ≤ m, a centroidal Voronoi tessellation (CVT) of Ã is a special Voronoi
tessellation satisfying

zk = z∗k for k = 1, . . . , l,

i.e., the generators of the Voronoi tessellation coincide with the centroids
of the corresponding Voronoi clusters.

CVT have an optimization characterization. Let {zk}lk=1 denote an

arbitrary set of l vectors in Rn and let {Vk}lk=1 denote a tessellation of

the snapshot set Ã into d disjoint subsets and define

F (z1, . . . , zl;V1, . . . , Vl) =
l∑

k=1

∑
am∈Vk

|am − zk|2.

Then we refer F to as the energy. It was proved that a necessary con-
dition for K to be minimized holds when {Vk}lk=1 is a CVT of Ã; see
[6]. Since, in practice, CVTs can only be approximately constructed,
the energy is often used to monitor the quality of the results.

There are several algorithms known for constructing centroidal Voronoi
tessellations of a given set. Lloyd’s method is a deterministic algorithm
which is the obvious iteration between computing Voronoi diagrams and
mass centroids, i.e., a given set of generators is replaced in an itera-
tive process by the mass centroids of the Voronoi regions corresponding
to those generators. MacQueen’s method is a probabilistic algorithm.
There are other probabilistic methods that may be viewed as general-
ization of both the MacQueen and Lloyd methods and that are plausible
to efficient parallelization. To see the detailed algorithms of constructing
CVTs, refer to [6, 9, 12, 11, 19, 20].

In the reduced-order modeling context, given a set of snapshots Ã
belonging to Rn, the CVT reduced-basis of dimension l < m is the set
of generators zk, k = 1, . . . , l, also belonging to Rn, of a CVT of the
snapshot set.

For diminishing the original snapshot set, we draw a new snapshot
sample by CVT initially, and then apply POD to it for a reduced-order
basis. We name this algorithm CVOD from now on.
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4. Reduced-order modelling for the Rosenau-RLW equation

For reduced-order modeling applications, the snapshot vectors are
usually coefficient vectors in the expansion of the finite element approx-
imation of the solution of the partial differential equation at different
moments in time. Thus, to each snapshot vector, there corresponds a
finite element basis function.

We now show how a reduced-order basis is used to define a reduced-
order model for the stochastic Burgers’ equation. For the sake of sim-
plicity, we only discuss the case for which the snapshot set is viewed as a
set of finite element coefficient vectors; the case for which the snapshot
set is a set of finite element functions proceeds in similar manner.

Let {rk}dk=1 be a n dimensional reduced-order basis (POD basis or
CVOD basis) corresponding to the snapshot set {aj}mj=1. For each rk,
k = 1, . . . , d, there is a finite element function.

ψk(x) =

n∑
i=1

ri,kξi(x) ∈ V h

where wi,k denotes the ith component of {rk}. Let

V d = span({rk}dk=1) ⊂ V h.

We then seek a reduced basis approximation of the form

urom(x, t) =
d∑

k=1

ck(t)ψk(x) ∈ V d.

where ck(t) are unknown and the reduced-order basis functions satisfy
homogeneous boundary conditions.

We set V d
0 = V d ∩H2

0 (0, L), then V d
0 is a d dimensional subspace of

V h
0 spanned by reduced-order basis. We then determine urom(·, t) ∈ V d

from the discrete problem:

∫ L

0
uromt vddx+

∫ L

0
uromxxt (vd)′′dx+

∫ L

0
uromxt (vd)′dx

+ α

∫ L

0
uromx (vd)′dx+ β

∫ L

0
uromx vddx+

∫ L

0
uromuromx vddx

=

∫ L

0
fvddx for all vd ∈ V d

0 (0, L),

urom(0, x) = ud0(x) in [0, L],

where ud0(x) ∈ V d
0 is a projection of u0(x).
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We, now, have the system of nonlinear ordinary differential equations
that determine the coefficient functions {ck(t)}dk=1 which can be written
in matrix form as

(4.1)

(M + W + S)
dc

dt
+ (αS + βC)c + (c)TNc = f̂ ,

Mc0 = û0,

where c = (c1, c2, · · · , cn)T and c0 = (c01, c
0
2, · · · , c0n)T . We observer

matrices M, W, S, and C are d× d, nonlinear tensor N is d× d× d, and
vectors f̂ and û0 are given by

(4.2)



Mij =

∫ L

0
ψiψjdx, Wij =

∫ L

0
ψ

′′
i ψ

′′
j dx, Sij =

∫ L

0
ψ

′
iψ

′
jdx,

Cij =

∫ L

0
ψ

′
iψjdx, Nijk =

∫ L

0
ψiψ

′
kψjdx, f̂j =

∫ L

0
fψjdx,

û0j =

∫ L

0
u0(x)ψjdx, i, j, k = 1, 2, · · · , n.

The system of nonlinear ordinary differential equations (4.1) consists of
n equations with n unknowns.

Let R ∈ Rn×d be a matrix of left singular vectors obtained from a
snapshot matrix using the SVD. Then we say that equations (4.2) are

(4.3)


M = RTMR, W = RTWR, S = RTSR,

C = RTXR, N = RTN(R)R, f̂ = RTf ,

û0 = RTu0.

We exploit the Newton method to solve system (4.1) again, starting
from a given initial condition. In case of the Burgers equation, it is
proved the fact that the reduce-order solution converges to the original
solution; see [13]. We can show that the Rosenau-RLW equation holds
same result.

Remark 4.1. Recall that if we divide an interval into n finite el-
ements, then we have n + 2 nodes for the B-spline basis functions. In
the actual computation of this paper, however, the snapshots are dif-
ferent from the numerical solutions which is typically mentioned about
the reduce-order partial differential equation model, i.e., the snapshots
are not ‘nodal values’, but a ‘coefficient’ which is mentioned in Subsec-
tion 3.2.
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Remark 4.2. If nodal values is used as a snapshots set and a reduced
order basis is obtained form them, it is impossible to derive the matrices
and vectors like equtions (4.3). Recall that a vector of nodal values has
n+ 2 dimension thus, the dimension of the derived reduced-order basis
is also n+ 2, which does no fit to the size of matrices, nonlinear tensor,
and vectors in Section 2. This is why we use ‘coefficients’ as snapshots
instead of nodal values.

5. Computational experiments

At any given time t, we define the error E(t) to measure L2(0, L)-
norm of difference between the full-order solution and the reduced-order
solution, i.e.,

E(t) =
∣∣∣∣∣∣uh − urom∣∣∣∣∣∣

2
=

h n∑
j=1

∣∣∣uhj − uromj

∣∣∣2
1/2

,

where uh denotes the approximate solution determined by full-order B-
spline basis and uhj are nodal values of a finite element solution uh. Sim-
ilary urom denotes the approximate solution determined by a reduced-
order basis and uromj are nodal values of a reduced-order solution urom.
It is good to notice that there are two respects to this error. One is the
fact that the reduced -order model does not exactly recover the infor-
mation contained in the original snapshot. The other is the fact that
the snapshot set itself cannot exactly represent the full finite element
solution.

To campare the efficiency and accuracy of the proposed reduced-order
modellings in Section 3, the next examples are considered.

Example 5.1. Consider the casewith a α = 0.01, β = 700, final time
T = 12, and an initial condition u0(x) = 16x2(1−x)2 on a domain [0, 1],
i.e., L = 1.

In this example, we first implement the computations for the spatial
discretization with grid size h = 1/64 for the finite element method using
the B-spline functions and temporal discretization with ∆t = 1/80. As
a result, we get T/∆t = 960 time-snapshots.

In the begining, we select 64 equally ordered snapshots from the en-
semble of snapshots, for example, if we pick the first snapshot, then the
16th snapshot of the old snapshots set becomes the second new snap-
shot. Next, we choose 64 snapshots from the whole snapshots by CVT
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Figure 1. Full-order approximate solution of the Rose-
nau RLW equation for α = 0.01 and β = 700 until T = 8

technique. Then the POD method is carried out both new snapshots.
We call the former kind of sampling with the POD the uniform POD
and one recall that the latter kind of sampling with the POD the CVOD

Example 5.2. We variate parmeters to construct the reduced-order
model. First, α = 1, β = 120, second α = 0.1, β = 340, and third
α = 0.01, β = 700. Using the snapshots of three cases, we develope the
reduced model to the case for parameters α = 0.5, β = 200. Here, a
final time is T = 3 and an initial condition is same as Example 5.1.

We compute for the spatial discretization with grid size h = 1/64
for the finite element method using the B-spline functions and temporal
discretization with ∆t = 1/80 again. It is noted that different parame-
ters make an ensemble of snapshots under the same time discretization,
i.e., the number of snapshot is 3 × (T/∆t) = 720. The aim of this
experiment is to check whether the CVOD scheme works when snap-
shots obtaind from different parameters and we apply to the equation
for another parameters.

Once more, we first pick up 64 equally ordered snapshots from the
whole snapshots and apply the POD, i.e., the uniform POD. Second we
sample 64 snapshots from the old snapshots by CVT technique, i.e., the
CVOD. Figure 1 presents the full-order B-spline Galerkin finite element
approximate solution of the Rosenau RLW equation of Example 5.1.
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Figure 2. L2-errors for the solutions of the reduced-
order solutions at time t = 8 using time-snapshots over
unvaring paramters

# Ensemble-POD Uniform-POD CVOD
1 0.0738 0.0741 0.0737
2 0.0634 0.0643 0.0364
3 0.0601 0.0601 0.0270
4 0.0040 0.0042 0.0076
5 6.7064e-004 6.6844e-004 6.3597e-004
6 7.1450e-004 7.1689e-004 7.7170e-004
7 7.1642e-004 7.1642e-004 7.2081e-004
8 7.1653e-004 7.1653e-004 7.1998e-004
9 7.1653e-004 7.1653e-004 7.1996e-004
10 7.1653e-004 7.1653e-004 7.1996e-004

Table 1. L2-errors for the solutions of the reduced-order
solutions at time t = 20 using time-snapshots over un-
varing paramters

We observe that L2-error E(t)s for three different schemes, i.e., the
ensemble POD, which treats whole snapshots, the uniform POD, and
the CVOD, are decreasing as increasing numbers of the reduces-order
bases in Table 1 and Figure 2. If a number of each basis is smaller than
five, the CVOD scheme converges more rapidly that other two schemes,
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Figure 3. L2-errors for the solutions of the reduced-
order solutions at time t = 20 using time-snapshots over
unvaring paramters

# Ensemble-POD Uniform-POD CVOD
1 0.1082 0.1084 0.0737
2 0.0827 0.0837 0.0364
3 0.0565 0.0563 0.0270
4 0.0296 0.0295 0.0076
5 0.0276 0.0276 0.0276
6 0.0274 0.0274 0.0274
7 0.0232 0.0232 0.0232
8 0.0232 0.0232 0.0232
9 0.0232 0.0232 0.0232
10 0.0232 0.0232 0.0232

Table 2. L2-errors for the solutions of the reduced-order
solutions at time t = 20 using time-snapshots over un-
varing paramters

but if a number of basis is greater than or equal five, the convergence
speed are almost same.

In Table 2 and Figure 3, the graphs show that the error E(t)s of the
predictions in future time t > 12 until t = 20 based on the reduced-
order models of the ensemble POD, the uniform POD, and the CVOD
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# Ensemble-POD Uniform-POD CVOD
1 0.0619 0.0625 0.0675
2 0.0043 0.0065 0.0018
3 0.0011 8.9819e-004 9.9609e-004
4 6.4738e-004 6.4879e-004 6.4952e-004
5 6.5107e-004 6.6844e-004 6.5108e-004
6 6.5111e-004 6.5112e-004 6.5111 e-004
7 6.5111e-004 6.5111e-004 6.5111e-004
8 6.5111e-004 6.5111e-004 6.5111e-004
9 6.5111e-004 6.5111e-004 6.5111e-004
10 6.5111e-004 6.5111e-004 6.5111e-004

Table 3. L2-errors for the solutions of the reduced-order
solutions at time t = 3 using time-snapshots over varying
parameter
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Figure 4. L2-errors for the solutions of the reduced-
order solutions at time t = 3 using time-snapshots over
varying parameters

respectly. It exhibits perfomances of convergence similar to Table 1 and
Figure 2. A number of each basis smaller than five, faster convergence
of the CVOD scheme appears but a number of basis is greater than or
equal seven, the convergence speeds surely look alike.
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Even thogh capturing the snapshots over varying parameters, which
cause larger snapshots naturally, in Table 3 and Figure 4, the conver-
gences of the reduced-order solutions to full-order solutions are relatively
fast for all techniques and there are not many differences among three
schemes.

6. Conclusion

An efficient and practical method has been presented for the deriva-
tion of low-dimensional approximation of the Rosenau-RLW equation,
which is called a reduced-order modelling. One of the most popular
method is the POD to apply SVD to an ensemble snapshots directly
and we call it ensemble POD here. When one tries model reduction,
however, a huge size of snapshot matrix usually troubles him. A sim-
ple treatment is to select the snapshots small enough in equally ordered
manner, but that scheme involves no optimalty. Such a simple tech-
nique is called the uniform POD. In this paper, we propose to sample
snapshots using the CVT since the generators of the CVT has optimal
property in an energy sense. Aferwards choosing snapshots through the
CVT, we apply the POD once agian. We name such a scheme CVOD.

To obtain snapshots or full-order solutions, we use the quadratic B-
spline finite element method to approximate the solution of The Rosenau-
RLW equation. Since spline functions gives smoother curves and those
are less oscillatory then other higher-degree polynomials, we have smaller
error than conventional interpolating polynomials for finite element ap-
proximations. In this paper, we give a detailed account of the whole
process from how to approximate a full-order the quadratic B-spline
finite element solution to how to construct a reduced-order model.

We test the CVOD in two numerical experiments of the Rosenau-
RLW equation in comparison with ensemble POD and the uniform POD.
The experimental results demonstrate that if a number of reduced-order
basis is less than three, then CVOD gives better performance of conver-
gence than other techniques, in contrast, over seven reduced-order basis
for each techniques, the three schemes brings almost same results. One
of remained question is whether we can analyze a theoretical error of the
CVOD and another question is whether the CVOD works well to more
complex systems, for example, fluid problems.
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