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ON THE FUZZY STABILITY PROBLEM OF A
QUADRATIC MAPPING WITH INVOLUTION

HeeEJEONG KOH

ABSTRACT. We prove the generalized Hyers-Ulam-Rassias stability
problem of the quadratic functional equation with involution in the
fuzzy quasi S-normed space by using the fixed point method.

1. Introduction

The concept of stability problem of a functional equation was first
posed by Ulam [23] concerning the stability of group homomorphisms;
Let G1 be a group and let G be a metric group with the metric d(-,-).
Given € > 0, does there exist a 6 > 0 such that if a function h : G1 — Go
satisfies the inequality d(h(zy), h(z)h(y)) < d for allz,y € Gy then there
is a homomorphism H : G1 — G2 with d(h(x), H(z)) < € forallz € G1?
Hyers [9] gave us a partial answer to the question of Ulam. His theorem
was generalized in various directions. The very first author who gener-
alized Hyers’ theorem to the case of unbounded control functions was
Aoki [1]. Also, Rassias [20] succeeded in extending the result of Hyers’
theorem by weakening the condition for the Cauchy difference. Rassias’
paper [20] has provided a lot of influence in the development of Hyers-
Ulam stability or Hyers-Ulam-Rassias stability of functional equations.
In 1996, Isac and Rassias [10] were first to provide applications of new
fixed point theorems for the proof of stability theory of functional equa-
tions. By using fixed point methods the stability problems of several
functional equations have been extensively investigated by a number of
authors; see [5], [6], [18] and [19].
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Let X and Y be real vector spaces. If an additive functiono : X — Y
satisfies o(o(x)) = x, for all z € X, then we call it an involution; see [3]
and [22]. The following functional equation

(1.1) flx+y)+ flx+o(y) =2f(z) +2f(y)

is called the quadratic functional equation with involution o . Recently,
Belaid et al [3]. proved the Hyers-Ulam-Rassias stability with involution
in Banach space for this functional equation. Also, Jung and Lee [11]
have proved the Hyers-Ulam-Rassias stability of the quadratic functional
equation with involution in a complete S-normed space by using fixed
point method.

In this paper we prove the generalized Hyers-Ulam-Rassias stability
problem of the quadratic functional equation with involution(1.1) in the
fuzzy quasi B-normed space by using the fixed point method.

2. Preliminaries

We will use the following definition to prove Hyers-Ulam-Rassias sta-
bility for the generalized quintic functional equation in the quasi (-
normed space. Let 8 be a real number with 0 < 8 <1 and K be either
Ror C.

DEFINITION 2.1. Let X be a linear space over a field K. A quasi
B-norm || - || is a real-valued function on X satisfying the following
statements:

(1) ||x]| > 0 for all z € X and ||z|| =0 if and only if x = 0.

(2) [[Az|] = [A]? - ||z]] for all A € K and all z € X .

(3) There is a constant K > 1 such that ||z +y|| < K(||z||+]]y||) for
all z, y € X .

The pair (X, || ||) is called a quasi B-normed space if || - || is a quasi
B-norm on X . The smallest possible K is called the modulus of concavity
of || -||. A quasi B-Banach space is a complete quasi-f-normed space.

In 1984, Katsaras [12] and Wu and Fang [24] independently intro-
duced a notion of a fuzzy norm. Since then some mathematicians have
defined fuzzy metrics and norms on a linear space from various points
of view; see [2], [8], [13], [25] and [16]. In 2003, Bag and Samanta [2]
modified the definition of Cheng and Mordeson [7]. Bag and Samanta [2]
introduced the following definition of fuzzy normed spaces. The notion
of fuzzy stability of functional equations was given in the paper [17].
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We will use the definition of fuzzy normed spaces to investigate a
fuzzy version of Hyers-Ulam-Rassias stability in the fuzzy normed alge-
bra setting.

DEFINITION 2.2. Let X be a real vector space. A function N : X x
R — [0, 1] is called a fuzzy normon X ifforallz, y € X and all s, t € R,

(
(N2)
( )N(cx,t):N(a:,l%‘)ifc;éO;

EN4§ N(x+y, s+t) > min {N(z, s), N(y, t)};
(

The pair (X, N) is called a fuzzy normed vector space.

DEFINITION 2.3. Let X be a real vector space. A fuzzy norm N :
X xR — [0, 1] is called a quasi fuzzy f-norm on X if (N3) and (Ny4) in
Definition 2.2 are replaced by the following forms

t
(N%) N(cz,t) = N(z, W> (c#0,0<p<1).
and
(N)) N(a+y, K(s+t) > min {N(z, s), N(y, )} (2, y € X5, ¢ > 0),
respectively.

EXAMPLE 2.4. Let (X, ||-||) be a real quasi -normed space. Define

0 when t <0,
where © € X . Then (X, N) is a quasi fuzzy -normed space.

t
N("B’t):{tﬂlxl Whent>0,t€R

Note that when p = 1, we call the quasi fuzzy S-norm a quasi fuzzy
[S-norm.

DEFINITION 2.5. Let (X, N) be a quasi fuzzy -normed vector space.
A sequence {x,} in X is said to be convergent or converge if there exists
an x € X such that lim, oo N(x, —x,t) = 1 for all ¢ > 0. In this
case, x is called the limit of the sequence {z,} and we denote it by
N-lim,,—voo Ty, = T .

DEFINITION 2.6. Let (X, N) be a quasi fuzzy S-normed vector space.
A sequence {z,} in X is called Cauchy if for each € > 0 and each t > 0
there exists an ng € N such that for all n > ng and all integer d > 0, we
have N(zp41q — xn, t) > 1 —¢.
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It is well-known that every convergent sequence in a quasi fuzzy -
normed vector space is Cauchy. If each Cauchy sequaence is convergent,
then the quasi fuzzy [B-normed space is said to be quasi fuzzy complete
and the quasi fuzzy S-normed vector space is called a quasi fuzzy Banach
space.

Now, we will state the theorem, the alternative of fixed point in a
generalized metric space.

DEFINITION 2.7. Let X be a set. A function d : X x X — [0, o] is
called a generalized metric on X if d satisfies

(1) d(z, y) =0 if and only if x = y;

(2) d(z, y) =d(y, x) for all z, y € X ;

(3) d(z, z) < d(z,y) +d(y, z) forall z, y, z € X .

THEOREM 2.8 ( The alternative of fixed point [14], [21] ). Sup-
pose that we are given a complete generalized metric space (X, d) and

a strictly contractive mapping T' : X — X with Lipschitz constant
0 < L < 1. Then for each given x € X , either
d(T"z, T"™2) = oo for alln > 0,

or there exists a natural number ng such that

1. d(T"x, T""2) < 0o for all n > ng;

2. The sequence {T™z} is convergent to a fixed point y* of .J;

3. y* is the unique fixed point of T in the set

YV ={y e X[d(T"z,y) < oo};
4. d(y,y*) < ﬁ d(y,Ty) for ally € Y .

3. Fuzzy fixed point stability over a Fuzzy Banach space

Let us fix some notations which will be used throughout this section.
We assume X is a vector space and (Y, N) is a fuzzy Banach space.
Using fixed point method, we will prove the Hyers-Ulam stability of the
functional equation satisfying equation (3.1) in fuzzy Banach space. For
a given mapping f: X — Y let

(3.1) Do f(z,y) = f(z +y) + f(z+0o(y)) —2f(z) - 2f(y)
for all z, y € X, where ¢ : X — X is an involution.

THEOREM 3.1. Let 8 be a fixed real number with 0 < 8 < 1 and let
¢ : X% — [0,00) be a function such that there exists an 0 < L < 1 with

(3.2) ¢(2z,2y) <2%Lo(x,y), dlz+o(x),y+o(y) <2 Lé(z,y)
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forallx,y € X . Let f: X — Y be a mapping satisfying

t
3.3 NDaf$ay>t 27
(33) (Do @), 1) 2 pgrs
for all x, y € X and allt > 0. Then

Q) == N- lim - [f(2") + (27 — ) F@ Nz + o(2)))

n—oo

exists for each x € X and defines a quadratic mapping  : X — Y such
that

226(1 - L)t
(1—-L)t+ ¢(z,)

B NGE - Q.02 o
forallx € X and allt > 0.

Proof. First, let us define S to be the set of all functions g : X — Y
and introduce a generalized metric on X as follows:

S:={g: X - X}

and the mapping d defined on S x S by

d(g, h) = inf{yu € R ]N(g(x)fh(:v), ut) > t—i-df(fﬁl‘) ,Vr € X and ¢t > 0}

where inf ) = 400, as usual. Then (S, d) is a complete generalized
metric space; see [15, Lemma 2.1]. For each g,h € X, there exists a
non-negative real number p such that d(g,h) < u. We note that

Moo~ @) nt) 2 s

forallz € X and t > 0.
By letting y = x in the inequality (3.3), we have

35 N(120)+ Je+ o) - 1) 2 ot

for all x € X and all £ > 0. Hence we may define an operator ' : § — S
by

T(9) = 55 [ £(20) + f(a + 0()
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forall z € X .
N(T(9)(x) ~ T(h)(x), Lyt
- (f [9(293) — h(2z) + g(a + o(2)) — h(z + a(x))} : ng)
> min {N (g(22) - h(22), |2/ Lut)

N(g(w +o(2)) — h(z + o(2)), |2\2ﬁst)}

NS

t
2 oz, 2)

for all x € X and t > 0. Hence we have d(T(g), T(h)) < Lu. This
implies that d(T'(g), T'(h)) < Ld(g, h), for g, h € S. Thus T is strictly
contractive because L is a constant with 0 < L < 1. Next, the inequality
(3.5) implies that

N(T(f)(@) = fla). t)

N(f@0) + f@ +0(2)) = 221 (@), |21%°1)
2%0¢
228t + ¢(x, x)

or

23
(3.6) N@mmFﬂ@OZ?%iLJ)

for all x € X and ¢t > 0. Replacing t by ul%ﬂt in the inequality (3.6), we
have

A(Tﬁﬂw—f@%péﬁ)2t+£%$)

for all z € X and ¢ > 0. This means that d(T(f), f) < 22%3 < 0o. Now,
we claim that

1
B TUHE) = 5 [ F@2) + (2" = DR @+ o)

for all z € X and n € N. We denote that T°(f) = f. The first step
follows from the inequality (3.6), that is,

N@mm—ﬂmﬁzpugmwy
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For each n € N, we have

N(T"(f)(@) = T M () @), ¢)

> N(glf2"a) + (2 = DA (@ + o))
@) + (2 )R e+ o ()], )
= N(glf@"a) + 1@ (@ + 0(@)] — f(2"a)

n—1 _
+![2f(2"*1(a: + o)) — F(2" %z + o(x)))], |22 DY)

22
— 92(n—-1)B¢ + 22%¢(2n71$’ 2”7126) - t+ 22%L”*1¢(:E, $)

for all x € X and ¢t > 0. Hence we have

N D@ =T D6, ) 2 e

for all x € X and ¢t > 0. This implies that

1
(3-8) d(T"(f), T"H(f)) < L™ <00

as n — oo, where 0 < L < 1. By the (2) of Theorem 2.8, there exists a
mapping @ : X — Y which is a fixed point of T" such that d(T"(f), Q) =
0 as n — oo. Since lim, o, d(T"(f),Q) = 0, there exists a sequence
{pn} in R such that p, — 0asn — oo and d(T"f,Q) < py, for n € N.
The definition of d implies that

Qa) = N- Tim [ 72") + (2"~ D" (@ + 0(2)))

n—oo 22n

forall z € X . By the (4) of Theorem 2.8, we get d(f, Q) < =7 d(T(f), ).
Hence we have the inequality

1
d(f, Q)Sm
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Thus the inequality (3.4) holds. For z, y € X and ¢t > 0,
N (DT (f)(w, y). )
=~ (If (o) + S+ o) ~27(2"0) = 212")
+(2" T - DR @+ y+ oo + 1)) - 2" @ + ()
22"y + o)), 1277 1)
> min {N(Df(2"z, 2"y), [27 1),

N(Dof (2" Mz +o(x)), 2"y + o (y)), [2* t)}

2By t
= = — 1
228t + ¢(2nz, 2ny) 4 Lng(, y)
as n — oo. Thus Q(z) := N-limy, o T"(f)(z) is a quadratic map-
ping. The uniqueness of the quadratic mapping follows from (3) in
Theorem 2.8. 0

COROLLARY 3.2. Let 8 > 0, p < 1 be real numbers and let 8 be a

real number with 21 < B8 < 1. Let X be a normed linear space with
norm || - ||. Suppose f: X — Y is a mapping satisfying

t
(3.9) N(Ds f(z,y), t) >

— A O(][x| P+ [yl IP)

forallxz, y € X andt > 0. Then there exists a unique quadratic mapping
Q : X — Y such that

(228 — ortly¢
(228 — 2p+1) ¢ 4 20 ||x||P

where ||z + o (x)||P < 2PTL||z||P for allz € X and t > 0.

N(f(z) - Q(z), 1) =

Proof. Let ¢(z, y) = 6(||z|]|P + ||y||?) for all z,y € X and L =
2P=28+1 We note that 0 < L < 1 and

o2z, 22) = 2°710||z||P = 22 Lop(x , )
¢(z +o(z),x +o(x)) = 26||z + o ()| < 2-2216]|a||? = 2 Lo (x , 2)

for all x € X . The remains follow from the proof follows from Theo-
rem 3.1. O

COROLLARY 3.3. Let 8 > 0, p and 8 be real numbers withp < < 1.
Let X be a normed linear space with norm || -||. Suppose f : X — Y is
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a mapping satisfying
. t
— e O([[[P [lylP)

forallxz, y € X andt > 0. Then there exists a unique quadratic mapping
Q : X — Y such that

(3.10) N(Dyf(z,y), 1)

(228 — 2%) ¢
N(f(l’) - Q(l’), t) > (22[3 _ 22p) t+6 H:BHQP

where ||x 4+ o(z)||P < 2P||z||P for all z € X and t > 0.

Proof. Let ¢(x, y) = 0(||||P||y|[P) for all z,y € X and L = 22(>—5)
Since p < <1, we know that 0 < L < 1 and

o(2z, 2'%') = 22p9"x"2p = 22ﬁL¢(x ) .’IJ)
¢z +o(z),x +o(x)) = bllz + o (2)||* < 29| |z||*” = 2 Lo (x , 2)

for all x € X . The remains follow from the proof follows from Theo-
rem 3.1. O

THEOREM 3.4. Let 8 be a fixed real number with 0 < 8 < 1 and let
¢ : X? = [0,00) be a function such that there exists an 0 < L < 1 with

z L
(811) 6(5.5) < 550(x.y), 6@ +0(2),y+0(y) <22, 2y)
for all x, y € X . Suppose that f : X — Y be a mapping satisfying
t
3.12 N(D,f(x,y), t) > ———
(312) (Dof(.9). 1) > s

for all x, y € X and all t > 0. Then there exists a unique quadratic
mapping ) : X — Y such that

226(1 - L)t
(1-L)t+ Lo(z,x)

(313) N - Q@) 1) 2 5
forallz € X and allt > 0.

Proof. We will use the same definitions for the set S and the metric
d as in the proof of Theorem 3.1. For each g,h € X, there exists a
non-negative real number p such that d(g,h) < u. We note that

t
NCC I F—
ola) = f(o). ut) = o
forall z € X and t > 0. To apply the fixed point method, we will define
the contractive mapping T : S — S as in the proof of Theorem 2.8 and
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then inductively define 77 (f)(z). By letting y = x in the inequality
(3.12), we have

(3.14) N(f(2g;) + f(z + o(x)) — 22 f(2), t) > t+ oz, 7)

for all z € X and all t > 0. Replacing by % and ;(z + o(z)) in the
inequality (3.14), respectively, we have

NU@)&KE@+¢@D2%(@,ta+¢@aj
272

QfG(x o) - 22f<i(x o). 1)

t
t+6(1@+0(@). d@+o())

for all x € X and ¢ > 0. By using the inequalities (3.11), we get

N(EI(5) - 1 (gl + o)~ 10.0) >

N(f(l(:c—i-a(a:))) —2f<i(x+a(x))),t> !

2L
2 t+ QTB¢($7 l’)

N

/N

v

for all x € X and ¢t > 0. Hence we may define an operator T : S — S by

x

1()) = 2[£(2) ~ 5 (G + o))
for all z € X . Now, for g, h € S,
N(T(g)(w) = T()(x), Lyt )
=N (2[o(5) ~n(3)] 2o+ oten) (G + o) 1)
~h(3): )
1

N g(i(aj to(@)) ~h(5(@+ o). éf;t)}

for all x € X and t > 0. Hence we have d(T(g), T(h)) < Lu. This
implies that d(T'(g), T'(h)) < Ld(g, h), for g, h € S. Thus T is strictly
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contractive because L is a constant with 0 < L < 1. Also, we have

N(T()(@) = f@), ¢)

M) o)) s, )
> min {N(27(5) - £(Gl +ol@)) — F(@), 1),

N(f(%(:c—l—a(a:))) - Zf(i(x—l—a(x))), )
t
Tt S o(w, x)
for all z € X and ¢ > 0. That is,
(3.15) N1 = 1@ 1) 2 g
Loz,

for all x € X and t > 0. Replacing ¢ by m%ﬁt in the inequality (3.15),
we have

N(T(f)(w) - f(2), |2\L2ﬁt> 2 t+¢iﬂ?7 x)

for all x € X and ¢ > 0. This means that d(T(f), f) < 22% < 00.
Similar to the proof of Theorem 3.1, we have

(3.16)  T"(f)(x) = 22" [f(%nx) + (21” - 1)f(2n1+1 (z + a(x)))}
for all z € X and n € N. We denote that T°(f) = f. Also, we note that
Ln
N(T () - TN, et 2

for all x € X and t > 0. This implies that

n

(3.17) AT (1), T () < 5 < oo

as n — oo, where 0 < L < 1. By the (2) of Theorem 2.8, there exists a
mapping @ : X — Y which is a fixed point of T" such that d(T"(f), Q) =
0 as n — 00. Since lim,_,o d(T™(f),Q) = 0, there exists a sequence
{pn} in R such that p, — 0asn — oo and d(T"f,Q) < py, for n € N.
The definition of d implies that

Q(z) := N- lim 22" [f(%x) n (21” - 1)f(2n1+1 (z + U(x)))}

n—oo
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forallz € X . By the (4) of Theorem 2.8, we get d(f, Q) < = d(T(f), f)-
Hence we have the inequality

L
d(f, Q)Sm

Thus the inequality (3.13) holds. For z, y € X and t > 0,
N(DUT”( )z, y), t)
) 1 1 1
> min {N (Do (52, 5:0). PIEE 1),

N(Daf<ﬁ(x+a(:n)), ;ﬁ(yqto(y)), |2‘1ngt)}
t
T+ L, y)

as n — o00. Thus Q(z) := N-limy, 0o T"(f)(z) is a quadratic map-
ping. The uniqueness of the quadratic mapping follows from (3) in
Theorem 2.8. O

—1

COROLLARY 3.5. Let 6 > 0, p > 1 be real numbers and let 8 be a
real number with 8 < % . Let X be a normed linear space with norm
|| -|]. Suppose f: X — Y is a mapping satisfying

t
>
e+ 0(|zlP + [lyl[P)

forall z, y € X andt > 0. Then there exist a unique quadratic mapping
Q : X — Y such that

(3.18) N(Ds f(z,y), t)

(2P — 220+1) ¢
(20 — 22B+1) ¢ 4 40 ||x||P

N(f(z) = Q(x), t) >

where ||z 4 o(x)||P < 2P1P||z||P for all x € X and all t > 0.

Proof. Let ¢(x, y) = 0(||z||” + [|y||P) for all z,y € X in the Theo-
rem 3.4 and let L = 226—(+1)  We have 0 < L < 1. The remains follows
from Theorem 3.4. O]

COROLLARY 3.6. Let @ > 0,p > 1 and 3 be real numbers with 8 < p.
Let X be a normed linear space with norm || -||. Suppose f : X =Y is
a mapping satisfying

t

(3.19) NDof(@,9), t) 2 gl
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forallz, y € X andt > 0. Then there exist a unique quadratic mapping
Q : X — Y such that

2P — 226+1)¢
N(f(z) - Q(z), t) = (2v _(22ﬁ+1) t+ ie ||| [P

where ||z 4 o(x)||P < 22F8||z||P for all z € X and all t > 0.

Proof. Let ¢(x, y) = 0||z||P ||y||P for all z,y € X in the Theorem 3.4.
Let L = 22=% Since L = 220~ and ||z + o(x)||P < 2278||2||P, then
we have 0 < L <1 and

T T 1 L
¢(§,§) = QTI,QHQCHZP < 2TB¢(UC;3«")

¢z +o(x),x +o(x)) = bz +o(2)||* < 27¢(2¢, 22)

for all x € X . The remains follows from Theorem 3.4. O
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