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PROJECTIONS OF ALGEBRAIC VARIETIES WITH

ALMOST LINEAR PRESENTATION I

Jeaman Ahn∗

Abstract. Let X be a reduced closed subscheme in Pn and

πq : X → Y = πq(X) ⊂ Pn−1

be an isomorphic projection from the center q ∈ Pn \X. Suppose
that the minimal free presentation of IX is of the following form

R(−3)β2,1 ⊕R(−4)→ R(−2)β1,1 → IX → 0.

In this paper, we prove that H1(IX(k)) = H1(IY (k)) for all k ≥ 3.
This implies that Y is k-normal if and only if X is k-normal for
k ≥ 3. Moreover, we also prove that reg(Y ) ≤ max{reg(X), 4} and
that IY is generated by homogeneous polynomials of degree ≤ 4.

1. Introduction

Let V be a vector space of dimension n+1 over an algebraically closed
field k with a basis x0, . . . , xn. If X ⊂ Pn = P(V ) is a nondegenerate
reduced closed subscheme, we write IX for the defining saturated ideal
of X in the polynomial ring R = Sym(V ) = k[x0, . . . , xn].

We say that X satisfies property Nd,p, for some d ≥ 2, if the ideal IX
is generated in degrees ≤ d and

βRi,j = dimk TorRi (R/IX , k)i+j = 0 for all j ≥ d and for all i ≤ p.

If d = 2 and p ≥ 2 then the minimal free resolution of R/IX is of the
following form

· · · → R(−3)β
R
2,1 → R(−2)β

R
1,1 → R→ R/IX → 0.

There has been a great deal of research on this condition (cf. [1, 2,
3, 4, 5, 7, 8]). In particular, the authors in [1] have proved that if
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πq : X → Y = πq(X) ⊂ Pn−1 is an isomorphic projection and X satisfies
N2,p, p ≥ 2 then

• H1(IX(k)) = H1(IY (k)) for all k ≥ 2;
• Y satisfies N3,p−1. Hence the ideal IY is generated in degree ≤ 3.
• reg(Y ) ≤ max{reg(X), 3}.
In this paper, we slightly generalize these results to the case that IX

has an almost linear presentation, i.e., the minimal free resolution of
R/IX is of the following form:

· · · → R(−3)β
R
2,1 ⊕R(−4)→ R(−2)β

R
1,1 → R→ R/IX → 0.

In this case, we will show that H1(IX(k)) = H1(IY (k)) for all k ≥ 3,
which implies that Y is k-normal if and only if X is k-normal for every
k ≥ 3. Moreover, we also prove that reg(Y ) ≤ max{reg(X), 4} and IY
is generated in degree ≤ 4.

Partial elimination ideals introduced by M. Green ([6]) and the elim-
ination mapping cone theorem ([1]) will be used to prove our results.
In particular, the regularity of the first partial elimination ideal K1(IX)
will play a critical role in the proof of our result.

2. Mapping Cone Construction and Partial Elimination Ideals

Let X be a reduced, nondegenerate closed subscheme in Pn and let
πq : X → Y = πq(X) ⊂ Pn−1 be a projection from the center q ∈ Pn\X.
Let S = k[x1, . . . , xn] and R = k[x0, . . . , xn] be the polynomial rings
which are coordinate rings of Pn−1 and Pn respectively. Note that the
coordinate ring R/IX of X can be considered as a graded S-module by
the inclusion map 0→ S → R. We write

βSi,j = dimk TorSi (R/IX , k)i+j

for the Betti numbers of R/IX as a graded S-module.

2.1. Mapping cone construction

The mapping cone under projection and its related long exact se-
quence is our starting point to understand algebraic and geometric struc-
tures of projections.

Consider the graded S-module map ϕ : R/IX(−1)
×x0−→ R/IX . Then

we have the map ϕ on the graded Koszul complex of R/IX over S,
which induces the following long exact sequence by the mapping cone
construction:
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Theorem 2.1 (Theorem 3.2 in [1]). For a graded R-module M , we
have the following long exact sequence:

−→ TorSi (M,k)i+j −→ TorRi (M,k)i+j −→ TorSi−1(M,k)i+j−1 −→

δ→ TorSi−1(M,k)i+j −→ TorRi−1(M,k)i+j −→ TorSi−2(M,k)i+j−1
δ→ · · ·

whose connecting homomorphism δ is the multiplicative map ×x0.

The following proposition can be proved by Theorem 2.1 ([2, Propo-
sition 2.3]).

Proposition 2.2. Let X be a reduced, nondegenerate closed sub-
scheme in Pn and let πq : X → Y = πq(X) ⊂ Pn−1 be the projection
from the center q ∈ Pn \X. Suppose that X satisfies property NR

d,p for
d ≥ 2 and p ≥ 2. Then we have

(a) R/IX satisfies property NS
d,p−1 as a finitely generated graded S-

module.
(b) βSi−1,d−1 ≤ βRi,d−1 for each i with 1 ≤ i ≤ p.

2.2. Partial elimination ideals

Let X be a reduced closed subscheme in Pn and let

πq : X → Y = πq(X) ⊂ Pn−1

be the isomorphic projection from the center q = [1 : 0 : · · · : 0] ∈ Pn.
For the degree lexicographic order, if f ∈ IX has leading term in(f) =

xd00 · · ·xdnn , we set d0(f) = d0, the leading power of x0 in f . Then partial
elimination ideals of IX are defined as follows, which was given by M.
Green in [6].

Definition 2.3 ([6]). Let IX ⊂ R be the defining ideal of X and let

K̃i(IX) =
⊕
m≥0

{
f ∈ (IX)m | d0(f) ≤ i

}
.

If f ∈ K̃i(IX), we may write uniquely f = xi0g + h where g ∈ S and

h ∈ R with d0(h) < i. Now we define Ki(IX) by the image of K̃i(IX) in
S under the map f 7→ g and we call Ki(IX) the i-th partial elimination

ideal of IX . Note that K̃i(IX) and Ki(IX) are S-modules.

Remark 2.4. If f = x0g + h ∈ K̃1(IX)d then g ∈ Sd−1 and h ∈ Sd.
Hence we have (g, h) ∈ S(−1)⊕ S.

The following proposition shows the geometric meaning of partial
elimination ideals.
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Proposition 2.5. [6] Suppose that πq : X → Y = πq(X) ⊂ Pn−1

be a projection from the center q = [1 : 0 : · · · : 0] ∈ Pn. Then, set
theoretically, the i-th partial elimination ideal Ki(IX) is the defining
ideal of Zi =

{
q ∈ Y | multq(Y ) ≥ i+ 1

}
for every i ≥ 0. In particular,

the defining ideal of Y is K0(IX) = IX ∩ S.

Let πq : X → Y ⊂ Pn−1 be a projection from the center q = [1 :
0 · · · : 0] ∈ Pn \X. Suppose that X satisfies N2,1, i.e., IX is generated
in degree 2. Then there should be a quadratic polynomial F ∈ IX such
that

F = x20 + x0h1 + h0 ∈ IX , where h1 ∈ (S)1 and h2 ∈ (S)2.

Thus we see that K2(IX) = (1) = S, which implies that Ki(IX) = S for
all i ≥ 2.

Let G ∈ (R)d be a homogeneous polynomial of degree d. Using the
fact that x20 ≡ x0h1 + h0 (mod IX), we have that

(2.1) G ≡ x0g1 + g0 mod IX .

for some polynomials g1 ∈ (S)d−1, g0 ∈ (S)d. Hence we have a S-module
map

ϕ0 : S(−1)⊕ S → R/IX → 0

defined by ϕ0(g1, g2) = [x0g1 + g0]. Note that (g1, g2) ∈ ker(ϕ0) if and

only if x0g1 + g0 ∈ IX . So we see that ker(ϕ0) ∼= K̃1(IX). Consequently,
we have the following lemma.

Lemma 2.6. Let X be a reduced closed subscheme in Pn and πq :
X → Y = πq(X) ⊂ Pn−1 be the isomorphic projection from the center
q = [1 : 0 · · · : 0] ∈ Pn \X. Suppose that X satisfies N2,1. Then we have

(a) Ki(IX) = S for all i ≥ 2.

(b) 0→ K̃1(IX)→ S(−1)⊕ S → R/IX → 0.

3. Main result

Theorem 3.1. Let X be a reduced, nondegenerate closed subscheme
in Pn and πq : X → Y = πq(X) ⊂ Pn−1 be an isomorphic projection
from the center q ∈ Pn \X. Suppose that the minimal free resolution of
R/IX is of the following form

(3.1) R(−3)β2,1 ⊕R(−4)→ R(−2)β1,1 → R→ R/IX → 0.

Then we have

(a) H1(IX(k)) = H1(IY (k)) for all k ≥ 3.
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(b) reg(Y ) ≤ min{reg(X), 4}.
(c) the ideal IY is generated by polynomials of degree ≤ 4.

Proof. We may assume that q = [1 : 0 : · · · : 0] ∈ Pn \X by a change
of coordinates. For an isomorphic projection πq : X → Y ⊂ Pn−1, we
have a natural map:

α̃d : (S/IY )d → (R/IX)d.

Note that coker(α̃d) is vanishing for sufficiently large d > 0. First let us
show that if R/IX has the minimal free resolution of the form in (3.1)
then α̃d is an isomorphism for all d ≥ 3. Since we have assumed that
πq : X → Y ⊂ Pn−1 is an isomorphic projection, the partial elimination
ideals Ki(IX) are artinian ideals for all i ≥ 1. Since IX is generated in
degree 2, we see from Lemma 2.6 (a) that Ki(IX) = S for all i ≥ 2.

Now we claim that K1(IX)d = Sd for all d ≥ 2. Indeed, if f ∈ K̃1(IX),
then we have

f = x0g1 + g0 ∈ IX for some (g1, g0) ∈ S(−1)⊕ S.

If we consider the map K̃1(IX) → K1(IX)(−1) → 0 defined by f 7→ g1
then we have the following exact sequence

(3.2) 0→ IY → K̃1(IX)→ K1(IX)(−1)→ 0.

Since we have

R(−3)β
R
2,1 ⊕R(−4)→ R(−2)β

R
1,1 → R→ R/IX → 0,

it follows from Proposition 2.2 that the minimal free resolution of R/IX
as a graded S-module is of the form

(3.3) · · · → S(−2)β
S
1,1 ⊕ S(−3)β

S
1,2 → S ⊕ S(−1)

ϕ0→ R/IX → 0.

Note that Lemma 2.6 (b) shows that K̃1(IX) is the first syzygy module of
R/IX as a graded S-module. So we can consider the following diagram:

(3.4)

S(−2)β
S
1,1 ⊕ S(−3)β

S
1,2 −→ K̃1(IX) −→ 0

↘ ↓

K1(IX)(−1)

↓
0

This shows that K1(IX) is generated by linear forms and βS1,2 quadric

forms. By Propostition 2.2 (b), the number of quadrics βS1,2 is at most
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βR2,2 = 1. This implies that K1(IX) is an atinian ideal of complete
intersection. Hence

K1(IX)d = (S)d for all d ≥ 2.

Now consider the following commutative diagram:
(3.5)

0 0

↓ ↓
S → S/IY → 0

↓ ↓ α̃

S(−2)⊕β
S
1,1 ⊕ S(−3)⊕β

S
1,2 → S(−1)⊕ S ϕ0→ R/IX → 0

‖ ↓ ↓

S(−2)⊕β
S
1,1 ⊕ S(−3)⊕β

S
1,2

µ→ S(−1) → coker(α̃) → 0

↓ ↓
0 0

Since imµ = K1(IX)(−1) ⊂ S(−1) and reg(imµ) ≤ 3, we have that

(3.6) reg(coker α̃) = reg(imµ)− 1 ≤ 2,

which means that (coker α̃)d = 0 for all d ≥ 3 or, equivalently, that

α̃d : (S/IY )d → (R/IX)d

is an isomorphism for each d ≥ 3. Consider the following commutative
diagram:

0 → (S/IY )d → H0(OY (d)) → H1(IY (d)) → 0

↓ α̃d ‖ ↓
0 → (R/IX)d → H0(OX(d)) → H1(IX(d)) → 0,

Then we see from the snake lemma that

H1(IX(k)) = H1(IY (k)) for all k ≥ 3.

Consequently, Y is k-normal if and only if X is k-normal for all k ≥ 3,
which completes the proof (a).

On the other hand, recall that

0→ (S/IY )d
α̃→ (R/IX)d
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is isomorphism for all d ≥ 3 and thus reg(coker α̃) ≤ 2. Then, from the
right most column of the exact sequence in diagram (3.5), we have

reg(S/IY ) ≤ max{reg(R/IX), reg(coker α̃) + 1},
which completes the proof of (b).

Finally, let us prove (c). For d > 0, we consider the following natural
map

· · · → TorS1 (K1(IX), k)d−1 → TorS0 (IY , k)d → TorS0 (K̃1(IX), k)d.

from the short exact sequence (3.2). Since K̃1(IX) is generated in degree
3 (see the diagram (3.4)) and K1(IX) is 2-regular, we conclude that
TorS0 (IY , k)d is zero for d ≥ 5. This shows that IY is generated in degree
≤ 4, as we wished.
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