JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **32**, No. 1, February 2019 http://dx.doi.org/10.14403/jcms.2019.32.1.15

PROJECTIONS OF ALGEBRAIC VARIETIES WITH ALMOST LINEAR PRESENTATION I

Jeaman Ahn*

ABSTRACT. Let X be a reduced closed subscheme in \mathbb{P}^n and

 $\pi_q: X \to Y = \pi_q(X) \subset \mathbb{P}^{n-1}$

be an isomorphic projection from the center $q \in \mathbb{P}^n \setminus X$. Suppose that the minimal free presentation of I_X is of the following form

$$R(-3)^{\beta_{2,1}} \oplus R(-4) \to R(-2)^{\beta_{1,1}} \to I_X \to 0.$$

In this paper, we prove that $H^1(\mathcal{I}_X(k)) = H^1(\mathcal{I}_Y(k))$ for all $k \geq 3$. This implies that Y is k-normal if and only if X is k-normal for $k \geq 3$. Moreover, we also prove that $\operatorname{reg}(Y) \leq \max\{\operatorname{reg}(X), 4\}$ and that I_Y is generated by homogeneous polynomials of degree ≤ 4 .

1. Introduction

Let V be a vector space of dimension n+1 over an algebraically closed field k with a basis x_0, \ldots, x_n . If $X \subset \mathbb{P}^n = \mathbb{P}(V)$ is a nondegenerate reduced closed subscheme, we write I_X for the defining saturated ideal of X in the polynomial ring $R = \text{Sym}(V) = k[x_0, \ldots, x_n]$.

We say that X satisfies property $\mathbf{N}_{d,p}$, for some $d \geq 2$, if the ideal I_X is generated in degrees $\leq d$ and

$$\beta_{i,j}^R = \dim_k \operatorname{Tor}_i^R(R/I_X, k)_{i+j} = 0$$
 for all $j \ge d$ and for all $i \le p$.

If d = 2 and $p \ge 2$ then the minimal free resolution of R/I_X is of the following form

$$h \to R(-3)^{\beta_{2,1}^R} \to R(-2)^{\beta_{1,1}^R} \to R \to R/I_X \to 0.$$

There has been a great deal of research on this condition (cf. [1, 2, 3, 4, 5, 7, 8]). In particular, the authors in [1] have proved that if

2010 Mathematics Subject Classification: Primary:14N05; Secondary:13D02.

Received July 26, 2018; Accepted September 17, 2018.

Key words and phrases: syzygy, partial elimination ideal, elimination mapping cone.

J. Ahn

 $\pi_q:X\to Y=\pi_q(X)\subset\mathbb{P}^{n-1}$ is an isomorphic projection and X satisfies $\mathbf{N}_{2,p},\ p\geq 2$ then

- $H^1(\mathcal{I}_X(k)) = H^1(\mathcal{I}_Y(k))$ for all $k \ge 2$;
- Y satisfies $N_{3,p-1}$. Hence the ideal I_Y is generated in degree ≤ 3 .
- $\operatorname{reg}(Y) \le \max\{\operatorname{reg}(X), 3\}.$

In this paper, we slightly generalize these results to the case that I_X has an almost linear presentation, i.e., the minimal free resolution of R/I_X is of the following form:

$$\cdots \to R(-3)^{\beta_{2,1}^R} \oplus R(-4) \to R(-2)^{\beta_{1,1}^R} \to R \to R/I_X \to 0.$$

In this case, we will show that $H^1(\mathcal{I}_X(k)) = H^1(\mathcal{I}_Y(k))$ for all $k \geq 3$, which implies that Y is k-normal if and only if X is k-normal for every $k \geq 3$. Moreover, we also prove that $\operatorname{reg}(Y) \leq \max\{\operatorname{reg}(X), 4\}$ and I_Y is generated in degree ≤ 4 .

Partial elimination ideals introduced by M. Green ([6]) and the elimination mapping cone theorem ([1]) will be used to prove our results. In particular, the regularity of the first partial elimination ideal $K_1(I_X)$ will play a critical role in the proof of our result.

2. Mapping Cone Construction and Partial Elimination Ideals

Let X be a reduced, nondegenerate closed subscheme in \mathbb{P}^n and let $\pi_q: X \to Y = \pi_q(X) \subset \mathbb{P}^{n-1}$ be a projection from the center $q \in \mathbb{P}^n \setminus X$. Let $S = k[x_1, \ldots, x_n]$ and $R = k[x_0, \ldots, x_n]$ be the polynomial rings which are coordinate rings of \mathbb{P}^{n-1} and \mathbb{P}^n respectively. Note that the coordinate ring R/I_X of X can be considered as a graded S-module by the inclusion map $0 \to S \to R$. We write

$$\beta_{i,j}^S = \dim_k \operatorname{Tor}_i^S(R/I_X, k)_{i+j}$$

for the Betti numbers of R/I_X as a graded S-module.

2.1. Mapping cone construction

The mapping cone under projection and its related long exact sequence is our starting point to understand algebraic and geometric structures of projections.

Consider the graded S-module map $\varphi : R/I_X(-1) \xrightarrow{\times x_0} R/I_X$. Then we have the map $\overline{\varphi}$ on the graded Koszul complex of R/I_X over S, which induces the following long exact sequence by the mapping cone construction:

16

THEOREM 2.1 (Theorem 3.2 in [1]). For a graded R-module M, we have the following long exact sequence:

$$\longrightarrow \operatorname{Tor}_{i}^{S}(M,k)_{i+j} \longrightarrow \operatorname{Tor}_{i}^{R}(M,k)_{i+j} \longrightarrow \operatorname{Tor}_{i-1}^{S}(M,k)_{i+j-1} \longrightarrow$$

$$\stackrel{\delta}{\to} \operatorname{Tor}_{i-1}^{S}(M,k)_{i+j} \longrightarrow \operatorname{Tor}_{i-1}^{R}(M,k)_{i+j} \longrightarrow \operatorname{Tor}_{i-2}^{S}(M,k)_{i+j-1} \stackrel{\delta}{\to} \cdots$$

whose connecting homomorphism δ is the multiplicative map $\times x_0$.

The following proposition can be proved by Theorem 2.1 ([2, Proposition 2.3]).

PROPOSITION 2.2. Let X be a reduced, nondegenerate closed subscheme in \mathbb{P}^n and let $\pi_q : X \to Y = \pi_q(X) \subset \mathbb{P}^{n-1}$ be the projection from the center $q \in \mathbb{P}^n \setminus X$. Suppose that X satisfies property $\mathbf{N}_{d,p}^R$ for $d \geq 2$ and $p \geq 2$. Then we have

- (a) R/I_X satisfies property $\mathbf{N}_{d,p-1}^S$ as a finitely generated graded *S*-module.
- (b) $\beta_{i-1,d-1}^S \leq \beta_{i,d-1}^R$ for each i with $1 \leq i \leq p$.

2.2. Partial elimination ideals

Let X be a reduced closed subscheme in \mathbb{P}^n and let

$$\pi_q: X \to Y = \pi_q(X) \subset \mathbb{P}^{n-1}$$

be the isomorphic projection from the center $q = [1:0:\cdots:0] \in \mathbb{P}^n$.

For the degree lexicographic order, if $f \in I_X$ has leading term $in(f) = x_0^{d_0} \cdots x_n^{d_n}$, we set $d_0(f) = d_0$, the leading power of x_0 in f. Then partial elimination ideals of I_X are defined as follows, which was given by M. Green in [6].

DEFINITION 2.3 ([6]). Let $I_X \subset R$ be the defining ideal of X and let

$$\tilde{K}_i(I_X) = \bigoplus_{m \ge 0} \left\{ f \in (I_X)_m \mid d_0(f) \le i \right\}.$$

If $f \in \tilde{K}_i(I_X)$, we may write uniquely $f = x_0^i g + h$ where $g \in S$ and $h \in R$ with $d_0(h) < i$. Now we define $K_i(I_X)$ by the image of $\tilde{K}_i(I_X)$ in S under the map $f \mapsto g$ and we call $K_i(I_X)$ the *i*-th partial elimination ideal of I_X . Note that $\tilde{K}_i(I_X)$ and $K_i(I_X)$ are S-modules.

REMARK 2.4. If $f = x_0g + h \in K_1(I_X)_d$ then $g \in S_{d-1}$ and $h \in S_d$. Hence we have $(g, h) \in S(-1) \oplus S$.

The following proposition shows the geometric meaning of partial elimination ideals.

J. Ahn

PROPOSITION 2.5. [6] Suppose that $\pi_q : X \to Y = \pi_q(X) \subset \mathbb{P}^{n-1}$ be a projection from the center $q = [1 : 0 : \cdots : 0] \in \mathbb{P}^n$. Then, set theoretically, the *i*-th partial elimination ideal $K_i(I_X)$ is the defining ideal of $Z_i = \{q \in Y \mid \text{mult}_q(Y) \ge i+1\}$ for every $i \ge 0$. In particular, the defining ideal of Y is $K_0(I_X) = I_X \cap S$.

Let $\pi_q : X \to Y \subset \mathbb{P}^{n-1}$ be a projection from the center $q = [1 : 0 \cdots : 0] \in \mathbb{P}^n \setminus X$. Suppose that X satisfies $\mathbf{N}_{2,1}$, i.e., I_X is generated in degree 2. Then there should be a quadratic polynomial $F \in I_X$ such that

$$F = x_0^2 + x_0 h_1 + h_0 \in I_X$$
, where $h_1 \in (S)_1$ and $h_2 \in (S)_2$.

Thus we see that $K_2(I_X) = (1) = S$, which implies that $K_i(I_X) = S$ for all $i \ge 2$.

Let $G \in (R)_d$ be a homogeneous polynomial of degree d. Using the fact that $x_0^2 \equiv x_0 h_1 + h_0 \pmod{I_X}$, we have that

(2.1)
$$G \equiv x_0 g_1 + g_0 \mod I_X.$$

for some polynomials $g_1 \in (S)_{d-1}, g_0 \in (S)_d$. Hence we have a S-module map

$$\varphi_0: S(-1) \oplus S \to R/I_X \to 0$$

defined by $\varphi_0(g_1, g_2) = [x_0g_1 + g_0]$. Note that $(g_1, g_2) \in \ker(\varphi_0)$ if and only if $x_0g_1 + g_0 \in I_X$. So we see that $\ker(\varphi_0) \cong \tilde{K}_1(I_X)$. Consequently, we have the following lemma.

LEMMA 2.6. Let X be a reduced closed subscheme in \mathbb{P}^n and $\pi_q : X \to Y = \pi_q(X) \subset \mathbb{P}^{n-1}$ be the isomorphic projection from the center $q = [1:0\cdots:0] \in \mathbb{P}^n \setminus X$. Suppose that X satisfies $\mathbf{N}_{2,1}$. Then we have (a) $K_i(I_X) = S$ for all $i \geq 2$.

(b)
$$0 \to K_1(I_X) \to S(-1) \oplus S \to R/I_X \to 0.$$

3. Main result

THEOREM 3.1. Let X be a reduced, nondegenerate closed subscheme in \mathbb{P}^n and $\pi_q : X \to Y = \pi_q(X) \subset \mathbb{P}^{n-1}$ be an isomorphic projection from the center $q \in \mathbb{P}^n \setminus X$. Suppose that the minimal free resolution of R/I_X is of the following form

(3.1)
$$R(-3)^{\beta_{2,1}} \oplus R(-4) \to R(-2)^{\beta_{1,1}} \to R \to R/I_X \to 0.$$

Then we have

(a) $H^1(\mathcal{I}_X(k)) = H^1(\mathcal{I}_Y(k))$ for all $k \ge 3$.

18

- (b) $reg(Y) \le \min\{reg(X), 4\}.$
- (c) the ideal I_Y is generated by polynomials of degree ≤ 4 .

Proof. We may assume that $q = [1:0:\cdots:0] \in \mathbb{P}^n \setminus X$ by a change of coordinates. For an isomorphic projection $\pi_q: X \to Y \subset \mathbb{P}^{n-1}$, we have a natural map:

$$\tilde{\alpha}_d : (S/I_Y)_d \to (R/I_X)_d.$$

Note that $\operatorname{coker}(\tilde{\alpha}_d)$ is vanishing for sufficiently large d > 0. First let us show that if R/I_X has the minimal free resolution of the form in (3.1) then $\tilde{\alpha}_d$ is an isomorphism for all $d \geq 3$. Since we have assumed that $\pi_q: X \to Y \subset \mathbb{P}^{n-1}$ is an isomorphic projection, the partial elimination ideals $K_i(I_X)$ are artinian ideals for all $i \geq 1$. Since I_X is generated in degree 2, we see from Lemma 2.6 (a) that $K_i(I_X) = S$ for all $i \geq 2$.

Now we claim that $K_1(I_X)_d = S_d$ for all $d \ge 2$. Indeed, if $f \in \tilde{K}_1(I_X)$, then we have

$$f = x_0 g_1 + g_0 \in I_X$$
 for some $(g_1, g_0) \in S(-1) \oplus S$.

If we consider the map $\tilde{K}_1(I_X) \to K_1(I_X)(-1) \to 0$ defined by $f \mapsto g_1$ then we have the following exact sequence

(3.2)
$$0 \to I_Y \to \tilde{K}_1(I_X) \to K_1(I_X)(-1) \to 0.$$

Since we have

$$R(-3)^{\beta_{2,1}^R} \oplus R(-4) \to R(-2)^{\beta_{1,1}^R} \to R \to R/I_X \to 0,$$

it follows from Proposition 2.2 that the minimal free resolution of R/I_X as a graded S-module is of the form

(3.3)
$$\cdots \to S(-2)^{\beta_{1,1}^S} \oplus S(-3)^{\beta_{1,2}^S} \to S \oplus S(-1) \xrightarrow{\varphi_0} R/I_X \to 0.$$

Note that Lemma 2.6 (b) shows that $K_1(I_X)$ is the first syzygy module of R/I_X as a graded S-module. So we can consider the following diagram:

$$(3.4) \begin{array}{ccc} S(-2)^{\beta_{1,1}^{S}} \oplus S(-3)^{\beta_{1,2}^{S}} &\longrightarrow & \tilde{K}_{1}(I_{X}) &\longrightarrow 0 \\ &\searrow & \downarrow \\ && & & \\ K_{1}(I_{X})(-1) \\ && & \downarrow \\ && & 0 \end{array}$$

This shows that $K_1(I_X)$ is generated by linear forms and $\beta_{1,2}^S$ quadric forms. By Proposition 2.2 (b), the number of quadrics $\beta_{1,2}^S$ is at most

J. Ahn

 $\beta_{2,2}^R = 1$. This implies that $K_1(I_X)$ is an atinian ideal of complete intersection. Hence

$$K_1(I_X)_d = (S)_d$$
 for all $d \ge 2$.

Now consider the following commutative diagram: (3.5)

Since $\operatorname{im} \mu = K_1(I_X)(-1) \subset S(-1)$ and $\operatorname{reg}(\operatorname{im} \mu) \leq 3$, we have that

(3.6)
$$\operatorname{reg}(\operatorname{coker} \tilde{\alpha}) = \operatorname{reg}(\operatorname{im} \mu) - 1 \le 2,$$

which means that $(\operatorname{coker} \tilde{\alpha})_d = 0$ for all $d \ge 3$ or, equivalently, that

$$\tilde{\alpha}_d : (S/I_Y)_d \to (R/I_X)_d$$

is an isomorphism for each $d \geq 3.$ Consider the following commutative diagram:

Then we see from the snake lemma that

$$H^1(\mathcal{I}_X(k)) = H^1(\mathcal{I}_Y(k))$$
 for all $k \ge 3$.

Consequently, Y is k-normal if and only if X is k-normal for all $k \ge 3$, which completes the proof (a).

On the other hand, recall that

$$0 \to (S/I_Y)_d \stackrel{\alpha}{\to} (R/I_X)_d$$

~

20

is isomorphism for all $d \ge 3$ and thus reg(coker $\tilde{\alpha}$) ≤ 2 . Then, from the right most column of the exact sequence in diagram (3.5), we have

$$\operatorname{reg}(S/I_Y) \le \max\{\operatorname{reg}(R/I_X), \operatorname{reg}(\operatorname{coker} \tilde{\alpha}) + 1\},\$$

which completes the proof of (b).

Finally, let us prove (c). For d > 0, we consider the following natural map

$$\cdots \to \operatorname{Tor}_1^S(K_1(I_X), k)_{d-1} \to \operatorname{Tor}_0^S(I_Y, k)_d \to \operatorname{Tor}_0^S(\tilde{K}_1(I_X), k)_d.$$

from the short exact sequence (3.2). Since $\tilde{K}_1(I_X)$ is generated in degree 3 (see the diagram (3.4)) and $K_1(I_X)$ is 2-regular, we conclude that $\operatorname{Tor}_0^S(I_Y, k)_d$ is zero for $d \geq 5$. This shows that I_Y is generated in degree ≤ 4 , as we wished.

References

- J. Ahn and S. Kwak, Graded mapping cone theorem, multisecants and syzygies, Journal of Algebra, 331 (2011), 243–262.
- [2] J. Ahn and S. Kwak, On syzygies, degree, and geometric properties of projective schemes with property N_{3,p}, Journal of Pure and Applied Algebra, 219 (2015), 2724–2739.
- [3] A. Alzati and F. Russo, On the k-normality of projected algebraic varieties, Bull. Braz. Math. Soc. (N. S.) 33 (2002), no. 1, 27–48.
- [4] D. Eisenbud, M. Green, K. Hulek, and S. Popescu, Restriction linear syzygies: algebra and geometry, Compositio Math. 141 (2005), 1460–1478.
- [5] D. Eisenbud, M. Green, K. Hulek, and S. Popescu, Small schemes and varieties of minimal degree, Amer. J. Math. 128 (2006), no. 6, 1363–1389.
- [6] M. Green, Generic Initial Ideals, in Six lectures on Commutative Algebra, (Elias J., Giral J.M., Miró-Roig, R.M., Zarzuela S., eds.), Progress in Mathematics 166, Birkhäuser, 1998, 119–186.
- [7] M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves, Compositio Math. 67 (1988), 301–314.
- [8] K. Han, S. Kwak, Analysis on some infinite modules, inner projection, and applications, Trans. Am. Math. Soc. 364 (2012), no. 11, 5791–5812.

Department of Mathematics Education

Kongju National University

182, Shinkwan-dong, Kongju, Chungnam 32588, Republic of Korea *E-mail*: jeamanahn@kongju.ac.kr

^{*}