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PROJECTIONS OF ALGEBRAIC VARIETIES WITH
ALMOST LINEAR PRESENTATION I

JEAMAN AHN*

ABSTRACT. Let X be a reduced closed subscheme in P" and
g X =Y =m(X) c P!

be an isomorphic projection from the center ¢ € P™ \ X. Suppose
that the minimal free presentation of Ix is of the following form

R(=3)"2' @ R(—4) — R(-2)"** — Ix — 0.

In this paper, we prove that H*(Zx (k)) = H*(Zy (k)) for all k > 3.
This implies that Y is k-normal if and only if X is k-normal for
k > 3. Moreover, we also prove that reg(Y) < max{reg(X),4} and
that Iy is generated by homogeneous polynomials of degree < 4.

1. Introduction

Let V be a vector space of dimension n+1 over an algebraically closed
field k£ with a basis zg,...,z,. If X C P" = P(V) is a nondegenerate
reduced closed subscheme, we write Ix for the defining saturated ideal
of X in the polynomial ring R = Sym(V') = k[zo, ..., Zn].

We say that X satisfies property Ny, for some d > 2, if the ideal Ix
is generated in degrees < d and

ij = dimy, Tor®(R/Ix,k)i1; = 0 for all j > d and for all i < p.
If d = 2 and p > 2 then the minimal free resolution of R/Iy is of the
following form
B3t Bt
<+ = R(—3)"21 - R(-2)"11 - R— R/Ix — 0.

There has been a great deal of research on this condition (cf. [1, 2,
3, 4, 5, 7, 8]). In particular, the authors in [1] have proved that if
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g X =Y =7y(X) C P"~! is an isomorphic projection and X satisfies
Ny, p > 2 then

o HY(Ix(k))= H'(Zy(k)) for all k > 2;

o Y satisfies N3 ,_1. Hence the ideal Iy is generated in degree < 3.

e reg(Y) < max{reg(X),3}.

In this paper, we slightly generalize these results to the case that Ix
has an almost linear presentation, i.e., the minimal free resolution of
R/Ix is of the following form:

o= R(—3)%1 @ R(—4) — R(—-2)’™ - R — R/Ix — 0.

In this case, we will show that H'(Zx(k)) = H(Zy(k)) for all k > 3,
which implies that Y is k-normal if and only if X is k-normal for every
k > 3. Moreover, we also prove that reg(Y) < max{reg(X),4} and Iy
is generated in degree < 4.

Partial elimination ideals introduced by M. Green ([6]) and the elim-
ination mapping cone theorem ([1]) will be used to prove our results.
In particular, the regularity of the first partial elimination ideal K1 (Ix)
will play a critical role in the proof of our result.

2. Mapping Cone Construction and Partial Elimination Ideals

Let X be a reduced, nondegenerate closed subscheme in P™ and let
7y X =Y = my(X) C P"! be a projection from the center ¢ € P\ X.
Let S = k[z1,...,2,) and R = k[xo,...,z,] be the polynomial rings
which are coordinate rings of P! and P" respectively. Note that the
coordinate ring R/Ix of X can be considered as a graded S-module by
the inclusion map 0 — S — R. We write

B7; = dimy Tor] (R/Ix, k)iy;
for the Betti numbers of R/Ix as a graded S-module.

2.1. Mapping cone construction

The mapping cone under projection and its related long exact se-
quence is our starting point to understand algebraic and geometric struc-
tures of projections.

Consider the graded S-module map ¢ : R/Ix(—1) =3 R/Ix. Then
we have the map @ on the graded Koszul complex of R/Ix over S,
which induces the following long exact sequence by the mapping cone
construction:
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THEOREM 2.1 (Theorem 3.2 in [1]). For a graded R-module M, we
have the following long exact sequence:

— Tor? (M, k)1 — TorF(M, k)iy; — Tory | (M, k)iyj—1 —

d, é
= Tory_y (M, k)iyj — Torfly (M, k)ij — Tor] o (M, k)itj—1 =
whose connecting homomorphism § is the multiplicative map X xg.

The following proposition can be proved by Theorem 2.1 ([2, Propo-
sition 2.3]).

ProrosiTiON 2.2. Let X be a reduced, nondegenerate closed sub-
scheme in P" and let 7y : X — Y = 7,(X) C P"! be the projection
from the center g € P" \ X. Suppose that X satisfies property NC}ZP for
d > 2 and p > 2. Then we have

(a) R/Ix satisfies property Nip_l as a finitely generated graded S-
module.
(b) BZS_Ld_l < de_l for each i with 1 <13 < p.

2.2. Partial elimination ideals
Let X be a reduced closed subscheme in P™ and let
T X =Y =m(X) c P!

be the isomorphic projection from the center ¢ =[1:0:---:0] € P".
For the degree lexicographic order, if f € Ix has leading term in(f) =

:L‘go -z we set do(f) = do, the leading power of zo in f. Then partial

elimination ideals of Ix are defined as follows, which was given by M.

Green in [6].
DEFINITION 2.3 ([6]). Let Ix C R be the defining ideal of X and let
Ki(Ix) = @ {f € (Ix)m | do(f) < i}
m>0

If f e Ki(Ix), we may write uniquely f = zig + h where g € S and
h € R with dy(h) < i. Now we define K;(Ix) by the image of K;(Ix) in
S under the map f + g and we call K;(Ix) the i-th partial elimination
ideal of I'y. Note that K;(Ix) and K;(Ix) are S-modules.

REMARK 2.4. If f = 299 +h € K(Ix)q then g € Sy_1 and h € Sy.
Hence we have (g,h) € S(—=1) @ S.

The following proposition shows the geometric meaning of partial
elimination ideals.
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PROPOSITION 2.5. [6] Suppose that 7, : X — Y = my(X) C P!
be a projection from the center ¢ = [1 : 0 : --- : 0] € P". Then, set
theoretically, the i-th partial elimination ideal K;(Ix) is the defining
ideal of Z; = {q €Y | multy(Y) >i+ 1} for every i > 0. In particular,
the defining ideal of Y is Ko(Ix) =Ix N S.

Let 1y : X = Y C P"~! be a projection from the center ¢ = [1 :
0---:0] € P\ X. Suppose that X satisfies Ng 1, i.e., Ix is generated
in degree 2. Then there should be a quadratic polynomial F' € Iy such
that

F = a2 4 xohy + ho € Ix, where hy € (S); and hy € (S)s.
Thus we see that Ko(Ix) = (1) = S, which implies that K;(Ix) = S for
all 7 > 2.

Let G € (R)q be a homogeneous polynomial of degree d. Using the
fact that x% = xoh1 + ho (mod Ix), we have that

(2.1) G = 2091+ 90 mod Ix.

for some polynomials g1 € (S)4—1, go € (S5)4. Hence we have a S-module
map

wo - S(—l) ®S — R/IX —0
defined by ¢o(g1,92) = [T0g1 + go]. Note that (g1,92) € ker(po) if and
only if zgg1 + go € Ix. So we see that ker(yg) = K1(Ix). Consequently,
we have the following lemma.

LEMMA 2.6. Let X be a reduced closed subscheme in P" and m; :
X =Y =myX) C P"~! be the isomorphic projection from the center
gq=1[1:0---:0] € P"\ X. Suppose that X satisfies N3 1. Then we have

(a) Ki(Ix) =S for all i > 2.
() 0= Ki(Ix) = S(-1)@& S — R/Ix — 0.

3. Main result

THEOREM 3.1. Let X be a reduced, nondegenerate closed subscheme
inP" and 7, : X — Y = my(X) C P"! be an isomorphic projection
from the center ¢ € P"\ X. Suppose that the minimal free resolution of
R/Ix is of the following form

(3.1)  R(-3)%'@® R(—4) = R(—2)"* - R — R/Ix — 0.

Then we have
(a) HY(Zx(k)) = HY(Zy (k)) for all k > 3.
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(b) reg(Y) < min{reg(X),4}.
(c) the ideal Iy is generated by polynomials of degree < 4.
Proof. We may assume that ¢ =[1:0:---:0] € P"\ X by a change

of coordinates. For an isomorphic projection 7, : X — Y C P, we
have a natural map:

Qg - (S/Iy)d — (R/IX>d.

Note that coker(ay) is vanishing for sufficiently large d > 0. First let us
show that if R/Ix has the minimal free resolution of the form in (3.1)
then ag4 is an isomorphism for all d > 3. Since we have assumed that
mg: X =Y C P"~! is an isomorphic projection, the partial elimination
ideals K;(Ix) are artinian ideals for all ¢ > 1. Since Ix is generated in
degree 2, we see from Lemma 2.6 (a) that K;(Ix) = S for all i > 2.

Now we claim that K;(Ix)q = S, for all d > 2. Indeed, if f € K;(Ix),
then we have

f=mzog1+g0 € Ix for some (g1,90) € S(—1) ® S.

If we consider the map K;(Ix) — Ki(Ix)(—1) — 0 defined by f — ¢
then we have the following exact sequence

(3.2) 0— Iy — Ki(Ix) = Ki(Ix)(—=1) = 0.
Since we have
R(-3)%1 @ R(—4) — R(-2)°1" 5 R— R/Ix — 0,

it follows from Proposition 2.2 that the minimal free resolution of R/Ix
as a graded S-module is of the form

(33) = S(=21 @ 8(=3)% 5 S S(-1) B R/Ix — 0.

Note that Lemma 2.6 (b) shows that K, (Ix) is the first syzygy module of
R/Ix as a graded S-module. So we can consider the following diagram:

S(-2)f @ §(=3) —  Ki(Iy) —0
\ !
(3.4) Ki(Ix)(—1)

!
0

This shows that K;(Ix) is generated by linear forms and Bf o quadric
forms. By Propostition 2.2 (b), the number of quadrics Bﬁ 5 1s at most
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ﬁ21?2 = 1. This implies that K;(Ix) is an atinian ideal of complete
intersection. Hence

KI(IX)d = (S)d for all d > 2.

Now consider the following commutative diagram:

(3.5)
0 0
4 l
S -  S/ly — 0
4 la
S(—2)%1 @ §(—3)¥72 & S(—1)esS B R/Ix — 0
|| ! I
S(—2)%1 @ §(—3)2 B §(—1) = coker(@) — 0
4 l
0 0

Since imp = K1(Ix)(—1) C S(—1) and reg(im p) < 3, we have that

(3.6) reg(coker &) = reg(impu) — 1 < 2,

which means that (coker &)y = 0 for all d > 3 or, equivalently, that
aq: (S/Iy)a — (R/Ix)a

is an isomorphism for each d > 3. Consider the following commutative
diagram:

0 = (S/Iy)y — H%Oy(d) — HY Zy(d) — 0
| Gq | !
0 = (R/Ix)a — H°(Ox(d) — HYIx(d) — 0,
Then we see from the snake lemma that
HY(Zx(k)) = H'(Zy (k) for all k > 3.

Consequently, Y is k-normal if and only if X is k-normal for all £ > 3,
which completes the proof (a).
On the other hand, recall that

0 (S/Iy)a S (R/Ix)q
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is isomorphism for all d > 3 and thus reg(coker @) < 2. Then, from the
right most column of the exact sequence in diagram (3.5), we have

reg(S/Iy) < max{reg(R/Ix),reg(coker &) + 1},

which completes the proof of (b).
Finally, let us prove (c). For d > 0, we consider the following natural
map

-+ — Tor{ (K1 (Ix), k)a_1 — Torg (Iy, k), — Tors (K1(Ix), k),

from the short exact sequence (3.2). Since K (Ix) is generated in degree
3 (see the diagram (3.4)) and K;(Ix) is 2-regular, we conclude that
Torg (Iy, k)q is zero for d > 5. This shows that Iy is generated in degree
< 4, as we wished. ]
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