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ON SYMMETRIC BI-GENERALIZED DERIVATIONS OF
LATTICE IMPLICATION ALGEBRAS

Kyung Ho Kim

ABSTRACT. In this paper, we introduce the notion of symmetric
bi-generalized derivation of lattice implication algebra L and in-
vestigated some related properties. Also, we prove that a map
F:Lx L — L is asymmetric bi-generalized derivation associated
with symmetric bi-derivation D on L if and only if F' is a symmetric
map and it satisfies F(z — y,2) =z — F(y,z2) for all z,y,z € L.

1. Introduction

In order to research a logical system whose propositional value is given

in a lattice. Y. Xu [11] proposed the concept of lattice implication al-
gebras, and some researchers have studied their properties and the cor-
responding logic systems. Also, in [12], Y. Xu and K. Y. Qin discussed
the properties lattice H implication algebras, and gave some equivalent
conditions about lattice H implication algebras. Y. Xu and K. Y. Qin
[13] introduced the notion of filters in a lattice implication, and inves-
tigated their properties. In this paper, we introduced the notion of
derivation, and considered the properties of derivations of lattice impli-
cation algebras. In this paper, we introduce the notion of symmetric bi-
generalized derivation of lattice implication algebra L and investigated
some related properties. Also, we prove that A map F': L Xx L — L
is a symmetric bi-generalized derivation associated with symmetric bi-
derivation D on L if and only if F' is a symmetric map and it satisfies
Flx - y,z)=x — F(y,z2) for all z,y,z € L.

Received February 15, 2019; Accepted March 19, 2019.

2010 Mathematics Subject Classification: Primary 16Y30, 03G25.

Key words and phrases: Lattice implication algebra, symmetric bi-derivation,
symmetric bi-generalized derivation, Fizr(L), Kerd..



180 K. H. Kim
2. Preliminary

A lattice implication algebra is an algebra (L; A, V, 1, —, 0, 1) of
type (2,2,1,2,0,0), where (L; A, V,0,1) is a bounded lattice, “ 7" is an
order-reversing involution and “ — ” is a binary operation, satisfying
the following axioms, for all z,y,z € L,

M) z—(y—2)=y—(z—2),

(I12) 2 -z =1,

13) z = y=y > 2,

(4) 2 wy=y—-zrz=1=2x=y,

I5) (. = y) 2 y=(y > 2) >,

(L1) (xVy) =5 z=(r = 2)A(y = 2),

(L2) (xANy) 5 z=(z—=2)V(y — 2).

If L satisfies conditions (I1) — (I5), we say that L is a quasi lattice
implication algebra. A lattice implication algebra L is called a lattice
H implication algebra if it satisfies x Vy V ((x Ay) — z) = 1 for all
z,y,z € L.

In the sequel the binary operation “ — ” will be denoted by juxtapo-
sition. We can define a partial ordering “ < ” on a lattice implication
algebra L by z <y if and only if z — y = 1.

In a lattice implication algebra L, the following hold (see [11]), for all
z,y,z € L,

(u) 0»z=1,1-or=zandz —1=1.

(2) z—-y<(y—z2) — (xr—2).

(u3) x<y1mphesy—>z<x—>zandz—>aj<z—>y
(ud) 2’ =z — 0.

(ub) zVy=(x —y) —y.

(u6) (y = a) =y) =2zAy=((x—>y) —a).
(u7) z < (z —=vy) = v.

In a lattice H implication algebra L, the following hold, for all z,y, z € L,
(W) z = (z—y) =x—uy.
(W) z— (y—2)=(xr—>y) = (z— 2).

A subset F' of a lattice implication algebra L is called a filter of L it
satisfies,

(F1) 1 € F,

(F2) x € Fand  —y € F imply y € F for all z,y € L.
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DEFINITION 2.1. Let L be a lattice implication algebra. A mapping
D(.,.): L x L — L is called symmetric if D(x,y) = D(y, z) holds for all
z,y € L.

DEFINITION 2.2. Let L be a lattice implication algebra and = € L. A
mapping d(z) = D(z, z) is called trace of D(.,.), where D(.,.): Lx L —
L is a symmetric mapping on L.

DEFINITION 2.3. Let L be a lattice implication algebra and D : L x
L — L be a symmetric mapping. We call D a symmetric bi-derivation
on L if it satisfies the following condition

D(z —y,2) = (z = D(y,2)) V (D(z,2) = y)
for all z,y,z € L.

LEMMA 2.4. Let D be a symmetric bi-derivation of L and let d be a
trace of D. Then the following identities hold:

(1) D(1,1) = d(1) =

(2) D(1,z) = D(z,1) =1 for every = € L.

(3) z < D(:z: y) and y < D(z,y) for every x,y € L.
(4) x < d(x) for every x € L.

3. Symmetric bi-generalized derivations of lattice implica-
tion algebras

In what follows, let L denote a lattice implication algebra unless
otherwise specified.

DEFINITION 3.1. Let L be a lattice implication algebra. A symmetric
map F': L x L — L is called a symmetric bi-generalized derivation of
L if there exists a symmetric bi-derivation D such that

Flz = y,2)=(z = F(y,2)) V (D(z,2) = y)
for all z,y,z € L.
EXAMPLE 3.2. Let L :={0,a,b,1} be a set with the Cayley table.

x| —>‘0 a b 1
01 01 1 1 1
alb al|b 1 1 1
bl a bla b 1 1
110 110 a b 1
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For any x € L, we have ' = z — 0. The operations A and V on L are
defined as follows:

sVy=(z—=y) —y, zAy= (2" —=y)—=vy).

Then (L,V,A,!,—) is a lattice implication algebra. Define a map D :
LxL— L by

a if (z,y) = (0,0)
D(z,y)=<b if (z,y) = (0,a) or (z,y) = (a,0)
1, otherwise

It is easy to check that D is a symmetric bi-derivation on L. Also, define
amap F: Lx L — L by

a if (z,y) =(0,0)
F(z,y)=<0b if (z,y) =(0,a) or (z,y) = (a,0) or (z,y) = (b,b)
1, otherwise

Then F' is a symmetric bi-generalized derivation associated with D of
L.

ProproSITION 3.3. Let D be a symmetric bi-derivation of L. If F
is a symmetric bi-generalized derivation associated with D of L, then
F(1,1) = 1.

Proof. Let F' be a symmetric bi-generalized derivation associated
with D of L. Then we have

F(1,1)=F(1—1,1)
=(1—F(@1,1)v(D(1,1) —1)
—F(I,1)vi=1
O

PRrOPOSITION 3.4. Let D be a symmetric bi-derivation of L and let F'
be a symmetric bi-generalized derivation associated with D of L. Then
the followings hold:

(1) F(l,z) = F(z,1) =1 forallx € L,

(2) d(1) = 1.

Proof. (1) Let F be a symmetric bi-generalized derivation associated
with D of L. Then we have

F(l,z)=F(1 - 1,x)
=(1—F(1,z))v(D(1,z) > 1)
=F(,z)v1l=1
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for every x € L. Similarly, F'(z,1) = 1 for every x € L.
(2) It is clear from (1). O

PROPOSITION 3.5. Let D be a symmetric bi-derivation of L and let F'
be a symmetric bi-generalized derivation associated with D of L. Then
we have F(z,y) = F(x,y) V x for all z,y € L.

Proof. Let F' be a symmetric bi-generalized derivation associated
with D of L. Then we have

Flr,y) = F(1 = z,y) = (1 = F(z,y)) vV (D(1,y) = )
=F(x,y)V(l —z)=F(z,y)Vz
for all z,y € L. O

PRrROPOSITION 3.6. Let D be a symmetric bi-derivation of L and let
F be a symmetric bi-generalized derivation associated with D of L. If d
is a trace of F, then d(x) = d(x) V z for all x € L.

Proof. Let d be a trace of symmetric bi-generalized derivation F' as-
sociated with D of L. Then we have

d(z) = F(z,z) = F(1 = x,x)
=(1— F(z,x))V(D(1l,z) — x)
=F(z,z)V(l = 2z)=dx)Vz
for all x € L. This completes the proof. O

COROLLARY 3.7. Let D be a symmetric bi-derivation of L and let F'
be a symmetric bi-generalized derivation associated with D of L. If d is
a trace of F, then x < d(x) for all z € L.

THEOREM 3.8. Let F' : L x L — L be a symmetric map defined by
F(x - y,z) =x — F(y,2) on L. If D is a symmetric bi-derivation of L,
then F' is a symmetric bi-generalized derivation of L.

Proof. For any y € L, we have F(l,y) = F(F(l,y) — l,y) =
F(1,y) — F(1,y) = 1. Hence it follows that

v — Fz,y) =Fxz—a,y)=F(l,y) =1
for all x,y € L. Hence © < F(x,y) for all z,y € L. Since z < D(z, z),
we have
D(z,z) »y<z—y<z— F(y,2)
for all x,y,z € L. Hence F(x — y,2) =2 — F(y,2) = (x = F(y,2)) V

(D(z,z) — y) for all z,y,z € L, which implies that F' is a symmetric
bi-generalized derivation associated with D on L. O
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THEOREM 3.9. Let D be a symmetric bi-derivation of L and let F' :
L x L — L be a symmetric bi-generalized derivation associated with D
on L. Then F satisfies F(z — y,z) =z — F(y, z) for all x,y,z € L.

Proof. Let F be a symmetric bi-generalized derivation of L and z, y, z €
L. Since y < F(y, 2) and < D(z, z), we have
D(z,2) wy<z—y<z— F(y2)
for all z,y,z € L. Hence F(x — y,2) = (x — F(y,2))V(D(z,z) = y) =
x — F(y,z) for all z,y,z € L. O

As a consequence of Proposition 3.8 and 3.9, we get the following
theorem.

THEOREM 3.10. Let D be a symmetric bi-derivation of L. A map
F: L x L — L is asymmetric bi-generalized derivation associated with
D on L if and only if F is a symmetric map and it satisfies F(r —
y,z) =x — F(y,2) for all z,y,z € L.

ProrosiTION 3.11. Let D be a symmetric bi-derivation of L and let
F: L xL — L be asymmetric bi-generalized derivation associated with
D on L. Then F satisfies F(x,y — z) =y — F(x,z2) for all z,y,z € L.

Proof. Since F' is symmetric, by Theorem 3.9, we have
Fzx,y—2)=F(y = z,2) =y — F(z,x)
=y — F(x,2)
for all x,y, z € L. This completes the proof. O

ProproOSITION 3.12. Let D be a symmetric bi-derivation of L and let
F: L xL — L be asymmetric bi-generalized derivation associated with
D on L. Then F satisfies F(z,y) =2’ — (y — F(0,0)) for all x,y € L.
That is, the value of F' is determined by F(0,0).

Proof. For every z,y € L, we have
F(z,y) =F@",y")=F@@ — 0,y = 0)
=2 - F(0,9 - 0)=2"— F(y' — 0,0)
=1 = (v — F(0,0)).
This completes the proof. O

PRrROPOSITION 3.13. Let D be a symmetric bi-derivation of L and let
d be a trace of a symmetric bi-generalized derivation F' associated with
D of L. Then d(x — y) =x — (z — d(y)) for all x,y € L.
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Proof. Let d be a trace of symmetric bi-generalized derivation F' as-
sociated with D on L. Then, by Theorem 3.9, we have

dx —-y)=Flx—y,z—y) =z— Fly,z —y)
=z — Flzx—>yy =z—(x— F(y,y))
=z = (z = d(y))

for all z,y € L. This completes the proof. O

COROLLARY 3.14. Let L be a lattice H implication algebra and let
D be a symmetric bi-derivation of L. If d is a trace of a symmetric bi-
generalized derivation F' associated with D of L, then d(x — y) = x —
d(y) for all x,y € L.

ProproSITION 3.15. Let d be a trace of a symmetric bi-generalized
derivation F associated with D of L. Then d(xVy) = (z = y) = ((x —
y) = d(y)) for all x,y € L.
Proof. Let x,y € L. Then we obtain
dzVy)=FVyzVy) =F(z—=y) =y (z—=y) =y
=@—=y) = Fly,(z—=y) =y =@—=y) = (z—=y) = Fyy)
= (@ —=y) = (z—=y) = dy))
This completes the proof. O
COROLLARY 3.16. Let let L be a lattice H implication algebra and
let D be a symmetric bi-derivation of L. If d is a trace of a symmetric

bi-generalized derivation F' associated with D of L, then d(zVy) = (x —
y) — d(y) for all z,y € L.

Let D be a symmetric bi-derivation of L and let F' be a symmetric
bi-generalized derivation associated with symmetric bi-derivation D of
L. For a fixed element a € L, let us define a map d, : L — L such that
do(x) = F(z,a) for every x € L.

ProrosiTION 3.17. Let F' be a symmetric bi-generalized derivation
associated with D of L. Then d,(x — y) = x — dq(y) for all x,y € L.

Proof. Let x,y € L. Then we obtain
do(z = y) = F(z = y,a) =2 = F(y,a)
=1z — da(y).

This completes the proof. O
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COROLLARY 3.18. Let D be a symmetric bi-derivation of L and let F'
be a symmetric bi-generalized derivation associated with D of L. Then
do(zVy) =(x —y) = daly) for all z,y € L.

Let D be a symmetric bi-derivation of L and let F' be a symmetric
bi-generalized derivation associated with D of L and let d be a trace of
F. Define a set Fizy(L) by

Fizg(L) ={z € L |d(z) = z}.
ProprosITION 3.19. Let D be a symmetric bi-derivation of L and
let L be a lattice H implication algebra and let F' be a symmetric bi-

generalized derivation associated with D of L. If v € L and y € Fiz4(L),
then v — y € Fixy(L).

Proof. Let x € L and y € Fizy(L). Then we obtain
dlx —»y)=z—dy) =z—y
by Corollary 3.14. This completes the proof. O

ProprosITION 3.20. Let L be a lattice H implication algebra and
let D be a symmetric bi-derivation of L and let F' be a symmetric bi-
generalized derivation associated with D of L. If x € L and y € Fizy(L),
then x Vy € Fixg(L).

Proof. Let x € L and y € Fizy(L). Then we obtain
dzVy)=(x—y) >dy) =@y sy=aVy
by Corollary 3.16. This completes the proof. O

ProproSITION 3.21. Let L be a lattice H implication algebra and
let D be a symmetric bi-derivation of L and let F' be a symmetric bi-
generalized derivation associated with D of L. If ¢ < y and x € Fiz4(L),
then y € Fizy(L).

Proof. Let x <y and = € Fizy(L). Then we obtain
d(y) =d(1 = y) =d((z = y) = y)
=d((y > z) > z)=d(y V)
=yVzx
by Proposition 3.16. Hence
dly) =yve=y—z)mr=(@—2y 2y=1-y=y,
which implies that y € Fixg(L). This completes the proof. O
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ProproSITION 3.22. Let D be a symmetric bi-derivation of L and
let F' be a symmetric bi-generalized derivation associated with D of L.
Then F(xVy,z) = F(z,2)VF(y,z) and F(x Ny, z) = F(z,2) A\ F(y, 2)
for all x,y,z € L.

Proof. Let x,y,z € L. Then we have

F(zVy,2)=F@"Vvy" 2)=F(a'Ny),2))

=F((2'Ny) = 0,2) = (2" Ay) = F(0, 2)

= (' = F(0,2)) V(y = F(0,2)) = F(a",2) V F(y", 2)

= F(x,z)V F(y,2).
Similarly, we can prove that F(zAy, z) = F(x,2)AF(y, z) for all z,y, z €
L. This completes the proof. O

ProrosITION 3.23. Let D be a symmetric bi-derivation of L and
let I’ be a symmetric bi-generalized derivation associated with D of L.

Then F(2',2) = F(x,2’) =1 for all z € L.
Proof. For every x € L. Then we have
F(@',2) = F(z — 0,z) =2 — F(0,z)
=z — F(z,0) = F(x — z,0)
= F(1,0) = 1.
by Proposition 3.4. ]
PROPOSITION 3.24. Let D be a symmetric bi-derivation of L and let

F be a symmetric bi-generalized derivation associated with D of L. If
x' <y for every z,y € L, then F(y,z) = 1.

Proof. For every z,y € L, we know that 2/ < y implies 2’ Vy = y.
Hence
F(y,z)=F(z'Vy,z) = F(2',2) V F(y, )

=F(x—0,2)VF(y,z) =z — F(0,z)V F(y,x)
=z — F(z,0)VF(y,z) = F(z = z,0) V F(y,x)
=F(1,0)VF(y,z) =1V F(y,z) =

This completes the proof. O

Let D be a symmetric bi-derivation of L and let F' be a symmetric
bi-generalized derivation associated with D of L and let d be a trace of
F. Define a set Kerd by

Kerd={x € L| F(z,x) =d(z) =1}.
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ProproSITION 3.25. Let L be a lattice H implication algebra and D be
a symmetric bi-derivation of L and let F' be a symmetric bi-generalized
derivation associated with D of L. If x € L and y € Kerd, then © —
y € Kerd.

Proof. Let x € L and y € Kerd. Then we obtain
dx—y)=z—dly)=z—>1=1
by Corollary 3.14. This implies that © — y € Kerd. O

PRrROPOSITION 3.26. Let D be a symmetric bi-derivation of L and let
F be a symmetric bi-generalized derivation associated with D of L If
x € L andy € Fixg(L), then x Vy € Fizxg(L).

Proof. Let x € L and y € Kerd. Then we have
Fly,zVy)=F(zVy,y)

=F(((z = y) = vy.v))
=@ =y = Flyy) =@y —1)
= 17
which implies that F(y,z V y) = 1. Hence we have
dzVy)=F(xVyxVy)
=F(((z =y) = y,zVy))
=(x—y) > Fly,zVy =(x—y) —1
= 17
This implies that x Vy € Kerd for all x € L. O
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