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TORQUES AND RIEMANN’S MINIMAL SURFACES

Sun Sook Jin*

Abstract. In this article, we prove that a properly embedded min-
imal surface in R3 of genus zero must be one of Riemann’s minimal
examples if outside of a solid cylinder it is the union of planar ends
with the same torques at all integer heights.

1. Introduction

An immersed surface in R3 is said to be minimal if its mean curva-
ture vanishes identically. In 1867, Riemann [7] used elliptic functions
to classify all minimal surfaces in R3 that are foliated by circles and
straight lines in horizontal planes. He showed that these examples are
the plane, the catenoid, the helicoid and one parameter family {Rt}t>0

with infinity topology. The new surfaces Rt, called Riemann’s minimal
surfaces, intersect horizontal planes in lines at precisely integer heights.
We have more characterizations of Rt by:
(a) Each Rt is invariant under the reflection of R3 in the (x1, x3)-plane
and by the translation T by (t, 0, 2).
(b) In the complement of a solid cylinder of R3, the surface Rt consists
of planar ends at integer heights. A planar end means that a properly
embedded finite total curvature minimal annulus with compact bound-
ary, which is asymptotic to the end of a plane.
(c) Each Rt is conformally equivalent to C∗ = C \ {0} punctured in a
discrete set of points with 0 and ∞ being limit points of ends.
(d) The quotient surface Rt/T is a properly embedded finite total cur-
vature minimal torus in R3/T with two planar ends.

In 2001, the author studied the characterization problem of Rie-
mann’s minimal surfaces without assuming periodicity and showed that:
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Theorem 1.1. [2] Let M be a properly embedded minimal surface
in R3 of genus zero, which is the union of planar ends {En}n∈N outside
of a solid cylinder, at integer heights. Suppose that it is symmetric
by the reflection in a plane, and there is a number k ∈ Z such that
Torque(En+2k ) = Torque(En) for all n ∈ Z. Then M must be one of
Riemann’s minimal examples.

However, we realize that the assumption of the existence of symmetric
plane is not necessarily, and can prove more elaborate result:

Theorem 1.2 (Main Theorem). A properly embedded minimal sur-
face in R3 of genus zero is a Riemann’s minimal example if it is the
union of planar ends with the same torques at all integer heights in the
complement of a solid cylinder.

Recall a torque vector of a closed curve points to the direction with
the largest tendency of rotation of a surface in R3 around the curve. In
particular, for a minimal surface of R3 the torque vector associated to
a planar end whose Gauss map has ramification order 2, like as ends of
Rt, describes the intersection of the surface with the limit affine tangent
plane. Precisely, this intersection curve is asymptotic to a straight line
in the direction of the torque. Recall in Rt, all of the torque vectors
of the planar ends are the same. We use the maximum principle of a
minimal surface and Liouville’s theorem to prove that M is also periodic
in such a setting. Then, by virtue of the previous result of Meeks, Pérez
and Ros in [4], we can say that M is one of Rt.

2. Preliminaries

A minimal surface in the 3-dimensional Euclidean space is a con-
formal harmonic immersion X : S̃ ↪→ R3 where S̃ is a 2-dimensional
smooth manifold, with or without boundary. The well known Enneper-
Weierstrass representation of a minimal surface of R3 follows that

(1) X(p) = <
∫ p (

1
2

f (1− g2),
i

2
f (1 + g2), fg

)
dz

where f is a holomorphic function and g is a meromorphic function
on M , such that when a pole of order m of g occurs, f has a zero of
order 2m, and this is the only case where f can vanish. In fact, g is the
stereographic projection of the Gauss map of X with respect to the north
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pole. Applying Stoke’s theorem to the isometric (minimal) immersion
X we have ∫

S
∆SX dA =

∫

∂S
νds = 0

where S is a compact domain of S̃, dA is the element of area on S, ∆S

is the Laplacian on S, ds is the line element on ∂S, and ν is the outward
conormal. Define the flux of X along a closed curve γ ⊂ S as

Flux(γ) :=
∫

γ
ν ds

which is well defined on the homology class of [γ]. Now let R~u be the
Killing field associated with counter-clockwise rotation about the axis
`~u in the ~u direction, then

∫

∂S
R~u · ν ds =

∫

∂S
(X ∧ ν) · ~u ds = 0.

This motivates defining the homologous invariant torque of a closed curve
γ on S by

Torque0(γ) :=
∫

γ
X ∧ ν.

In general, the torque is dependent on the base point of the position
vector X. If we move the base point from 0 to W ∈ R3, then the
position vector based on W is X −W , and the torque is that

TorqueW (γ) = Torque0(γ)−W ∧
∫

γ
ν(2)

= Torque0(γ)−W ∧ Flux(γ).

Observe that we can define the flux and the torque associated to a planar
end as that of one representative curve for the end.

3. Proof of main theorem

Since M is a properly embedded minimal surface of genus zero with
two limit ends, by [6], it has the conformal type C∗\K where K is the set
of discrete punctures pn ∈ C∗, n ∈ Z, corresponding to the planar ends
En at integer height x3 = n, respectively. Now we define a conformal
harmonic embedding of M by

X : C∗ \K → R3.
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Let X = (X1, X2, X3). Since M cuts transversally any horizontal plane,
we can say that;

X3(z) =
1

log r
log |z|

for some r > 1. Moreover, except at integer heights, M meets a horizon-
tal plane in a compact Jordan curve, and hence X3 can be continuously
extended to the whole C∗. In particular, since En is close to {x3 = n}
at infinity, we have X3(pn) = 1

log r log |pn| = n for all pn ∈ K. It follows
that |pn| = rn for all n ∈ Z. If (g, f dz) is the Weierstrass-data of X,
then from (1) we have;

(3) f(z) g(z) := 2
∂X3

∂z
=

d

dz

(
1

log r
log z

)
=

1
log r

1
z

for all z ∈ C∗. Since both z and dz have no zero or pole in C∗, every
planar end of M has the minimum branching order 2.

Let CR ⊂ R3 be a solid cylinder with sufficiently large radius R > 0
such that M is the union of planar ends in complement of CR, and
let (s, t, 1) ∈ R3 be the direction of the axis line of the cylinder for
some s, t > 0. Denote by M̃ the translation of M along the direction
2(s, t, 1). Since M and M̃ are conformally equivalent, with another
suitable coordinate ζ, we have a minimal embedding

X̃ : C∗ \K ↪→ R3

of M̃ such that X̃3(ζ) = 1
log r log |ζ|. Therefore, we can say that

(4) X3 ≡ X̃3 on C∗.

Now let (g̃, f̃dz) be the Weierstrass data of X and X̃, then similar to
(3), we have f̃(z) g̃(z) = 1

log r
1
z for all z ∈ C∗. Since all the planar ends

have the minimum branching order 2, we have

g(z) = (z − pn)2 h(z), g̃(z) = (z − pn)2 h̃(z)

on a sufficiently small neighborhood Dn ⊂ C∗ of pn, where pm /∈ Dn if
m 6= n, and h and h̃ are the holomorphic functions on Dn with h(pn) 6= 0
and h̃(pn) 6= 0. Therefore,

f(z) =
1

log r

1
z g(z)

=
1

log r

1
pn h(pn)

1
(z − pn)2

+ F (z)

f̃(z) =
1

log r

1
z g̃(z)

=
1

log r

1
pn h̃(pn)

1
(z − pn)2

+ F̃ (z)
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where F and F̃ are holomorphic functions on Dn, and hence from (1);

(X1 − iX2 ) (z) =
−1

2 log r

1
pn h(pn)

1
z − pn

+ O(|z − pn|)

(X̃1 − iX̃2)(z) =
−1

2 log r

1
pn h̃(pn)

1
z − pn

+ O(|z − pn|).

Take a representative curve γn for the planar end En of M by

γn(θ) =
(

R cos θ, R sin θ,
1
R

(γ1
n cos θ + γ2

n sin θ) + O(R−2)
)

where 0 ≤ θ ≤ 2π and

γ1
nX1 + γ2

nX2 = <
(

1
−2(log r)2 pn

2 h(pn)
(X1 + iX2)

)
.

Then the conormal is ν(θ) = (cos θ, sin θ, 0) + O(R−2), and so we can
compute the flux Flux(En) = (0, 0, 0) and the torque by

Torque(En) = π(−γ2
n, γ1

n, 0) = − i π

2 (log r)2
(

(pn
2 h(pn))−1, 0

)

which is independent of the base point, see (2). Similarly, the torque of
the end Ẽn of M̃ at the height x3 = n is

Torque (Ẽn) = − i π

2 (log r)2
(

(pn
2 h̃(pn))−1, 0

)
.

Since both En and Ẽn have the same torques, h̃(pn) = h(pn) and

(X1 − iX2 ) (z)− (X̃1 − i X̃2 ) (z) = O(|z − pn|)
on the small neighborhood of pn. Together with (4), it shows that each
pn ∈ K is the removable singularity of X − X̃. Hence, we can obtain
the extended harmonic map

Y : C∗ ↪→ R3

of X − X̃ such that Y (pn) = 0 for all n ∈ Z. Take a pairwise disjoint
connected neighborhood Un ⊂ C∗ of pn, n ∈ Z, respectively, such that
both M \⋃

n∈Z X(Un) and M̃ \⋃
n∈Z X̃(Un) are contained in CR, then;

‖Y (z)‖ = ‖(X1 − iX2)(z)− (X̃1 − i X̃2)(z)‖ ≤ 2R
√

1 + s2 + t2

on ∂Un. By the maximum principle of the harmonic map, we have;

‖Y ‖ ≤ 2R
√

1 + s2 + t2 on Un

for all n ∈ Z. By the definition of Un, the above inequality also holds in
the complement of

⋃
n∈Z Un, so Y is a bounded harmonic map on the
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punctured plane C∗. By virtue of the Liouville’s theorem, Y is then a
constant map Y ≡ 0 by Y (pn) = 0. Hence M = M̃ and M is periodic
under a translation. However, we know the result of [4]: A properly
periodic embedded minimal annulus in R3 must be one of Riemann’s
minimal examples. Thus M is also one of Riemann’s minimal examples,
and we have proved the theorem.
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