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THE COMPLETE CONVERGENCE FOR DEPENDENT

RANDOM VARIABLES IN HILBERT SPACES

Hyun-Chull Kim*

Abstract. We study the complete convergence for sequences of
dependent random variables in Hilbert spaces. Results are obtained
for negatively associated random variables and ϕ-mixing random
variables in Hilbert spaces.

1. Introduction

A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be
negatively associated (NA) if for every pair of disjoint nonempty subsets
A and B of {1, 2, · · · , n} and any real coordinatewise nondecreasing

functions f on R|A|, g on R|B|,

(1.1) Cov(f(Xi, i ∈ A), g(Xj , j ∈ B)) ≤ 0,

whenever f and g are such that the covariance exists. Here and in the
sequel |A| denotes the cardinality of A. An infinite family of random
variables is NA if every finite subfamily is NA. The concept of nega-
tive association for random variables was introduced by Joag-Dev and
Proschan in [7].

The concept of negative association was extended to finite dimen-
sional space and to Hilbert space (for details see Zhang [12] and Ko et
al. [8]).

Ko et al. [8] introduced the concept of negative association for Rd-
valued random variables as follows: A finite family of Rd-valued random
variables {Xi, 1 ≤ i ≤ n} is said to be NA if for every pair of disjoint
nonempty subsets A and B of {1, 2, · · · , n} and any real coordinatewise

nondecreasing functions f on R|A|d, g on R|B|d, (1.1) is satisfied.
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Let H be a real separable Hilbert space with the norm ∥ · ∥ generated
by an inner product < ·, · > and {ej , j ≥ 1} be an orthonormal basis in

H. Let < X, ej > be denoted by X(j) for an H-valued random variables
X.

Ko et al. [8] extended the concept of negative association in Rd to
Hilbert space as follows.

A sequence {Xn, n ≥ 1} of H-valued random variables is said to be
negatively associated(NA) if for some orthonormal basis {ej , j ≥ 1} of

H and for any d ≥ 1, the sequence {(X(1)
n , X

(2)
n , · · · , X(d)

n ), n ≥ 1} of
Rd-valued random variables is NA.

In many papers one can find some interesting results concerning se-
quences of H-valued negatively associated random variables. We refer
only some of them.

Almost sure convergence by Ko et al. [8]. almost sure convergence
extending the results of Ko et al. [8] by Thanh [11], Hájek-Rényi in-
equality by Miao [10], Baum-Katz type theorem for the case r > 1

α , by

Huan et al. [5], complete convergence for the case r = 1
α , and weak laws

of large numbers by Hien and Thanh [3].

Let {X,Xn, n ≥ 1} be a sequence of H-valued random variables. We
consider the following inequalities

(1.2) C1P (∥X∥ > t) ≤ 1

n

n∑
k=1

P (∥Xk∥ > t) ≤ C2P (∥X∥ > t),

for all t > 0.

If there exists a positive constant C1 (C2) such that left-hand side
(right-hand side) of (1.2) is satisfied for all n ≥ 1 and t ≥ 0, then the
sequence {Xn, n ≥ 1} is said to be weakly lower (upper) bounded by
H-valued random vector X. The sequence {Xn, n ≥ 1} is said to be
weakly bounded by X if it is both weakly lower and upper bounded by
X (See [4]).

Note that (1.2) is, of course, automatic with X = X1 and C1 = C2 =
1 if {Xn, n ≥ 1} is a sequence of identically distributedH-valued random
variables.

In the rest of the paper, the symbol C will denote a generic positive
constant which is not necessarily the same in each appearance.

In this paper we consider the Baum-Katz result for sequences H-
valued dependent random variables.
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2. Some lemmas

We introduce some useful notations and extend the lemma given by
Gut [2] to Hilbert space.

Let us put

X
′
i = Xi(∥Xi∥ ≤ A), X

′′
i = XiI(∥Xi∥ > A),

and

X
′
= XI[∥X∥ ≤ A], X

′′
= XI(∥X∥ > A),

for some constant A > 0.

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of H-valued random
variables which are weakly bounded by a random variables X. Let
s > 0.

(2.1-1) If E∥X∥s < ∞, then 1
n

∑n
k=1E∥Xk∥s ≤ CE∥X∥s,

(2.1-2) 1
n

∑n
k=1E∥X ′

k∥s ≤ C(E∥X ′∥s +AsP (∥X∥ > A)),

(2.1-3) 1
n

∑n
k=1E∥X ′′

k ∥s ≤ CE∥X ′′∥s.

Proof. The proof is based on the well-known fact that for any random
variables Y with E∥Y ∥s < ∞

E∥Y ∥s = s

∫ ∞

0
ys−1P (∥Y ∥ > y)dy.

This completes the proof.

Next we consider the moment maximal inequality for H-valued NA
random variables.

Lemma 2.2. [5] Let {Xn, n ≥ 1} be a sequence of H-valued NA
random variables with EXn = 0 and E∥Xn∥2 < ∞, n ≥ 1. Then we
have

(2.2) E max
1≤k≤n

∥
k∑

i=1

Xi∥2 ≤ 2

n∑
i=1

E∥Xi∥2, n ≥ 1.

Let us note that there is a misprint in Lemma 3.3 of Ko et al. in [8].

3. Negatively associated H-valued random variables

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of H-valued negatively
associated random variables with zero means. Let αr > 1, α > 1

2 and
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0 < r < 1. Suppose that {Xn, n ≥ 1} is weakly upper bounded by a
random variables X. If

E∥X∥r < ∞,(3.1)

then
∞∑
n=1

nαr−2P ( max
1≤k≤n

∥Sk∥ > ϵnα) for every ϵ > 0,(3.2)

where Sk =
∑k

l=1Xl.

Proof. For l, n ≥ 1, set

Xl = XlI[∥Xl∥ ≤ nα] +XlI[∥Xl∥ > nα],

and

S′
n =

n∑
l=1

XlI[∥Xl∥ ≤ nα] +
n∑

l=1

XlI[∥Xl∥ > nα].

Then, by Chebyshev’s inequality, (1.2) and Lemma 2.1(2.1-2), we have
(3.3)

∞∑
n=1

nαr−2P ( max
1≤k≤n

∥
k∑

l=1

XlI[∥Xl∥ ≤ nα]∥ > ϵnα)

≤ C

∞∑
n=1

nαr−2−αE( max
1≤l≤n

∥
k∑

l=1

XlI[∥Xl∥ ≤ nα]∥)

≤ C
∞∑
n=1

nαr−2−α
n∑

l=1

E(∥Xl∥I[∥Xl∥ ≤ nα]∥)

≤ C

∞∑
n=1

nαr−1−αE(∥X∥I[∥X∥ ≤ nα]∥) + C

∞∑
n=1

nαr−1P (∥X∥ > nα)

= I1 + I2.

Then

(3.4)

I1 = C
∞∑
n=1

nαr−1−αE(∥X∥I[(l − 1)α < ∥X∥ ≤ lα])

≤ C

∞∑
n=1

nαr−1−αlαP ((l − 1)α < ∥X∥ ≤ lα])

≤ C

∞∑
l=1

lα+αr−αP ((l − 1)α < ∥X∥ ≤ lα])
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≤ C

∞∑
l=1

lαrP ((l − 1)α < ∥X∥ ≤ lα])

= CE∥X∥r < ∞ by (3.1).

Next we estimate that

(3.5)

I2 = C

∞∑
n=1

nαr−1P (∥X∥ > nα)

≤ C

∞∑
n=1

nαr−1
∞∑
l=n

P (lα < ∥X∥ ≤ (l + 1)α)

≤ C
∞∑
l=1

lαrP (lα < ∥X∥ ≤ (l + 1)α)

= E∥X∥r < ∞ by (3.1).

By (3.3), (3.4) and (3.5) we obtain

∞∑
n=1

nαr−2P ( max
1≤k≤n

∥
k∑

l=1

XlI[∥Xl∥ ≤ nα]∥ > ϵnα) < ∞.(3.6)

Similarly, we will prove that

∞∑
n=1

nαr−2P ( max
1≤k≤n

∥
k∑

l=1

XlI[∥Xl∥ > nα]∥ > ϵnα) < ∞.

Using Markov inequality, (1.2) and Lemma 2.1 (2.1-3) we have

(3.7)

∞∑
n=1

nαr−2P ( max
1≤k≤n

∥
k∑

l=1

XlI[∥Xl∥ > nα]∥ > ϵnα)

≤ C

∞∑
n=1

nαr−2−αr
2 E( max

1≤k≤n
∥

k∑
l=1

XlI[∥Xl∥ > nα]∥)
r
2

≤ C
∞∑
n=1

nαr−2−αr
2

n∑
l=1

E(∥Xl∥
r
2 I[∥Xl∥ > nα]∥) (r

2
<

1

2
)

≤ C

∞∑
n=1

n
αr
2
−1E(∥X∥

r
2 I[∥X∥ > nα]∥)

≤ C

∞∑
n=1

n
αr
2
−1

∞∑
l=n

E(∥X∥
r
2 I[lα < ∥X∥ ≤ (l + 1)α])
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≤ C

∞∑
n=1

n
αr
2
−1

∞∑
l=n

(l + 1)
αr
2 P (lα < ∥X∥ ≤ (l + 1)α)

≤ C
∞∑
l=1

lαrP (lα < ∥X∥ ≤ (l + 1)α)

= CE|X|r < ∞.

Thus by (3.6) and (3.7) we obtain (3.2) and the proof of Theorem 3.1 is
complete.

Corollary 3.2. Let {Xn, n ≥ 1} be a sequence of H-valued neg-
atively associated and identically X-distributed random variables with
mean zeros. Let αr > 1, α > 1

2 and 0 < r < 1. If E∥X∥r < ∞, then
(3.2) holds.

Corollary 3.3. Let {Xn, n ≥ 1} be a sequence of independent H-
valued random vectors with mean zeros. Let αr > 1, α > 1

2 and 0 <
r < 1. Suppose that {Xn, n ≥ 1} is weakly upper bounded by a random
variables X. Then, (3.1) implies (3.2).

Theorem 3.4. Let 1
2 < α < 1 and let {Xn, n ≥ 1} be a sequence of

H-valued NA random variables with mean zeros. Suppose that {Xn, n ≥
1} is weakly bounded by a random variables X. Then (3.1) implies

∞∑
n=1

1

n
P ( max

1≤k≤n
∥

k∑
i=1

Xi∥ > ϵnα) < ∞ for all ϵ > 0.(3.8)

Proof. Let

Xk = XkI(∥Xk∥ ≤ nα) +XkI(∥Xk∥ > nα).

Then, for every ϵ > 0 we have

∞∑
n=1

1

n
P ( max

1≤k≤n
∥

k∑
i=1

Xi∥ > ϵnα)

≤
∞∑
n=1

1

n
P ( max

1≤k≤n
∥

k∑
i=1

XiI(∥Xi∥ ≤ nα)∥ >
ϵ

2
nα)

+

∞∑
n=1

1

n
P ( max

1≤k≤n
∥

k∑
i=1

XiI(∥Xi∥ > nα)∥ >
ϵ

2
nα)

= I1 + I2.
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Then

I1 =
∞∑
n=1

1

n
P ( max

1≤k≤n
∥

k∑
l=1

XlI(∥Xl∥ ≤ nα)∥ >
ϵ

2
nα)

≤ C
∞∑
n=1

n−α−1E( max
1≤l≤n

∥
k∑

l=1

XlI(∥Xl∥ ≤ nα))

≤ C

∞∑
n=1

n−α−1
n∑

l=1

E(∥Xl∥I(∥Xl∥ ≤ nα))

≤ C

∞∑
n=1

n−α−1E(∥X∥I(∥X∥ ≤ nα)) + C

∞∑
n=1

P (∥X∥ > nα)

= I11 + I12.

Here

I11 = C
∞∑
n=1

n−αE(∥X∥I(∥X∥ ≤ nα))

= C
∞∑
n=1

n−α
n∑

l=1

E(∥X∥I[(l − 1)α < ∥X∥ ≤ lα])

≤ C

∞∑
n=1

n−α
n∑

l=1

lαP [(l − 1)α < ∥X∥ ≤ lα]

≤ C

∞∑
l=1

lP [(l − 1)α < ∥X∥ ≤ lα]

= CE∥X∥
1
α < ∞,

and

I12 = C

∞∑
n=1

P (∥X∥ > nα)

= C

∫ ∞

0
P (∥X∥ > xα)dx

= C
1

α

∫ ∞

0
y

1
α
−1P (∥X∥

1
α > y) dy (letting y = x

1
α )

= CE∥X∥
1
α < ∞.

Similarly, we prove that
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I2 =

∞∑
n=1

1

n
P ( max

1≤k≤n
∥

k∑
l=1

XlI(∥Xl∥ > nα)∥) < ∞,

because

I2 ≤ C
∞∑
n=1

n−1−αr
2 E( max

1≤k≤n
∥

k∑
l=1

XlI(∥Xl∥ > nα)∥)
r
2

≤ C

∞∑
n=1

n−1−αr
2 (

n∑
l=1

E∥Xl∥I(∥Xl∥ > nα)∥)
r
2

≤ C

∞∑
n=1

n−1−αr
2

n∑
l=1

E(∥Xl∥
r
2 I(∥Xl∥ > nα))

≤ C

∞∑
n=1

n−αr
2 E(∥Xl∥

r
2 I(∥Xl∥ > nα))

≤ C
∞∑
n=1

n−αr
2

∞∑
l=n

E(∥Xl∥
r
2 I(lα < ∥Xl∥ ≤ (l + 1)α))

≤ C

∞∑
n=1

lP (lα < ∥Xl∥ ≤ (l + 1)α)

= CE∥X∥
1
α < ∞.

This completes the proof.

4. A sequence of ϕ-mixing random variables

Let {Xi, i ≥ 1} be a sequence of random variables and for any 1 ≤
i ≤ j ≤ ∞ denote M j

i as the σ-field generated by {Xk, i ≤ k ≤ j}. A

sequence of random variables is said to be ϕ-mixing, if for any A ∈ Mk
1

and B ∈ M∞
k+j ,

|P (B|A)− P (B)| ≤ ϕ(j), ϕ(j) ≥ 0,

where 1 ≥ ϕ(1) ≥ ϕ(2) ≥ · · · , and limj→∞ ϕ(j) = 0. For more infor-
mation of ϕ-mixing (see [1]). Intuitively, {X1, X2, · · · , Xn} is ϕ-mixing
if Xi and Xi+j become virtually independent as j becomes large. For
example, the waiting time Wi of an M/M/1 delay-in-queue is ϕ-mixing
because Wi and Wi+j become virtually independent as j becomes large.
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In addition, m-dependent sequence implies ϕ-mixing, while for gaussian
processes, ϕ-mixing corresponds to m-dependence (see [6]).

A sequence of random vectors {Xn, n ≥ 1} with values in a separa-
ble real Hilbert space (H,< ·, · >) is said to be as ϕ-mixing, if some
othonormal basis {ek, k ≥ 1} of H and for any d ≥ 1 the d-dimensional
sequence (< Xi, e1 >, · · · , < Xi, ed >), i ≥ 1 is ϕ-mixing.

Lemma 4.1. [9] Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random

variables with finite second moments, zero means and
∑

n ϕ
1
2 (n) < ∞.

Then there exists a positive constant C such that

E max
1≤k≤n

(∥
k∑

i=1

Xi∥)2 ≤ C

n∑
i=1

E∥Xi∥2.

Based on Lemma 4.1 and by using the same proofs as NA sequence
we can also obtain some estimates and limit behaviors for ϕ-mixing
sequence, which are similar to the results in Section 3.
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