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A NOTE ON MINIMIZERS FOR THE OSEEN-FRANK

ENERGY WITH APPLIED FIELDS

Myunsoo Choi and Jinhae Park∗

Abstract. In this paper, we consider existence of minimizers for
the Oseen-Frank energy with applied electric fields with subject to
a mixed boundary conditions.

1. Introduction

Liquid crystal is a state of matter between fluid and solid crystalline
which has been widely used in displays, optic switches etc. Due to its
beautiful and complex structures, it has fascinated many scientists in
many different areas and becomes one of the most important topics in the
interdisciplinary research area. Mathematically, it brings a challenging
problem that requires new theories to be developed[2]. In this paper, we
consider a system of a liquid crystal occupying in a bounded domain with
an electric field. Let ρx ∈ L1(S2) be the probability density function of
molecular direction at x in domain Ω ⊆ R3, that is

ρx : S2 −→ [0,∞)

such that

∫
S2
ρx(n)ds(n) = 1 and ρx(n) = ρx(−n) for all n ∈ S2

We consider the second moment of ρx which is

M =

∫
S2

(n⊗ n)ρx(n)ds(n)
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where v ⊗ w = vwT . Then M = MT and tr(M) = 1. In a fluid, the
orientation of molecules is equally distributed, that is the probability
density ρ0(x) = 1

4π . The corresponding second moment becomes 1
3I.

We define 3× 3 matrix Q = M −M0. Then QT = Q, tr(Q) = 0 and

Q =

∫
S2

(ρx(n)− 1

4π
)(n⊗ n)ds(n).

Since Q is symmetric and traceless, Q can be written as

Q = S1

(
n⊗ n− 1

3
I

)
+ S2

(
m⊗m− 1

3
I

)
,

where S1, S2 : Ω −→ R are scalar functions. It is easy to see that
2S1 − S2

3
,
− S1 + 2S2

3
,
− S1 − S2

3
are three eigenvalues of Q. If two

eigenvalues of Q are equal, then we say that molecules are uniaxial. We
say that molecules are biaxial when all three eigenvalues are distinct.

When Q is uniaxial, it can be written by

Q = S

(
n⊗ n− 1

3
I

)
.

Let Ω an open bounded domain and occupied with the liquid crystals.
The governing energy functional[5] is given by

E(Q) =

∫
Ω

[felastic(Q) + fbulk(Q)] dx

where

felastic(Q) = L1Qij,jQik,k + L2Qij,kQik,j + L3Qij,kQij,k

with Qij,k =
∂Qij

∂xk
, and L1, L2, L3 are a constant.

fbulk(Q) =
a

2
tr(Q2)−

b

3
tr(Q3) +

c

4
tr(Q2)2,

where a, b, c are temperature dependent constant.
If Q = S

(
n⊗ n− 1

3I
)

with S being constant, E(Q) becomes the
Oseen-Frank energy functional

E(n) =

∫
Ω
FOF (n,∇n)dx

where

FOF (n,∇n) =
1

2
K1(∇ · n)2 +

1

2
K2(n · ∇ × n)2 +

1

2
K3|n×∇× n|2

+(K2 +K4)
(
tr(∇n)2 − (∇ · n)2

)
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where K1, K2, K3, K4 are constants associated with splay, twist, bend-
ing. For more information on the Landau de Gennes energy functional,
we refer the reader to [1, 3] and references therein.

2. Existence of Minimizer

From now on, we let Ω be a bounded open subset in R3 whose bound-
ary is Lipschitz continuous and Γ1 and Γ2 be closed subsets of ∂Ω. We

will also assume that n0 ∈ H
1
2

(
Γ1,S2

)
, φ0 ∈ H

1
2 (Γ2,R).

We consider the problem (P)

(P)

 Minimize
∫

Ω W̃ (∇n,n,∇φ)dx
subject to

n = n0 on Γ1, φ = φ0 on Γ2


where

(2.1) W̃ (∇n,n,∇φ) = W (∇n,n) +A(n,∇φ),

(2.2)
W (∇n,n) =K1|∇ · n|2 +K2(n · ∇ × n)2 +K3|n× (∇× n)|2

+ (K2 +K4)
[
tr(∇n)2 − (∇ · n)2

]
and

(2.3) A(n,∇φ) = − 1

8π
(∇φ · (ε⊥I + εan⊗ n)∇φ)

We note that W (∇n,n) in (2.1) is the classical Ossen-Frack energy
integrand and (2.3) is an interaction between the director vector n and
electric field E = −∇φ. In the case of Γ1 = Γ2 = ∂Ω, the existence and
some regularity results of minimizers to the problem to the problem P
were studied by Hardt, Kinderlehrer and Lin [8].

We consider two admissible sets:

A (n0) =
{
n ∈W 1,2

(
Ω, S2

)
: n = n0 on Γ1

}
,

B (φ0) =
{
φ ∈W 1,2(Ω) : φ = φ0 on Γ2

} .

We first invoke a standard lemma stated below.
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Lemma 1. Let Γ be a closed subset in Rn. There exists a continu-
ous linear operator from Lipr(Γ) into Lipr (Rn), where 0 < r ≤ 1 and
Lipr(Γ) is the space of continuous functions equipped with the norm

‖φ‖ = sup
x∈Γ
|φ(x)|+ sup

x 6=y∈Γ

|φ(x)− φ(y)|
|x− y|r

.

For A (n0) 6= ∅, it does not follow directly from the previous lemma
because |n(x)| = 1, for all x ∈ Ω. In order to prove that A (n0) 6= ∅, we
need one more extension lemma which can be found in [6].

Lemma 2. Let Ω be a bounded domain in Rn and let Γ be a closed
subset of ∂Ω. For any u ∈ W 1,2

(
Ω,R3

)
with |u| = 1 on Γ, there exist

a function n ∈ W 1,2
(
Ω, S2

)
such that n = u on Γ and ‖∇n‖L2(Ω) ≤

C‖∇u‖L2(Ω) for some C, independent of u and Ω.

Proof. For any |α| < 1, define uα as follows:

uα =
u(x)− α
|u(x)− α|

,x ∈ Ω

It is possible to choose α0, |α0| < 1
2 so that∫

Ω
|Duα0 |

2 dx ≤ C
∫

Ω
|Du|2dx

for some constant C > 0. Since the map πα : y ∈ S2 → y−α
|y−α| ∈ S2 is a

bi-Lipschitz homeaomorphism of S2 into itself with bounded Lipschitz
constants(independent of α) of πα, π

−1
α . We complete the proof by taking

n = π−1
α0
◦ uα0 .

By combining lemma 1 with lemma 2, we conclude that

Theorem 3. The admissible sets A (n0) and B (φ0) are not empty.

Next we will show existence of minimizers. We first assume that
K1 −K2 −K4 ≥ 0, K3 −K2 −K4 ≥ 0, K4 ≤ 0, and K2 +K4 > 0. We
let E(n, φ) denote the functional

∫
Ω W̃ (∇n,n,∇φ)dx.

We note that the energy functional E may not be bounded below
in A (n0)× B (φ0) . From second order elliptic theory, for each given n,
there exists a unique solution φ := Φ(n) to the equation

(2.4)

 ∇ · (ε⊥I + εan⊗ n)∇φ = 0 in Ω,
φ = φ0 on Γ2,

(ε⊥I + εan⊗ n)∇φ) · ν = 0 on ∂Ω− Γ2.


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In fact, Φ(n) is the minimizer of
∫

Ω∇φ · (ε⊥I + εan⊗ n)∇φ)dx in
B (φ0). We then define a new energy functional as

E∗(n) := E(n,Φ(n)).

Theorem 4. There exists a minimizer n of E∗ on A (n0), that is,

E∗(n) = inf
m∈A(n0)

E∗(m).

Proof. Note that

tr(∇n)2 = |∇n|2 − (n · ∇ × n)2 − |n×∇× n|2.

Using the identity, we get∫
Ω
W (n,∇n)dx =

∫
Ω

{
(K1 −K2 −K4) (∇ · n)2

+ (K3 −K2 −K4) |n×∇× n|2

−K4(n · ∇ × n)2 + (K2 +K4) |∇n|2}dx

From the theory of elliptic PDEs, we also have∣∣∣∣∫
Ω
A(n,Φ(n))dx

∣∣∣∣ ≤ C |n0|21
2
,Γ2
.

The coercivity of the functional follows from the previous two inequal-
ities. We know that |W̃ (∇n,n,Φ(n))| ≤ C

(
‖∇n‖2 + 1

)
for some con-

stant C > 0. We prove the weakly lower semicontinuity of energy func-
tional and it has a minimizer.

If g(r) = α
(
1− ωr2

)
for all r ∈ [−1, 1], 0 < ω < 1, then g is continu-

ous. Thus, for any sequence (ni) which converges weakly to a function
n in W 1,2

(
Ω, S2

)
we have

lim
i→∞

∫
∂Ω
g (ni · ν) ds =

∫
∂Ω
g(n · ν)ds

where ν is the unit normal vector to ∂Ω. Therefore, we have

Corollary 5. The energy functional E∗(n) +
∫
∂Ω g(n · ν)ds has a

minimizer on W 1,2
(
Ω,S2

)
With taking Γ1 = Γ2 = Γ, we calculate the corresponding Euler-

Lagrange equations as follows
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(2.5)
K̃1∇(∇ · n) + K̃2∆n− K̃3∇× (n · ∇ × n)n)

−K̃3(n · ∇ × n)∇× n− K̃4∇×
(

(n×∇× n)× n
)

−K̃4(∇× n)× (n×∇× n) + 1
4πεa(n · ∇φ)∇φ+ λn = 0,

∇ · (ε⊥I + εan⊗ n)∇φ = 0,

 in Ω

with the boundary conditions

(2.6)


(ε⊥I + εan⊗ n)∇φ · ν = 0

K̃1(∇ · n)ν + K̃2
∂n
∂ν + K̃3(n · ∇ × n)n× ν

+K̃4((n×∇× n)× n)× ν = 0,

 on ∂Ω− Γ

where K̃1 = K1 − K2 − K4, K̃2 = K2 + K4, K̃3 = −K4 and K̃4 =
K3 −K2 −K4.

Corollary 6. The corresponding Euler-Lagrange equations for min-
imizing problem P reads

(2.7)



For given data n0 ∈ H
1
2

(
Γ, S2

)
, φ0 ∈ H

1
2 (Γ,R)

and g ∈ H
1
2 (Σ,R), find(n, φ) ∈W 1,2

(
Ω,S2

)
×W 1,2(Ω,R)

which satisfies(
K̃1 − K̃4

) [
∇(∇ · n)− (∇(∇ · n) · n)n

]
+
(
K̃2 + K̃4

) [
∆n− (4n · n)n

]
+2
(
K̃4 − K̃3

) [
(n · ∇ × n)∇× n− (n · ∇ × n)2n

]
−
(
K̃3 + K̃4

)
∇(n · ∇ × n)× n

+ 1
4π

[
εa(n · ∇φ)∇φ− εa(n · ∇φ)2n

]
= 0, in Ω,

∇ ·
(

(ε⊥I + εan⊗ n)∇φ
)

= 0, in Ω


with the boundary conditions

(2.8)



φ = φ0, n = n0, on Γ,
((ε⊥I + εan⊗ n)∇φ) · ν = 0, on Σ,

∂n
∂ν = g on Σ,

(∇ · n) = − K̃2

K̃1
(g · ν), on Σ,

(n×∇× n) · ν = K̃2

K̃4
(g · ν)(1 + n · ν), on Σ.


Proof. After some tedious calculations using vector analysis, we can

easily reduce (2.5) to (2.7). For the boundary conditions, since ∂n
∂ν = g

on Σ, we have
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K̃1(∇·n)ν+
(
K̃3(n · ∇ × n)n + K̃4(n×∇× n)× n

)
×ν = −K̃2g on Σ.

Since the two vectors on the left hand side of the above equation are
orthogonal,

K̃1(∇ · n)ν = −K̃2(g · ν)ν,

and

(
K̃3(n · ∇ × n)n + K̃4(n×∇× n)× n

)
× ν = −K̃2g + K̃2(g · ν)ν.

Since (n×∇× n)× n = (n · n)∇n− (n · ∇n)n,

(
(K̃3 − K̃4)(n · ∇ × n)n + K̃4(∇× n)

)
× ν = −K̃2g + K̃2(g · ν)ν.

Taking the dot product of the above equation with n, we have

K̃4((∇× n)× ν) · n = −K̃2g · n + K̃2(g · ν)(ν · n).

Since g · n = ∂n
∂ν · n = 0 and (∇× n)× ν) · n = (n×∇× n) · ν,

(n×∇× n) · ν =
K̃2

K̃4

(g · ν)(1 + ν · n).

Therefore if n is a minimizer, then it satisfies that (∇ · n)(ν · n) = K̃2

K̃1
(g · ν)(ν · n)

(n×∇× n) · ν = K̃2

K̃4
(g · ν)(1 + ν · n)

 on Σ

Corollary 7. The null-Lagrangian∫
Ω

{
tr(∇n)2 − (divn)2

}
dx

is a fixed constant for critical points on the space

A∗ (n0) =

{
n ∈W 1,2

(
Ω,S2

)
: n = n0 on Γ,

∂n

∂ν
· ν = 0 on ∂Ω− Γ

}
.
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