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BLOW-UP PHENOMENA FOR A QUASILINEAR

PARABOLIC EQUATION WITH TIME-DEPENDENT

COEFFICIENTS UNDER NONLINEAR BOUNDARY

FLUX

Tae In Kwon* and Zhong Bo Fang**

Abstract. This paper deals with blow-up phenomena for an initial
boundary value problem of a quasilinear parabolic equation with
time-dependent coefficient in a bounded star-shaped region under
nonlinear boundary flux. Using the auxiliary function method and
differential inequality technique, we establish some conditions on
time-dependent coefficient and nonlinear functions for which the
solution u(x, t) exists globally or blows up at some finite time t∗.
Moreover, some upper and lower bounds for t∗ are derived in higher
dimensional spaces. Some examples are presented to illustrate ap-
plications of our results.

1. Introduction

Our main interest lies in the following quasilinear parabolic equation
with time dependent coefficient and inner absorption term:

ut = div(h(|∇u|2)∇u)− k(t)f(u), (x, t) ∈ Ω× (0, t∗),(1.1)

with the nonlinear Neumann boundary and initial conditions

h(|∇u|2)∂u
∂ν

= g(u), (x, t) ∈ ∂Ω× (0, t∗), and(1.2)

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,(1.3)
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where Ω ⊂ RN (N ≥ 2) is a bounded star-shaped region with smooth
boundary ∂Ω and ν is the unit outward normal vector on ∂Ω. The
coefficient k(t) is a nonnegative differentiable function, t∗ is a possible
blow-up time when blow-up occurs, otherwise t∗ = +∞, and the diffu-
sion coefficient h(σ) is a C1-function satisfying the condition

h(σ) + 2σh′(σ) > 0, σ > 0,(1.4)

so that div(h∇u) is elliptic. The nonlinear functions f(u) and g(u) are
nonnegative continuous functions which satisfy appropriate conditions,
and the initial data u0(x) is a positive C1-function and satisfies a com-
patibility condition. By the classical parabolic theory, one can deduce
that the solution of (1.1)-(1.3) is nonnegative and smooth.

Many physical phenomena and biological species theories, such as
the concentration of diffusion of some non-Newton fluid through porous
medium, the density of some biological species, and heat conduction
phenomena, have been formulated as parabolic equation (1.1), see [3,
16, 25]. The nonlinear boundary flux (1.2) can be physically interpreted
as the nonlinear radial law, see [9, 13].

In the past decades, there have been many works dealing with exis-
tence and nonexistence of global solutions, blow-up of solutions, bounds
for blow-up time, blow-up rates, blow-up sets, and asymptotic behavior
of the solutions to nonlinear parabolic equations, refer to [22, 23, 24]
and the survey papers [2, 10, 12]. Roughly, it has been seen that exis-
tence of global and nonglobal solutions and behavior of the solutions to
semilinear parabolic equations depend on nonlinearity, dimension, ini-
tial data, and nonlinear boundary flux. In this paper, we would like
to investigate whether the solutions of quasilinear parabolic equations
blow up and when blow-up occurs. A variety of methods have been used
to study the problem above (cf. [11]), and in many cases, the methods
used to show blow-up of solutions often provide an upper bound for the
blow-up time. However, lower bounds for blow-up time may be harder
to be determined. One can refer to [5, 6, 14, 20, 21] to see some studies
on the initial-boundary value problem of a parabolic equation without
time-dependent coefficients. Payne et al. [21] considered the following
quasilinear parabolic equation:

ut = div
(
h(|∇u|2)∇u

)
+ f(u), (x, t) ∈ Ω× (0, t∗),(1.5)

with homogeneous Dirichlet boundary condition, where Ω ⊂ R3 is a
bounded domain with smooth boundary ∂Ω. They obtained lower bounds
for blow-up time by using the technique of differential inequality. The
lower bound of the solution to (1.5) with Robin boundary condition was
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obtained by Li et al. [14]. However, under this boundary condition, the
best constant of the Sobolev inequality used in [21] is no longer applica-
ble. They impose suitable conditions on h and determined a lower bound
for the blow-up time when blow-up occurs in R3. Enche [5] discussed
the quasilinear parabolic equation

ut = div (h(u)∇u) + f(u), (x, t) ∈ Ω× (0, t∗),

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary
∂Ω. By virtue of a first-order differential inequality technique, the au-
thor introduced some sufficient conditions for which the solution exists
globally or blows up. In addition, a lower bound for the blow-up time
was also obtained when blow-up occurs. Payne et al. [20] studied the
quasilinear parabolic equation

ut = div
(
|∇u|2p∇u

)
, (x, t) ∈ Ω× (0, t∗),

with the Neumann boundary condition

|∇u|2p∂u
∂ν

= f(u), (x, t) ∈ ∂Ω× (0, t∗),

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω. They
derived some lower and upper bounds of blow-up time under some ap-
propriate restrictive conditions. Recently, Fang and Chai [6] considered
the quasilinear parabolic equation with an inner absorption term

ut = div ((|∇u|p + 1)∇u)− f(u), (x, t) ∈ Ω× (0, t∗),

under the nonlinear boundary flux, where Ω ⊂ RN (N ≥ 2) is a suffi-
ciently smooth bounded domain. Using a first-order differential inequal-
ity technique, they introduced some sufficient conditions for which the
solution exists globally or blows up. Moreover, a lower bound for the
blow-up time, when blow-up occurs, was also obtained in R3. In addi-
tion, to see the lower bounds of blow-up time for a semilinear equation
with inner absorption term in a higher dimensional space under nonlin-
ear boundary flux or a porous medium equation with nonlocal source
and inner absorption, refer to [1, 7].

For the studies on lower bound of blow-up time for a parabolic equa-
tion with time-dependent coefficients, one can refer to [8, 15, 17, 18, 19].
Payne and Philippin [18, 19] considered initial-boundary value problems
of the semilinear parabolic equation with time-dependent coefficient

ut = ∆u+ k(t)f(u), (x, t) ∈ Ω× (0, t∗),

under homogeneous Dirichlet and Neumann boundary conditions, where
Ω ⊂ RN (N ≥ 2) is a sufficiently smooth bounded domain. Under some
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conditions on k(t) and f(u), they obtained some sufficient conditions
for existence of the global solution and upper bound for the blow-up
time. Moreover, a lower bound of the blow-up time was derived in R3.
One can refer to [17] for details on the problem with Robin boundary
condition. Recently, Fang and Wang [8] investigated the divergence
form of a parabolic equation with time-dependent coefficient and inner
absorption term

ut =

N∑
i,j=1

(
aij(x)uxi

)
xj

− k(t)f(u), (x, t) ∈ Ω× (0, t∗),

under nonlinear boundary flux, where Ω ⊂ RN (N ≥ 2) is a bounded
star-shaped region with smooth boundary ∂Ω. They established some
conditions on initial data which guarantee blow-up or global existence
of the solutions and derived an upper bound of the blow-up time. They
also obtained a lower bound of blow-up time under more restrictive con-
ditions. Marras and Piro [15] studied the quasilinear parabolic equation
with time-dependent coefficient

ut = div(h(|∇u|2)∇u) + k(t)f(u), (x, t) ∈ Ω× (0, t∗),

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. Under
some conditions on the initial data and geometry of the spatial domain,
they obtained upper and lower bounds of the blow-up time. Moreover,
the sufficient conditions for existence of global solution were derived.

In view of the works mentioned above, one can find that research on
the blow-up phenomena of the solutions to parabolic equations with
absorption terms having time-dependent coefficients under nonlinear
boundary flux has not been started yet. A difficulty lies in finding an in-
fluence of k(t) and a competitive relationship between inner absorption
and boundary source in determining blow-up of the solutions. By virtue
of the modified differential inequality technique, we establish some con-
ditions on time-dependent coefficient and nonlinear functions for which
the solution u(x, t) exists globally or blows up at some finite time t∗,
and we also derive lower and upper bounds for t∗ in higher dimensional
spaces.

The rest of our paper is organized as follows: In Sections 2 and 3,
we establish some conditions on k(t), h(σ), f(u), and g(u) for which the
solution u(x, t) exists globally or blows up in finite time t∗, and then
obtain an upper bound for t∗. A lower bound of t∗ is derived in Section
4. Finally, some examples are presented to illustrate applications of our
results.
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2. The global existence

In this section, we establish some conditions on k(t) and the nonlinear
functions f , g, and h to guarantee existence of global solution. In order
to prove our results, we first recall a lemma in [20] and state it below:

Lemma 2.1. [20] Suppose that Ω is a bounded star-shaped region in
RN , whereN ≥ 2. Then for any nonnegative C1-function u and constant
θ > 0, we have the inequality∫

∂Ω
uθdS ≤ N

ρ0

∫
Ω
uθdx+

θd

ρ0

∫
Ω
uθ−1|∇u|dx,

where
ρ0 = min

x∈∂Ω
(x · ν), d = max

x∈Ω
|x|.

Theorem 2.2. Suppose that h(σ) is a C1-function which satisfies the
inequality

h(σ) ≥ b1σ
p + b2, σ > 0,(2.1)

with b1, b2, p > 0 and that the nonnegative functions f and g satisfy the
inequalities

f(s) ≥ a1s
q, s ≥ 0,(2.2)

g(s) ≤ a2s
r, s ≥ 0,(2.3)

where a1 > 0, a2 ≥ 0, q, r > 1, q + 1 > 2r, and

k(t) > 0,
k′(t)

k(t)
≤ −β, t > 0,(2.4)

for a positive constant β.
Then the nonnegative solution u(x, t) of problem (1.1)-(1.3) does not

blow up; that is, u(x, t) exists for all t > 0.

Remark 2.3. From the conditions q, r > 1 and q+1 > 2r in Theorem
2.2, one can easily see that q > r.

Proof of Theorem 2.2. Set

Φ(t) = k(t)

∫
Ω
u2dx.(2.5)

We first show that Φ is not an increasing function. To this end, we
compute the derivative

Φ′(t) = k′(t)

∫
Ω
u2dx+ 2k(t)

∫
Ω
uutdx
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=
k′(t)

k(t)
Φ(t) + 2k(t)

∫
Ω
u
[
div(h(|∇u|2)∇u)− k(t)f(u)

]
dx.

By applying (2.1)-(2.4) and the divergence theorem, we have the in-
equality

(2.6)

Φ′(t) ≤− βΦ(t)− 2b1k(t)

∫
Ω
|∇u|2(p+1)dx− 2b2k(t)

∫
Ω
|∇u|2dx

+ 2a2k(t)

∫
∂Ω

ur+1dS − 2a1k
2(t)

∫
Ω
uq+1dx.

By Lemma 2.1, one can have the inequality∫
∂Ω

ur+1dS ≤ N

ρ0

∫
Ω
ur+1dx+

(r + 1)d

ρ0

∫
Ω
ur|∇u|dx.(2.7)

It follows from Hölder’s and Young’s inequalities that

(2.8)

∫
Ω
ur|∇u|dx ≤

(∫
Ω
u2rdx

∫
Ω
|∇u|2dx

) 1
2

≤ 1

2ε1

∫
Ω
u2rdx+

ε1
2

∫
Ω
|∇u|2dx,

where ε1 is a positive constant to be determined later. Substituting (2.7)
and (2.8) into (2.6), we get the inequality
(2.9)

Φ′(t) ≤− βΦ+

[
a2(r + 1)dε1

ρ0
− 2b2

]
k(t)

∫
Ω

|∇u|2dx+
2a2N

ρ0
k(t)

∫
Ω

ur+1dx

+
a2(r + 1)d

ρ0ε1
k(t)

∫
Ω

u2rdx− 2a1k
2(t)

∫
Ω

uq+1dx.

Selecting ε1 =
2b2ρ0

a2(r + 1)d
> 0, the second term in (2.9) vanishes and we

obtain the inequality

(2.10)

Φ′(t) ≤− βΦ+
2a2N

ρ0
k(t)

∫
Ω
ur+1dx+

a2(r + 1)d

ρ0ε1
k(t)

∫
Ω
u2rdx

− 2a1k
2(t)

∫
Ω
uq+1dx.

We now focus our attention on k(t)

∫
Ω
u2rdx. From Hölder’s inequal-

ity, we can have the inequality

k(t)

∫
Ω
u2rdx ≤

[
k(t)

∫
Ω
ur+1dx

]µ [
k(t)

∫
Ω
uq+1dx

]1−µ

,(2.11)
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where

µ =
q + 1− 2r

q − r
∈ (0, 1).

Furthermore, one can obtain the inequalities
(2.12)

k(t)

∫
Ω
u2rdx ≤

[
ε

µ−1
µ

2 k(t)

∫
Ω
ur+1dx

]µ [
ε2k(t)

∫
Ω
uq+1dx

]1−µ

≤ µε
µ−1
µ

2 k(t)

∫
Ω
ur+1dx+ (1− µ)ε2k(t)

∫
Ω
uq+1dx,

for arbitrary ε2 > 0 by the arithmetic and geometric inequality

asb1−s ≤ as+ b(1− s) for a, b > 0, 0 < s < 1.(2.13)

Substituting (2.12) into (2.10) yields the inequalities
(2.14)

Φ′(t) ≤ −βΦ+
2a2N

ρ0
k(t)

∫
Ω
ur+1dx− 2a1k

2(t)

∫
Ω
uq+1dx

+
a2(r + 1)d

ρ0ε1

[
µε

µ−1
µ

2 k(t)

∫
Ω
ur+1dx+ (1− µ)ε2k(t)

∫
Ω
uq+1dx

]
≤ M1k(t)

∫
Ω
ur+1dx−M2k(t)

∫
Ω
uq+1dx,

where

M1 =
2a2N

ρ0
+

a2(r + 1)d

ρ0ε1
µε

µ−1
µ

2 > 0,

M2 = 2a1k(t)−
a2(r + 1)d

ρ0ε1
(1− µ)ε2,

and ϵ2 > 0 is a sufficiently small constant such that M2 > 0.
An application of Hölder’s inequality leads to

k(t)

∫
Ω
ur+1dx ≤ k(t)

(∫
Ω
uq+1dx

) r+1
q+1

|Ω|
q−r
q+1 ,(2.15)

where |Ω| =
∫
Ω
dx is the N -volume of Ω. Inserting (2.15) into (2.14),

we have
(2.16)

Φ′(t) ≤ M1k(t)|Ω|
q−r
q+1

(∫
Ω

uq+1dx

) r+1
q+1

−M2k(t)

∫
Ω

uq+1dx

= M1|Ω|
q−r
q+1

[
k(t)

(∫
Ω

uq+1dx

) r+1
q+1

][
1− |Ω|

r−q
q+1

M2

M1

(∫
Ω

uq+1dx

) q−r
q+1

]
.
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By using Hölder’s inequality, we can have the inequality

Φ(t) = k(t)

∫
Ω
u2dx ≤ k(t)

(∫
Ω
uq+1dx

) 2
q+1

|Ω|
q−1
q+1 ,

i.e., ∫
Ω
uq+1dx ≥

[
|Ω|

1−q
q+1 k−1(t)Φ(t)

] q+1
2

.(2.17)

It follows from (2.16) and (2.17) that

Φ′(t) ≤ M1|Ω|
q−r
q+1

[
k(t)

(∫
Ω
uq+1dx

) r+1
q+1

][
1− |Ω|

r−q
2

M2

M1
k

r−q
2 (t)Φ

q−r
2

]
,

(2.18)

with q−r
2 > 0. Since k′(t)

k(t) ≤ −β and the positive coefficient k(t) is a non-

increasing function, one can conclude from (2.18) that Φ(t) is bounded
for all t > 0 under the conditions in Theorem 2.2. In fact, if u(x, t)
blows up at finite time t∗, then Φ(t) is unbounded near t∗, which forces
Φ′(t) ≤ 0 in some interval [t0, t

∗), and hence, we have Φ(t) ≤ Φ(t0) in
[t0, t

∗), which implies that Φ(t) is bounded in [t0, t
∗). This is a con-

tradiction. Therefore, u(x, t) exists for all t > 0, which completes the
proof.

For the special case r = 1, one can obtain the same result under
slightly different conditions.

Theorem 2.4. Suppose that the nonlinear functions h, f , and g
satisfy (2.1), (2.2), and (2.3) with constants

b1, b2, a1, p > 0, a2 ≥ 0, q > 1, r = 1,(2.19)

and

k(t) > 0,
k′(t)

k(t)
≤ β, t > 0,(2.20)

where β is a nonnegative constant.
Then the nonnegative solution u(x, t) of problem (1.1)-(1.3) does not

blow up; that is, u(x, t) exists for all t > 0.

Proof. Set

ϕ(t) = k
2

q−1 (t)

∫
Ω
u2dx.
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By using similar arguments as in the proof of Theorem 2.2, we can have
the inequality
(2.21)

ϕ′(t) ≤ 2β

q − 1
ϕ(t)− 2b2k

2
q−1 (t)

∫
Ω
|∇u|2dx+

2Na2
ρ0

k
2

q−1 (t)

∫
Ω
u2dx

+
4a2d

ρ0
k

2
p−1 (t)

∫
Ω
u|∇u|dx− 2a1k

q+1
q−1 (t)

∫
Ω
uq+1dx.

It follows from Hölder’s inequality that

k
q+1
q−1 (t)

∫
Ω
uq+1dx ≥ |Ω|

1−q
2

[
k

2
q−1 (t)

∫
Ω
u2dx

] q+1
2

= |Ω|
1−q
2 ϕ

q+1
2 (t).(2.22)

Let us consider the fourth term on the right side of (2.21). By Hölder’s
inequality and (2.13), we can obtain the inequalities

4a2d

ρ0
k

2
q−1 (t)

∫
Ω
u|∇u|dx

≤ 4a2d

ρ0

[
k

2
q−1 (t)

∫
Ω
u2dx

] 1
2
[
k

2
q−1 (t)

∫
Ω
|∇u|2dx

] 1
2

≤ 4a2d

ρ0

[
1

2ε3
k

2
q−1 (t)

∫
Ω
u2dx+

ε3
2
k

2
q−1 (t)

∫
Ω
|∇u|2dx

]
≤ 4a2d

ρ0

[
1

2ε3
ϕ(t) +

ε3
2
k

2
q−1 (t)

∫
Ω
|∇u|2dx

]
,(2.23)

where ε3 is a positive constant to be determined later. Combining (2.22)
and (2.23) with (2.21), we have the inequality
(2.24)

ϕ′(t) ≥
(

2β

q − 1
+

2Na2
ρ0

+
2a2d

ε3ρ0

)
ϕ(t)

+

(
2a2dε3
ρ0

− 2b2

)
k

2
q−1 (t)

∫
Ω
|∇u|2dx− 2a1|Ω|

1−q
2 ϕ

q+1
2 (t),

and hence, taking ε3 =
b2ρ0
a2d

, we get the inequality

ϕ′(t) ≤ c1ϕ(t)− c2ϕ
q+1
2 (t) = c1ϕ(t)

(
1− c2

c1
ϕ

q−1
2 (t)

)
,(2.25)

where

c1 =
2β

q − 1
+

2Na2
ρ0

+
2a2d

ε3ρ0
> 0, and
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c2 = 2a1|Ω|
1−q
2 > 0.

By an analogous analysis as in the proof of Theorem 2.2, one can easily
conclude that the solution u(x, t) exists for all t > 0, which completes
the proof.

3. Blow-up and upper bound of t∗

In this section, Ω needs not to be star-sharped. We assume some
conditions to assure that the solution of (1.1)-(1.3) blows up at finite
time t∗ and derive an upper bound for t∗. The result can be summarized
as follows:

Theorem 3.1. Suppose that Ω is a bounded region in RN (N ≥ 2)
with smooth boundary ∂Ω and u(x, t) is a nonnegative classical solution
of problem (1.1)-(1.3), and that the positive C1-function h is such that

h(σ) = b1σ
p + b2, σ > 0,(3.1)

with b1, b2, p > 0, and assume that the nonnegative integrable functions
f and g satisfy the conditions

ξf(ξ) ≤ 2(1 + α)F (ξ), ξ ≥ 0,(3.2)

ξg(ξ) ≥ 2(1 + γ)G(ξ), ξ ≥ 0,(3.3)

where

F (ξ) =

∫ ξ

0
f(s)ds, G(ξ) =

∫ ξ

0
g(s)ds,(3.4)

γ ≥ max {p, α} .(3.5)

Let

(3.6)

Θ(t) = 2

∫
∂Ω

G(u)dS −
∫
Ω

(
b1

1 + p
|∇u|2p + b2

)
|∇u|2dx

− 2k(t)

∫
Ω
F (u)dx,

with Θ(0) > 0, and let

k(t) > 0,
k′(t)

k(t)
≤ −β, t > 0,(3.7)

for a positive constant β.
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Then the solution u(x, t) of problem (1.1)-(1.3) blows up at some
finite time t∗ < T with

T =
Ψ(0)

2γ(1 + γ)Θ(0)
, γ > 0,

where Ψ(t) =

∫
Ω
u2dx and Ψ(0) > 0. If γ = 0, then T = ∞.

Remark 3.2. If we take f(ξ) = a1ξ
q, q ≤ 2α + 1 and g(ξ) = a2ξ

r,
r ≥ 2γ + 1, then the functions f and g satisfy the conditions (3.2) and
(3.3).

Proof of Theorem 3.1. We compute the derivative
(3.8)

Ψ
′
(t) = 2

∫
Ω
uutdx = 2

∫
Ω
udiv

(
h(|∇u|2)∇u

)
dx− 2k(t)

∫
Ω
uf(u)dx

= 2

∫
∂Ω

ug(u)dS − 2

∫
Ω
h(|∇u|2)|∇u|2dx− 2k(t)

∫
Ω
uf(u)dx.

By using hypotheses (3.1)-(3.5), one can see that

Ψ
′
(t) ≥ 4(1 + γ)

∫
∂Ω

G(u)dS − 2

∫
Ω

(
b1|∇u|2p + b2

)
|∇u|2dx

− 4(1 + α)k(t)

∫
Ω
F (u)dx

≥ 2(1 + γ)Θ(t).(3.9)

Computing the derivative of Θ(t) in (3.6), it can be seen that

(3.10)

Θ′(t) = 2

∫
∂Ω

g(u)utdS −
∫
Ω

(
b1|∇u|2p + b2

)
(|∇u|2)tdx

− 2k(t)

∫
Ω
f(u)utdx− 2k′(t)

∫
Ω
F (u)dx.

Integrating the equation

div
(
ut(b1|∇u|2p + b2)∇u

)
= utdiv

(
(b1|∇u|2p + b2)∇u

)
+

1

2
(b1|∇u|2p + b2)(|∇u|2)t,

over Ω, we get
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(3.11)∫
Ω

(
b1|∇u|2p + b2

)
(|∇u|2)tdx

= 2

∫
Ω

div
(
ut(b1|∇u|2p + b2)∇u

)
dx− 2

∫
Ω

utdiv
(
(b1|∇u|2p + b2)∇u

)
dx

≤ 2

∫
∂Ω

utg(u)dS − 2

∫
Ω

utdiv
(
h(|∇u|2)∇u

)
dx.

Substituting (3.11) into (3.10), we have
(3.12)

Θ′(t) ≥ 2

∫
Ω
utdiv

(
h(|∇u|2)∇u

)
dx− 2k(t)

∫
Ω
utf(u)dx− 2k′(t)

∫
Ω
F (u)dx

= 2

∫
Ω
u2tdx− 2k′(t)

∫
Ω
F (u)dx

≥ 2

∫
Ω
u2tdx+ 2βk(t)

∫
Ω
F (u)dx ≥ 2

∫
Ω
u2tdx ≥ 0,

which implies Θ(t) > 0 for all t ∈ (0, t
∗
), since Θ(0) > 0.

Making use of the Schwarz inequality, we can have the inequalities

2(1 + γ)Ψ′(t)Θ(t) ≤ (Ψ
′
(t))2 = 4

(∫
Ω
uutdx

)2

≤ 2Ψ(t)Θ′(t).(3.13)

By (3.13), we can deduce

(3.14)
(ΘΨ−(1+γ))′ = Θ′Ψ−(1+γ) − (1 + γ)ΘΨ−(γ+2)Ψ′

= Ψ−(γ+2)[Θ′Ψ− (1 + γ)ΘΨ′] ≥ 0.

Integrating (3.14) over [0, t] and noticing that Ψ(0) > 0, one can see
that

Θ(t)Ψ−(1+γ)(t) ≥ Θ(0)Ψ−(1+γ)(0) =: M > 0;

that is,

Θ(t) ≥ MΨ1+γ(t).(3.15)

It follows from (3.9) and (3.15) that

Ψ′(t) ≥ 2(1 + γ)Θ(t) ≥ 2M(1 + γ)Ψ1+γ(t).(3.16)

If γ > 0, from (3.16) one can see that

(Ψ−γ)′ = −γΨ−(γ+1)Ψ′ ≤ −2Mγ(1 + γ).(3.17)

By (3.9), Θ(t) > 0, and Ψ(0) > 0, we have the inequality

Ψ(t) > 0, t > 0.(3.18)
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From (3.17) and (3.18), we get the inequality

0 < Ψ−γ(t) ≤ Ψ−γ(0)− 2Mγ(1 + γ)t;

that is,

Ψγ(t) ≥ 1

Ψ−γ(0)− 2Mγ(1 + γ)t
.

If t → T = (Ψ(0))−γ

2Mγ(1+γ) = Ψ(0)
2γ(1+γ)Θ(0) , then Ψ(t) will blow up at some

time t∗ < T . Consequently, one can see that

t∗ ≤ T =
Ψ(0)

2γ(1 + γ)Θ(0)

is valid for all γ > 0.
If γ = 0, we have the inequalities

(ΘΨ−1)′ ≥ 0, Ψ′(t) ≥ 2MΨ(t), Ψ(t) ≥ e2MtΨ(0),

for all t > 0, which implies t∗ = ∞. This completes the proof.

Remark 3.3. If the conditions in (3.7) are replaced by the following
conditions:

k(t) < 0, 0 <
k′(t)

k(t)
≤ λ, t > 0, λ > 0,(3.19)

then one can easily obtain similar results as the ones in Theorem 3.1.
In fact, (3.19) implies k′(t) < 0 and (3.12) becomes

Θ′(t) = 2

∫
Ω
u2tdx− 2k′(t)

∫
Ω
F (u)dx

≥ 2

∫
Ω
u2tdx ≥ 0.

4. Lower bounds for t∗

In this section, the domain Ω ⊂ RN (N ≥ 3) needs to be a convex
bounded domain with smooth boundary. Moreover, we make some ap-
propriate assumptions on nonlinear functions f and g to seek a lower
bound for blow-up time t∗. We state our result below:

Theorem 4.1. Suppose that u(x, t) is the nonnegative classical so-
lution of problem (1.1)-(1.3) and u(x, t) blows up at t∗, and that the
C1-function h(σ) is such that

h(σ) ≥ b1σ
p + b2, σ > 0,(4.1)
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with b1, b2, p > 0, and we assume that the nonnegative functions f and
g are such that

f(s) ≥ a1s
q, s ≥ 0,(4.2)

g(s) ≤ a2s
r, s ≥ 0,(4.3)

with a1, a2, q, r > 1 and q + 1 ≤ 2r. Define a function

φ(t) :=

∫
Ω
umdx,(4.4)

where m is a parameter such that

m > max {4(N − 2)(r − 1), 2}
and

k(t) ≥ η, t > 0, η > 0.(4.5)

Then the blow-up time t∗ is bounded below, i.e.,∫ +∞

φ(0)

dζ

Q1ζ
3(N−2)
3N−8 +Q2

< t∗,

where φ(0) =

∫
Ω
um0 dx, and Q1 and Q2 are positive constants to be

determined later.

Proof. From (4.1)-(4.4) and the divergence theorem, one can see that

φ
′
(t) = m

∫
Ω
um−1utdx

= m

∫
Ω
um−1div

(
h(|∇u|2)∇u

)
dx−mk(t)

∫
Ω
um−1f(u)dx

≤ −m(m− 1)b1

∫
Ω
um−2|∇u|2(p+1)dx−m(m− 1)b2

∫
Ω
um−2|∇u|2dx

(4.6)

+ma2

∫
∂Ω

um+r−1dS −ma1η

∫
Ω
um+q−1dx.

By Lemma 2.1, we can obtain the inequality

∫
∂Ω

um+r−1dS ≤ N

ρ0

∫
Ω
um+r−1dx+

(m+ r − 1)d

ρ0

∫
Ω
um+r−2|∇u|dx.

(4.7)

It follows from Hölder’s and Young’s inequalities that∫
Ω
um+r−2|∇u|dx
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=

∫
Ω
u
m+r−2− m−2

2(p+1)u
m−2

2(p+1) |∇u|dx

≤
[∫

Ω
u

(m−2)(2p+1)+2r(p+1)
2p+1 dx

] 2p+1
2(p+1)

[∫
Ω
um−2|∇u|2(p+1)dx

] 1
2(p+1)

≤ 2p+ 1

2(p+ 1)
ε
− 1

2p+1

4

∫
Ω
u

(m−2)(2p+1)+2r(p+1)
2p+1 dx(4.8)

+
1

2(p+ 1)
ε4

∫
Ω
um−2|∇u|2(p+1)dx,

where ε4 is a positive constant to be determined later, and∫
Ω
u

(m−2)(2p+1)+2r(p+1)
2p+1 dx ≤

(∫
Ω
um+2r−2dx

)P1

|Ω|1−P1

≤ P1

∫
Ω
um+2r−2dx+ (1− P1)|Ω|,(4.9)

P1 =
(m− 2)(2p+ 1) + 2r(p+ 1)

(2p+ 1)(m+ 2r − 2)
∈ (0, 1),

∫
Ω
um+r−1dx ≤

(∫
Ω
um+2r−2dx

)P2

|Ω|1−P2

≤ P2

∫
Ω
um+2r−2dx+ (1− P2)|Ω|,(4.10)

P2 =
m+ r − 1

m+ 2r − 2
∈ (0, 1).

From (4.6)-(4.10), we get the inequality
(4.11)

φ′(t) ≤
[
(m+ r − 1)dma2

2ρ0(p+ 1)
ε4 −m(m− 1)b1

] ∫
Ω
um−2|∇u|2(p+1)dx

+ma2

[
NP2

ρ0
+

(2p+ 1)(m+ r − 1)dP1

2ρ0(p+ 1)
ε
− 1

2p+1

4

] ∫
Ω
um+2r−2dx

+ma2

[
N(1− P2)

ρ0
+

(2p+ 1)(m+ r − 1)d(1− P1)

2ρ0(p+ 1)
ε
− 1

2p+1

4

]
|Ω|

−m(m− 1)b2

∫
Ω
um−2|∇u|2dx−ma1η

∫
Ω
um+q−1dx.

Choosing appropriate ε4 > 0 such that

(m+ r − 1)dma2
2ρ0(p+ 1)

ε4 = m(m− 1)b1,
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one can derive the inequality

(4.12)

φ′(t) ≤− 4(m− 1)b2
m

∫
Ω
|∇u

m
2 |dx+ Q̃1

∫
Ω
um+2r−2dx+ Q̃2

−ma1η

∫
Ω
um+q−1dx.

Here, we have used the identity

|∇u
m
2 | =

(m
2

)2
um−2|∇u|2,

and

Q̃1 = ma2

[
NP2

ρ0
+

(2p+ 1)(m+ r − 1)dP1

2ρ0(p+ 1)
ε
− 1

2p+1

4

]
> 0,

Q̃2 = ma2

[
N(1− P2)

ρ0
+

(2p+ 1)(m+ r − 1)d(1− P1)

2ρ0(p+ 1)
ε
− 1

2p+1

4

]
|Ω| > 0.

By Hölder’s inequality, we have∫
Ω
um+q−1dx ≥ |Ω|−

q−1
m

(∫
Ω
umdx

)1+ q−1
m

= |Ω|−
q−1
m φ1+ q−1

m (t).(4.13)

Substituting (4.13) into (4.12), we get the inequality

(4.14)
φ′(t) ≤− 4(m− 1)b2

m

∫
Ω
|∇u

m
2 |2dx+ Q̃1

∫
Ω
um+2r−2dx+ Q̃2

−ma1η|Ω|−
q−1
m φ1+ q−1

m (t).

We now consider the second term on the right-hand side of (4.14). By
using Hölder’s and Young’s inequalities, we can obtain the inequalities

(4.15)

∫
Ω
um+2r−2dx ≤

[∫
Ω
u

m(2N−3)
2(N−2) dx

]P3

|Ω|1−P3

≤ P3

∫
Ω
u

m(2N−3)
2(N−2) dx+ (1− P3)|Ω|,

where

P3 =
2(N − 2)(m+ 2r − 2)

m(2N − 3)
∈ (0, 1).

It follows from (4.14) and (4.15) that

(4.16)
φ′(t) ≤− 4(m− 1)b2

m

∫
Ω
|∇u

m
2 |2dx+ Q̃1P3

∫
Ω
u

m(2N−3)
2(N−2) dx

+ Q̃1(1− P3)|Ω|+ Q̃2 −ma1η|Ω|−
q−1
m φ1+ q−1

m (t).
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By applying Schwarz’s inequality to the second term on the right side
of (4.16), we have∫

Ω
u

m(2N−3)
2(N−2) dx ≤

(∫
Ω
umdx

) 1
2
(∫

Ω
u

m(N−1)
N−2 dx

) 1
2

≤
(∫

Ω
umdx

) 3
4
(∫

Ω
(u

m
2 )

2N
N−2dx

) 1
4

.(4.17)

To bound

∫
Ω
(u

m
2 )

2N
N−2dx, we use the following Sobolev inequality given

in [4]:

∥u
m
2 ∥

N
2(N−2)

L
2N
N−2 (Ω)

≤ (cs)
N

2(N−2) ∥u
m
2 ∥

N
2(N−2)

W 1,2(Ω)

≤ c

(
∥∇u

m
2 ∥

N
2(N−2)

L2(Ω)
+ ∥u

m
2 ∥

N
2(N−2)

L2(Ω)

)
, N ≥ 3,(4.18)

where cs is a constant depending on Ω and N . By inserting (4.18) into
(4.17), we can obtain the inequality

(4.19)

∫
Ω
u

m(2N−3)
2(N−2) dx ≤c

(∫
Ω
umdx

) 3
4
(∫

Ω
|∇u

m
2 |2dx

) N
4(N−2)

+ c

(∫
Ω
umdx

) 2N−3
2(N−2)

.

Now, we use Young’s inequality to get the inequality
(4.20)(∫

Ω
umdx

)
3
4

(∫
Ω
|∇u

m
2 |2dx

) N
4(N−2)

≤ 3N − 8

4(N − 2)
ε
− N

3N−8

5 φ
3(N−2)
3N−8 (t) +

N

4(N − 2)
ε5

∫
Ω
|∇u

m
2 |2dx,

where ε5 is a positive constant to be determined later.
Applying Young’s inequality to the second term on the right-hand

side of (4.19), we get the inequality(∫
Ω
umdx

) 2N−3
2(N−2)

≤ P4ε
−P5

P4
6 φ

3(N−2)
3N−8 (t) + P5φ

1+ q−1
m (t),(4.21)

where

P4 =
(3N − 8) [m(2N − 3)− 2(N − 2)(m+ q − 1)]

2(N − 2) [3m(N − 2)− (m+ q − 1)(3N − 8)]
∈ (0, 1),
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P5 =
m
[
6(N − 2)2 − (2N − 3)(3N − 8)

]
2(N − 2) [3m(N − 2)− (m+ q − 1)(3N − 8)]

∈ (0, 1),

and ε6 is a positive constant to be determined later. From (4.16)-(4.21),
we get the inequality

φ′(t) ≤ Q1φ
3(N−2)
3N−8 +Q2 +Q3

∫
Ω
|∇u

m
2 |2dx+Q4φ

1+ q−1
m ,

where

Q1 = Q̃1P3c

[
3N − 8

4(N − 2)
ε
− N

3N−8

5 + P4ε
−P5

P4
6

]
,

Q2 = Q̃1(1− P3)|Ω|+ Q̃2,

Q3 =
Q̃1NP3

4(N − 2)
cε5 −

4(m− 1)b2
m

, and

Q4 = Q̃1P3P5cε6 −ma1η|Ω|−
q−1
m .

Choosing appropriate ε5, ε6 > 0 so that Q3 and Q4 equal to zero, we
can have the inequality

φ′(t) ≤ Q1φ
3(N−2)
3N−8 +Q2.(4.22)

Integrating (4.22) from 0 to t, we get∫ φ(t)

φ(0)

dζ

Q1ζ
3(N−2)
3N−8 +Q2

≤ t.

Letting t → t∗, we get the result∫ +∞

φ(0)

dζ

Q1ζ
3(N−2)
3N−8 +Q2

≤ t∗.

This completes the proof.

Remark 4.2. In fact, if we consider the more general quasilinear
diffusion equation with time-dependent coefficients

1

k1(t)
ut = k2(t)div

(
h(|∇u|2)∇u

)
− k3(t)f(u), (x, t) ∈ Ω× (0, t∗),

(4.23)

where k1(t), k2(t), and k3(t) are positive differentiable functions, then,
as in [19], we can replace the time variable by the new variable

z(t) =

∫ t

0
k1(τ)k2(τ)dτ.
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Then the differential equation in (4.23) can be reduced to the following
form:

uz = div
(
h(|∇u|2)∇u

)
−K(z)f(u), (x, z) ∈ Ω× (0, z∗),

where z∗ = z(t∗) and K(z) =
k3(t(z))

k2(t(z))
. Under appropriate assumptions,

the results given in Sections 2, 3, and 4 are therefore valid to the more
general problem (4.23).

5. Applications

In this section, we present two examples to demonstrate applications
of Theorems 3.1 and 4.1.

Example 5.1. Let u(x, t) be a solution of the following problem:

ut = div ((1 + |∇u|)∇u)− 3

2
e−2tu

1
6 , (x, t) ∈ Ω× (0, t∗),

(1 + |∇u|)∂u
∂ν

= u2, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = u0(x) = |x|+
√
2− 1 > 0, x ∈ Ω,

where Ω =
{
x = (x1, x2, x3)||x|2 =

∑3
i=1 x

2
i < 1

}
. Then we have

h(|∇u|2) = 1 + |∇u|, k(t) = e−2t, f(u) =
3

2
u

1
6 , g(u) = u2.

Now, we set β = 2, a1 =
3
2 , a2 = 1, and γ = 1

2 . Then it is easy to verify
that (3.2)-(3.5) hold. By (3.6), one can see that

Θ(0) = 2

∫
∂Ω

(∫ u0

0
s2ds

)
dS −

∫
Ω

(
1

1 + 1
2

|∇u0|+ 1

)
|∇u0|2dx

− 3k(0)

∫
Ω

(∫ u0

0
s

1
6ds

)
dx = 3.83 > 0.

It follows from Theorem 3.1 that u(x, t) blows up in finite time t∗, and
we have

t∗ < T =
Ψ(0)

2γ(1 + γ)Θ(0)
= 1.01,

where Ψ(0) =

∫
Ω
u20dx = 5.83.



306 Tae In Kwon and Zhong Bo Fang

Example 5.2. Let u(x, t) be a solution of the following problem:

ut = div ((6 + 100|∇u|)∇u)− 6(t+ 1)u2, (x, t) ∈ Ω× (0, t∗),

(6 + 100|∇u|) ∂u
∂ν

=
2

5
u

3
2 , (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = u0(x) = |x|4 + 15.99× 10−2 > 0, x ∈ Ω,

where Ω =
{
x = (x1, x2, x3)||x|2 =

∑3
i=1 x

2
i < ( 1

10)
2
}
. Then we have

h(|∇u|2) = 6+ 100|∇u|, k(t) = 4(1+ t), f(u) =
3

2
u2, g(u) =

2

5
u

3
2 ,

and choosing a1 = 3
2 , a2 = 2

5 , η = 4, and m = 3, it can be easily seen
that (3.2)-(3.5) hold and

ε4 =
3000

7
, ε5 = 0.45, ε6 = 2.64,

Q1 = 125.44, Q2 = 0.03,

φ(0) =

∫
Ω
u20dx = 1.71× 10−4.

It then follows from Theorem 4.1 that

t∗ ≥
∫ +∞

1.71×10−4

dζ

125.44ζ3 + 0.03
= 2.50.
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