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GALOIS POLYNOMIALS FROM QUOTIENT GROUPS

Ki-Suk Lee*, Ji-eun Lee**, Gerold Brändli***, and Tim
Beyne****

Abstract. Galois polynomials are defined as a generalization of
the cyclotomic polynomials. The definition of Galois polynomials
(and cyclotomic polynomials) is based on the multiplicative group
of integers modulo n, i.e. Z∗

n. In this paper, we define Galois
polynomials which are based on the quotient group Z∗

n/H.

1. Introduction

Galois polynomials based on quotient groups have been studied before
[6], especially the question of their irreducibility or reducibility. Here we
place them in a broader context.

Let n be a nonnegative integer and w be the n-th primitive root of

unity, that is w = e
2πi
n . The cyclotomic polynomial Φn(x) is a monic

polynomial with integer coefficients satisfying that Φn(w) = 0 and is
irreducible over the field of the rational numbers. It is well known that

Φn(x) =
∏
k∈Z∗

n

(x− wk),

where Z∗
n is the multiplicative group of integers modulo n. These deno-

tations are used throughout this paper.

Definition 1.1. Let H be a subgroup of Z∗
n and Z∗

n/H = {r1H, r2H,
· · · , rlH} be its corresponding quotient group. Since it is itself a group,
one ri must be 1, one could say r1 = 1 without loosing generality. For
each k = 1, · · · , l, define ak =

∑
h∈H wrkh. We define the Galois poly-

nomials,
Φn,H(x) = (x− a1)(x− a2) · · · (x− al).
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It is known that Φn,H(x) is a monic polynomial with integer coefficients.

Let N be a subgroup of Z∗
n and H be a subgroup of Z∗

n/N . We
define the Galois polynomial from a quotient group Ψn,H(x) as follows.
Let’s denote N = {n1, n2, · · · , nr}, Z∗

n/N = {r1N, r2N, · · · , rtN}, H =
{h1, h2, · · · , hm} and (Z∗

n/N)/H = {k1H×N, k2H×N, · · · , ksH×N}.
Then

kvH×N = kv{h1, h2, · · · , hm}{n1, n2, · · · , nr}.

Definition 1.2. Let av =
∑m

j=1

∑r
l=1w

kvhjnl , where w = e
2πi
n and

v = 1, 2, · · · , s. Then the Galois polynomial from a quotient group is
defined as

Ψn,H(x) = (x− a1)(x− a2) · · · (x− as).

In this paper, we define two kinds of reduced modular Galois polyno-
mials Ψre

n,H(x) having real roots by using Z∗
n/⟨n− 1⟩, and if n = 4m two

kinds: Ψre
n,H(x) and additionally Ψim

n,H(x) having pure imaginary roots.
They are constructed in two ways from

Z∗
n/

(
⟨n− 1⟩⟨n2 − 1⟩

)
.

⟨n− 1⟩ is the multiplicative group modulo n generated by n− 1.
IfH = N×M is a subgroup of Z∗

n, thenM is a subgroup of Z∗
n/N and

their corresponding Galois polynomials are identical. So Galois poly-
nomials from quotient groups have integer coefficients as other Galois
polynomials,[6, Theorem2.3].

2. Galois polynomials from Z∗
n/⟨n− 1⟩

Given a positive integer n, then the integers in the range 1, . . . , n− 1
that are coprime to n form a group with multiplication modulo n. It is
denoted by Z∗

n and is called the multiplicative group of integers modulo
n.

It is well known that Z∗
n has a primitive root, equivalently, Z∗

n is
cyclic, if and only if n ∈ {2, 4, pk, 2pk}, where p is an odd prime.

Definition 2.1. A helpful function in this paper is

j(n) =
φ(n)

λ(n)
,

the quotient of Euler’s totient function φ(n) and the Carmichael function
λ(n). φ(n) is the order and λ(n) the exponent of Z∗

n.



Galois Polynomials from Quotient Groups 311

Definition 2.2. To simplify the writing we introduce the denotation

Z∗/2
n = Z∗

n/⟨n− 1⟩.
One could, therefore, also say Z∗

n is cyclic, if and only if j(n) = 1.
Because wk and w−k are mirror points in the unit circle, there is a way
[8] of halving the number of elements in Z∗

n by the following special
modulus.

Definition 2.3. If the representatives of the residue classes in Z∗
n

mod n are selected in the interval ]0, n[, the following reduced modulus
returns values in the interval ]0, n/2[.

a mod* n = min
(
a mod n, (n− a) mod n

)
,

where a ∈ N.
Note, mod* halves the number of elements of Z∗

n.
⟨3⟩ mod 7 = {3, 2, 6, 4, 5, 1}, where 6 = n− 1
⟨3⟩ mod* 7 = {3, 2, 1}.

Let n ∈ {2k(k>2), 4pk11 , pk11 pk22 , 2pk11 pk22 }, where pk11 and pk22 are

distinct odd prime powers satisfying
(
φ(pk11 ), φ(pk22 )

)
= 2, then j(n) = 2.

The order of the group is halved, the exponent remains. It is said in [4]
that the group Z∗

n has semi-primitive roots.
The reduced modulus (mod* n) may also be applied to n ∈ {2, 4, pk,

2pk}, where j(n) = 1, by halving order and exponent of Z∗
n. See the

example above for n = 7.

To study the Galois polynomials from Z∗/2
n the following function is

useful.

Theorem 2.4. The function sk is given by the following explicit
formula

sk = 21−k

⌊k/2⌋∑
j=0

(−1)j
(
k
2j

)
sk−2j(4− s2)j ,

where sk = wk + w−k = 2 cos
(
2π
n k

)
and s = s1.

Proof. We expand (a ± b)k and collect the terms according to the
parity of the exponents of b

(a± b)k =

k∑
j=0

(
k
j

)
ak−jbj

=

⌊k/2⌋∑
j=0

(
k
2j

)
ak−2jb2j ±

⌈k/2−1⌉∑
j=0

(
k

2j + 1

)
ak−2j−1b2j+1.
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By adding the expressions of above, we get

(a+ b)k + (a− b)k = 2

⌊k/2⌋∑
j=0

(
k
2j

)
ak−2jb2j .

Substituting a = w + w−1 and b = w − w−1 completes the proof.

The functions sk may also be calculated by the following recurrence
relations

sk = s · sk−1 − sk−2

or

sk = sj · sk−j − sk−2j

with the starting points s0 = 2, s1 = s, s2 = s2 − 2, s3 = s3 − 3s.

Let ⟨n−1⟩ = {1, n−1} be a subgroup of Z∗
n and consider the quotient

group Z∗/2
n . Let H ′ be a subgroup of Z∗/2

n and {r1H ′, r2H
′, · · · , rlH ′} be

its quotient group. For each k = 1, 2, · · · , l, we define bk =
∑

h∈H′ srkh,
where srkh is defined as above and get the first kind of a Galois polyno-
mial from a quotient group Ψre

n,H′(x) = (x− b1)(x− b2) · · · (x− bl). Since

bi’s are sums of sk’s, Ψn,H′(x) has only real roots.

Once the s′ks have been defined one can calculate the Galois polyno-
mials by the following formula

Ψre
n (x) =

∏
k∈Z∗/2

n

(x− sk).

Example 2.5. When n = 21,

Φ21,⟨−1⟩ = x6 − x5 − 6x4 + 6x3 + 8x2 − 8x+ 1 = Ψre
21

Φ21,⟨−1⟩⟨8⟩ = x3 − x2 − 2x+ 1 = Ψre
21,⟨8⟩

Φ21,⟨−1⟩⟨4⟩ = x2 − x− 5 = Ψre
21,⟨4⟩

Note, in the reduced group Z∗/2
n one writes ⟨4⟩ = {4, 5, 1} instead of

{4, 16, 1}. Remember, 16 and 5 are mirror points in the unit circle and
have identical cosine functions.

Theorem 2.6. Let Q(s) be the simple extension field of Q containing
s = w+w−1. Then the Galois groupGalQQ(s) is isomorphic to Z∗

n/⟨−1⟩.

Proof. Let σk be the map in GalQQ(s) which sends w to wk, where

k ∈ Z∗
n and w = e

2πi
n . Define Σ : Z∗

n/⟨−1⟩ → GalQQ(s) as Σ(k) =
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σk |Q(s), i.e., the restriction of σk to Q(s). Since σk |Q(s)= σ−k |Q(s), Σ
is a well-defined map. Then{

σk(st) = σk(w
t + w−t) = wkt + w−kt

σ−k(st) = σ−k(w
t + w−t) = w−kt + wkt.

Since Σ(k) sends s to sk and sk’s are all different, Σ is a bijective map.
Also Σ is a homomorphism, i.e., Σ(k1k2)(s) = sk1k2 = (Σk1 ◦Σk2)(s).

3. Galois polynomials from Z∗
n/

(
⟨n− 1⟩⟨n2 + 1⟩

)
Given a number n = 4m, where m is a nonnegative integer. Then the

multiplicative group of integers modulo n has an additional subgroup of
order 2, namely ⟨n2 +1⟩. ⟨n−1⟩⟨n2 +1⟩ is the Klein four-group and could
be expressed also by ⟨n− 1⟩⟨n2 − 1⟩.

We have now four symmetric points on the unit circle wk, wn/2−k,
wn/2+k and wn−k and can reduce the number of elements in Z∗

n to a
quarter.

Definition 3.1. To simplify the writing we introduce the denotation

Z∗/4
n = Z∗

n/
(
⟨n− 1⟩⟨n2 + 1⟩

)
.

Definition 3.2. If n = 4m, then the following special modulus re-
turns representatives in the interval ]0, n4 [.

a mod* n
2 = min

(
a mod n

2 , (n− a) mod n
2

)
,

where a ∈ N.

Theorem 3.3. Let n = 4m (m ∈ N) and Z∗/4
n be the multiplicative

group of integers mod* n
2 . Then the group Z∗/4

n is cyclic, if and only if

n ∈ {2k(k>3), 4pk, 8pk, 4pk11 pk22 }, where pk11 and pk22 are different odd

prime powers satisfying (φ(pk11 ), φ(pk22 )) = 2.

Proof. If n is divisible by 4 and n ∈ {2k(k>3), 4pk} with j(n) = 2 or

n ∈ {8pk, 4pk11 pk22 } with j(n) = 4, then Z∗/4
n is cyclic, because the order

is quartered |Z∗/4
n | = |Z∗

n|/4 for all n, and for n ∈ {2k(k>3), 4pk} the
exponent λ(n) is halved.

Example 3.4. When n = 84,

Z∗/4
n = {1, 5, 11, 13, 17, 19},

⟨11⟩ = {11, 112, 113, · · · , 116} (mod* n
2 ) = {11, 5, 13, 17, 19, 1}.
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The “primitive” roots of Z∗/4
n are 11 and 19.

Let wk = e
2πik
n be a point on the unit circle. Then the group ⟨n− 1⟩

applied to k mirrors the points at the x-axis, the addition of the two
points yields wk + wn−k = 2 cos(2πkn ). The group ⟨n2 − 1⟩ mirrors the

points at the y-axis, the addition yields wk + w
n
2
−k = 2i sin(2πkn ). The

combination of the two groups, namely ⟨n2 + 1⟩, mirrors the points at

the origin, the addition yields wk + w
n
2
+k = 0.

Still given n = 4m and using the definition of sk above, we have two
special cases:

Case Z∗
n/⟨n− 1⟩: The Galois polynomial has typical pairs of factors

(x− sk)(x+ sk) = x2 − s2k and has only real roots

Ψre
n (x) =

∏
k∈Z∗/4

n

(x2 − s2k).

Case Z∗
n/⟨n2 − 1⟩: The Galois polynomial has typical pairs of factors(

x− 2i sin(2πkn )
) (

x+2i sin(2πkn )
)
= x2+4sin(2πkn )2 = x2+4− s2k and

has only pure imaginary roots.

Ψim
n (x) =

∏
k∈Z∗/4

n

(x2 + 4− s2k).

Example 3.5. When n = 20,
Case Z∗

n/⟨n− 1⟩:
Φ20,⟨n−1⟩ = x4 − 5x2 + 5 = Ψre

20,

Φ20,⟨n−1⟩⟨3⟩ = x2 − 5 = Ψre
20,⟨3⟩.

Case Z∗
n/⟨n2 − 1⟩:

Φ20,⟨n/2−1⟩ = x4 + 3x2 + 1 = Ψim
20 ,

Φ20,⟨n/2−1⟩⟨3⟩ = x2 + 3 = Ψim
20,⟨3⟩.

4. Galois polynomials from Z∗
n/

(
⟨n− 1⟩⟨n4 + 1⟩

)
Given a number n = 8m, where m is a positive integer. Then the

multiplicative group of integers modulo n can be halved a third time.
The group ⟨n4 + 1⟩ comprises ⟨n2 + 1⟩ as a subgroup.

We have now eight symmetric points on the unit circle and can reduce
the number of elements in Z∗

n to an eighth.
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Definition 4.1. To simplify the writing we introduce the denotation

Z∗/8
n = Z∗

n/
(
⟨n− 1⟩⟨n4 + 1⟩

)
.

Definition 4.2. If n = 8m, then the following special modulus re-
turns representatives in the interval [0, n8 ].

a mod* n
4 = min

(
a mod n

4 , (n− a) mod n
4

)
,

where a ∈ N.

Theorem 4.3. Let n = 8m (m ∈ N) and Z∗/8
n be the multiplica-

tive group of integers mod* n
4 . Then the group Z∗/8

n is cyclic, if n ∈
{2k(k> 3), 8pk, 16pk, 8pk11 pk22 }, where pk11 and pk22 are different odd

prime powers satisfying (φ(pk11 ), φ(pk22 )) = 2.

Proof. If n is divisible by 8 and n ∈ {2k(k>3), 8pk} with j(n) = 2 or

n ∈ {16pk, 8pk11 pk22 } with j(n) = 4, then Z∗/8
n is cyclic, because the order

is divided by eight |Z∗/8
n | = |Z∗

n|/8 for all n, and for n ∈ {2k(k>3), 8pk}
the exponent λ(n) is halved.

Example 4.4. When n = 168,

Z∗/8
n = {1, 5, 11, 13, 17, 19},

⟨11⟩ = {11, 112, 113, · · · , 116} (mod* n
4 ) = {11, 5, 13, 17, 19, 1}.

Still given n = 8m and using the definition of sk above, we have two
special cases:
Case Z∗

n/⟨n− 1⟩, Galois polynomial with real roots:

Ψre
n (x) =

∏
k∈Z∗/8

n

(x4 − 4x2 + 4s2k − s4k).

Case Z∗
n/⟨n2 − 1⟩, Galois polynomial with pure imaginary roots:

Ψim
n (x) =

∏
k∈Z∗/8

n

(x4 + 4x2 + 4s2k − s4k).

Example 4.5. When n = 104 = 8 · 13, one gets ⟨7⟩ mod* n
4 =

{7, 3, 5, 9, 11, 1}.
The Galois polynomials Ψre

n and Ψim
n have – disregarding the signs – the

same coefficients. The minus signs are for Ψre
n .

Ψ
re/im
104,⟨7⟩(x) = x4 ∓ 4x2 + 11,

Ψ
re/im
104,⟨3⟩(x) = x8 ∓ 8x6 + 27x4 ∓ 44x2 + 27,

Ψ
re/im
104,⟨5⟩(x) = x12 ∓ 12x10 + 59x8 ∓ 152x6 + 212x4 ∓ 144x2 + 31,
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Ψ
re/im
104,⟨1⟩(x) = x24 ∓ 24x22 + 251x20 ∓ 1500x18 + . . .+ 1.

5. Galois polynomials from Z∗
n/

(
⟨n− 1⟩⟨nq − 1⟩

)
Given a number n = q2m, where q is an odd prime and m a positive

integer. Then the multiplicative group of integers modulo n has an
additional subgroup of order q, namely ⟨nq − 1⟩, beside the standard

subgroup ⟨n− 1⟩ of order 2.
We have now 2q symmetric points on the unit circle and can reduce

the number of elements in Z∗
n by the factor 2q.

Definition 5.1. To simplify the writing we introduce the denotation

Z∗/2q
n = Z∗

n/
(
⟨n− 1⟩⟨nq − 1⟩

)
.

Definition 5.2. If n = q2m, then the following special modulus
returns representatives in the interval [0, n

2q ].

a mod* n
q = min

(
a mod n

q , (n− a) mod n
q

)
,

where a ∈ N.

Theorem 5.3. The Galois polynomials from Z∗/2q
n are all reducible

over Q .

Proof. The roots ak of the Galois polynomial

Ψn =
∏

k∈Z∗/2q
n

(x− ak).

are

ak = sk + sf−k + sf+k + s2f−k + s2f+k + . . .+ stf−k + stf+k,

where sk are defined as before and f = 2n
q and t = q−1

2 .

Because of the symmetric positions on the unit circle of the elements
of the group ⟨nq − 1⟩, we have ak = 0 and therefore Ψn = xh with

h = |Z∗/2q
n |.

Examples are n = 45 or n = 75. One could extend this section even
to n = 105, where n and φ(n) are divisible by 3 resulting in reducible
Galois polynomials.
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6. Cyclic Semiprimes

In studying the applications of mod* the term cyclic semiprime [8]
was created. Note, all products of twin primes or pairs of Sophie Ger-
main primes are cyclic semiprimes.

Definition 6.1. Let n = pk11 pk22 with (φ(pk11 ), φ(pk22 )) = 2, where pi
are distinct odd primes and ki positive integers. Then n is called a cyclic
semiprime.

If n is a cyclic semiprime, Z∗
n/⟨−1⟩ is cyclic. In this case, Galois

polynomials over Z∗/2
n can be calculated more easily.

Remark 6.2. If n is an odd cyclic semiprime, then 2n is it as well.
The focus below is on n.

The odd cyclic semiprimes<100> are 15, 21, 33, 35, 39, 45, 51, 55,
57, 69, 75, 77, 87, 93, 95 and 99. Note, although the numbers 63, 65, 85
and 91 are composed of two primes, they are not cyclic semiprimes.

Theorem 6.3. There are infinitely many cyclic semiprimes.

Proof. There are even infinitely many cyclic semiprimes with a fixed
first factor pk11 . Let {q1, q2, . . . , ql} be the set of all prime factors of

φ(pk11 )/2. Powers of qi need not to be considered. There is a chance of
qi−2
qi−1 for odd qi and of 1

2 for qi = 2 that φ(pk22 )/2 is not divisible by qi
and a combined chance of

(6.1)

c =

l∏
i=1

qi − 2

qi − 1
or

c =
1

2
·

l∏
i=2

qi − 2

qi − 1

if q1 = 2, that φ(pk22 )/2 is not divisible by any qi. We will show below
that c ≈ 1/2.

The denominator qi − 1 follows from the fact, that in randomly se-
lected integers every q th

i number is divisible by qi. The numerator qi−2
takes additional in account that (qi − 1)/2 is not an allowed divisior of

φ(pk22 )/2, because p2 would be a multiple of qi.

Because c is a nonzero constant for any pk11 and because there exist
infinitely many primes p2, the theorem follows.
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Examples: All numbers of the form n = 3p (p > 3) with c = 1 are
cyclic semiprimes.
Numbers n ∈ {5p, 9p, 21p, 61p} would have the chance c = {1

2 ,
1
2 ,

1
4 ,

3
16},

respectively.

Theoretically, one could expect a value of

ctheo =
(1
2

)1
2

∞∏
i=2

(pi − 2

pi − 1

) 1
pi ≈ 0.499075 . . . ,

where pi is the ith prime.

It is difficult to verify this result heuristically. One procedure is to
prepare a list of all odd pk < m up to a maximum m, then to determine
the frequency of

(
φ(pk11 ), φ(pk22 )

)
= 2 in all pairs p1 ̸= p2. We did this

up to m = 104 testing more than 108 pairs and found that the results
begin at cheur ≈ 5.0, do not converge, but rather fluctuate down to
cheur ≈ 4.96. A converging procedure was not found.

The constant c estimates the probability that a number n = pk11 pk22
is a cyclic semiprime. It is similar – but not analogue – to Artin’s well
known constant for primes.
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