JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **32**, No. 4, November 2019 http://dx.doi.org/10.14403/jcms.2019.32.4.461

WEAK MEASURE EXPANSIVENESS AND CHAOTIC SYSTEMS

MANSEOB LEE

ABSTRACT. In this article, we consider that if a continuous map $f: X \to X$ of a compact metric space X is Li-York chaotic then it is positively weak measure expansive.

1. Introduction

A chaotic system is an interesting property of topologically dynamical systems. Li-York (1975) defined the mathematical chaos. After, Devaney suggested a chaotic system (see [4]) satisfying (i) a continuous map $f: X \to X$ is transitive, (ii) the periodic point of f is dense in X and (iii) a continuous map $f: X \to X$ is sensitive. Here, a continuous map f is sensitive if there is $\epsilon > 0$ such that for any $x \in X$ and $\delta > 0$, there are $y \in X$ with $d(x, y) < \delta$ and $n \in \mathbb{N}$ such that $d(f^n(x), f^n(y)) > \epsilon$. The notion is related with expansivity. Note that trivial sensitive map is not expansive. It is a motivation of this paper. So, we consider a type of chaos property and a general notion of expansivity.

2. Basic notions

Let X be a compact metric space with metric d and let $f : X \to X$ be a continuous map. For any $x \in X$ and $\delta > 0$, we define the set,

$$\Gamma_{\delta}(x) = \{ y \in X : d(f^{i}(x), f^{i}(y)) \le \delta \ \forall i \ge 0 \}.$$

It is called the *dynamic* δ -ball of x.

Received June 07, 2019; Accepted October 22, 2019.

²⁰⁰⁰ Mathematics Subject Classification. 54H20, 93B35.

 $Key\ words\ and\ phrases.$ expansive, measure expansive, weak measure expansive, Li-Yorke chaos.

Manseob Lee

A continuous map f is said to be *positively expansive* if there is $\delta > 0$ such that $\Gamma_{\delta}(x) = \{x\}$, for all $x \in X$. For a measure version expansivity, Morales and Sirvent [6] introduced that f is positively measure expansive which is a general concept of expansivity. More detail, let $\mathcal{M}(X)$ be the set of Borel probability measures on X. We say that $\mu \in \mathcal{M}(X)$ is *atomic* if there exists a point $x \in M$ such that $\mu(\{x\}) > 0$. Let $\mathcal{M}^*(X) = \{\mu \in \mathcal{M}(X) : \mu(\{x\}) = 0 \text{ for all } x \in X\}.$ A continuous map f is said to be *positively* μ *expansive* if $\mu(\Gamma_{\delta}(x)) = 0$ for all $x \in X$ and $\mu \in$ $\mathcal{M}^*(X)$. We say that a continuous map f is positively measure expansive if f is positively μ expansive for $\mu \in \mathcal{M}^*(X)$. Recently, Ahn and Lee [2] suggested positively weak measure expansive diffeomorphisms. A continuous map $f: X \to X$ is said to be *positively weak* μ expansive if there is a finite partition $P = \{A_i : i = 1, ..., n\}$ of X such that $\mu(\Gamma_P(x)) = 0$ for all $x \in X$, where $\Gamma_P(x) = \{y \in X : f^i(y) \in P(f^i(x))\}$ for all $i \geq 0$. Here, P(x) means that there is $A_i \in P$ such that $x \in A_i$. The set $\Gamma_P(x)$ is called the *dynamic P-ball* of x. Note that for a finite partition $P = \{A_i : i = 1, ..., n\}$, and any $\epsilon > 0$, each A_i is measurable and diam $A_i < \epsilon$. We say that a continuous map f is positively weak measure expansive if f is positively weak μ expansive for all $\mu \in \mathcal{M}^*(X)$.

3. Proof of Theorems

For any $\delta > 0$, we say that $S \subset X$ is a δ -scrambled set of f if for any different points $x, y \in S$

(3.1)
$$\liminf_{n \to \infty} d(f^n(x), f^n(y)) = 0 \text{ and } \limsup_{n \to \infty} d(f^n(x), f^n(y)) > \delta.$$

We say that f is Li-Yorke chaotic ([5]) if f has an uncountable δ -scrambled set for some $\delta > 0$.

A topological space X is said to be *Polish metric* if it is completely separable metric space.

THEOREM 3.1. Let X be a Polish metric space and $f: X \to X$ be a continuous map. If f has an uncountable δ -scrambled set for some $\delta > 0$ then f is positively weak measure expansive.

Proof. Since f has an uncountable δ -scrambled set for some $\delta > 0$, by Theorem 16 [3], we can find a closed uncountable δ -scrambled set S. Since $S \subset X$ is closed and X is Polish, we know that S is a Polish metric space with respect to the induced metric. Since S is uncountable, according to [7], there is a non-atomic Borel probability measure ν in S.

462

For all Borelian $A \subset X$, we define the measure μ such as

$$\mu(A) = \frac{\nu(A \cap S)}{\nu(A)} = \nu(A \cap S).$$

Now, we prove that f is positively weak measure expansive. Let $P = \{A_i : i = 1, ..., n\}$ such that $\bigcup_{i=1}^n A_i = X$, and diam $A_i \leq \delta/2$. If $x \in S$ and $y \in int(A_i(x)) \cap S$ for some $A_i(x) \in P$, where $A_i(x)$ means that $x \in A_i \in P$ then one can see that $x, y \in S$ and $f^i(y) \in P(f^i(x))$ for all $i \in \mathbb{N} \cup \{0\}$ and so $d(f^i(x), f^i(y)) \leq \delta/2$ for all $i \in \mathbb{N} \cup \{0\}$. Then according to (3.1), we know x = y. This implies $A_i \cap S = \{x\}$ for all $x \in S$. Since ν is non-atomic, we have $\mu(\Gamma_P(x)) = \nu(A_i \cap S) = \mu(\{x\}) = 0$, for all $x \in S$. Also, we can easily show that every open set which does not intersect S has μ measure 0, and so, μ is supported in the closure of S. Since $S \subset X$ is closed, one can see that μ is supported on S. According to [1, Theorem 2.1] we have that $\mu(\Gamma_P(x)) = 0$ for μ -a.e. $x \in X$. Thus f is positively weak measure expansive.

COROLLARY 3.2. Let X be a compact metric space and let $f : X \to X$ be a continuous map. If f has an uncountable δ -scrambled set for some $\delta > 0$ then f is positively weak measure expansive.

Proof. Since every compact metric space is Polish metric space, by Theorem 3.1 $f: X \to X$ is positively weak measure expansive.

Let I = [0, 1] be the interval or C be the unit circle and let X = I or X = C.

THEOREM 3.3. Let $f : X \to X$ be a continuous map. If f is Li-York chaotic then f is positively weak measure expansive.

Proof. Since f is Li-York chaotic map in X, f has an uncountable δ -scrambled set for some $\delta > 0$. According to Theorem 3.1, f is weak measure expansive.

References

- J. Ahn and S. Kim, Stability of weak measure expansive diffeomorphisms, J. Korean Math. Soc., 55 (2018), 1131-1142.
- [2] J. Ahn and M. Lee, Positively weak measure expansiveness for C^1 differentiable maps, preprint.
- [3] F. Blanchard, W. Huang, and L. Snoha, *Topological size of scrambled sets*, Colloq. Math., **110** (2008), 293-361.
- [4] R. L. Devaney, An introduction to chaotic dynamical systems. Redwood City: Addison-Wesley; 1989.

Manseob Lee

- [5] T. Y. Li and J. A. Yorke, *Period three implies chaos*, Amer. Math. Monthly, 82 (1975), 985-992.
- [6] C. A. Morales and V. F. Sirvent, *Expansive measures*, 29 Colóquio Brasileiro de Matemática, 2013.
- [7] K. R. Parthasarathy, R. R. Ranga, and S. R. S. Varadhan, On the category of indecomposable distributions on topological groups, Tran. Amer. Math. Soc., 102 (1962), 200-217.

Manseb Lee : Department of Mathematics Mokwon University, Daejeon, 302-729, Korea *E-mail*: lmsds@mokwon.ac.kr

464