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PERIODICITIES OF SOME HYBRID CELLULAR
AUTOMATA WITH PERIODIC BOUNDARY
CONDITION

JAE-GYEOM Kim*

ABSTRACT. We investigate periodicities of some hybrid cellular au-
tomata configured with rule 60 and 102 and periodic boundary con-
dition.

1. Introduction

Cellular automata have been demonstrated by many researchers to
be a good computational model for physical systems simulation since the
concept of cellular automata first introduced by John Von Neumann [7]
in the 1950’s. Cellular automata with null boundary condition have been
studied by many researchers. Some researches about cellular automata
with periodic boundary condition mainly focused on reversibility [1, 2,
8]. And characterizations of powers of characteristic matrices of some
uniform cellular automata with periodic boundary condition have been
studied [3,4].

In this note, we will investigate periodicities of some hybrid cellu-
lar automata configured with rule 60 and 102 and periodic boundary
condition.

2. Terminologies

In this section, we will introduce some terminologies shall be used in
this note.

A cellular automaton (CA) is an array of sites (cells) where each
site is in any one of the permissible states. At each discrete time step
(clock cycle) the evolution of a site value depends on some rule (the
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combinational logic) which is a function of the present states of its k
neighbors for a k-neighborhood CA. For a 2-state 3-neighborhood CA,
the evolution of the (i)th cell can be represented as a function of the
present states of (¢ — 1)th, (¢)th, and (¢ + 1)th cells as: z;(t + 1) =
flxi—1(t), zi(t), xi41(t)}, where f represents the combinational logic.
For such a CA, the modulo-2 logic is always applied.

For a 2-state 3-neighborhood CA there are 23 distinct neighborhood
configurations and 22° distinct mappings from all these neighborhood
configurations to the next states, each mapping representing a CA rule.
The CA, characterized by a rule known as rule 60, specifies an evolution
from the neighborhood configurations to the next states as;

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0

The rule name 60 comes from that 00111100 in binary system is 60 in
decimal system. The corresponding combinational logic of rule 60 is

$i(t + 1) = infl(t) D .I‘Z'(t),

that is, the next state of (i)th cell depends on the present states of its
left and self neighbors.

And the CA, characterized by a rule known as rule 102, specifies an
evolution from the neighborhood configurations to the next states as;

111 110 101 100 011 010 001 000
0 1 1 0 0 1 1 0

The rule name 102 comes from that 01100110 in binary system is 102 in
decimal system. The corresponding combinational logic of rule 102 is
xi(t + 1) = :L’Z(t) ©® .731‘4_1(15),

that is, the next state of (¢)th cell depends on the present states of self
and its right neighbors.

If in a CA the same rule applies to all cells, then the CA is called
a uniform CA; otherwise the CA is called a hybrid CA. There can be
various boundary conditions; namely, null (where extreme cells are con-
nected to logic ‘0’), intermediate (where the second right cell of the
leftmost cell of a 3-neighborhood CA is assumed to be the left neighbor
of the leftmost cell of the CA and the second left cell of the rightmost
cell of the CA is assumed to be the right neighbor of the rightmost cell
of the CA), periodic (where extreme cells are adjacent), etc. If the rule
of a CA cell involves only XOR logic, then the rule is called a linear rule.
A CA with all the cells having linear rules is called a linear CA. And
the number of cells of a CA is called the length of a CA.



Periodicities of some hybrid cellular automata 513

The characteristic matrix 7" of a CA is the transition matrix of the
CA. The next state fiy1(x) of alinear CA is given by fiyr1(x) = T'x fi(x),
where fi(x) is the current state and ¢ is the time step.

3. Periodicities of cellular automata

We will start this section with periodicities of the most simple type
of hybrid CA’s with rules 102 and 60 and periodic boundary condition.

ProroOSITION 3.1. Let H be a hybrid linear CA of length ¢ configured
with rules 60 and 102 and periodic boundary condition. Assume that
the rule applied to the first m cells of H is 102 and the rule applied to
the second n cells of H is 60 withm > 1, n>1and { = m+n. Ifa
is a non-negative integer so that max{m,n} < 2%+ 1, then T**?* = T?
where T' is the characteristic matrix of H.

Proof. The same result with null boundary condition was proved in
[6]. Since the rule applied to the first m cells of H is 102 and the rule
applied to the second n cells of H is 60 and since there is no other cell of
H, the characteristic matrix of H with periodic boundary condition is
the same as the characteristic matrix of H with null boundary condition.
Thus we have the proposition. ]

To get another result from Proposition 3.1, we need to describe ex-
plicitly the characteristic matrix 7" of H in Proposition 3.1;

—_ =
—_ =

—_ =
—_

where the blank entries are all zero.

PRrROPOSITION 3.2. Let K be a hybrid linear CA of length ¢ configured
with rules 60 and 102 and periodic boundary condition. Assume that



514 Jae-Gyeom Kim

the rule applied to the first m cells of K is 60 and the rule applied to
the second n cells of K is 102 withm > 1, n>1and { =m+n. Ifa
is a non-negative integer so that maz{m,n} < 2%+ 1, then U**?" = U?
where U is the characteristic matrix of K.

Proof. At first, the characteristic matrix U is given by

1 1
11
11
11
11 ’
11

11

1 1
where the blank entries are all zero. So if fi(z) = (x1,-+ , T(min))” is

the current state of K, then the next state f(;11)(z) = U X f)(x) of K
is given by

1 1 I
11 T9

—_ =
—
—
— =
B
S
=

11 L(m+n—1)
1 1 a:(m+n)
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thus

r1 + L(m4n)
T+ x2
To + T3

T(m—1) + Tm
Z(m+1) T T(m+2)
T(m+2) T T(m+3)

fern (@) =

L(m4n—1) + L(m4n)
T (m+n) + 21

Now let g:(z) = (T(mt1)s " > T(mgn)s T15 " - ;) and

T(m+1) T T(m+2)
T(m+2) T T(m+3)

T(m4n—1) + L(m+n)
L (m+n) + T
1+ T(mn)

1+ T2
To + T3

g(t+1)(l‘) =

ZT(m—1) T Tm

Then gui1y(x) = T x gi(x) where T' denotes the characteristic matrix
of H in Proposition 3.1. And we can know that g:(z) is the vector of
which the first n entries and the second m entries are the second n entries
and the first m entries of fi(z), respectively, and g 1)() is the vector
of which the first n entries and the second m entries are the second n
entries and the first m entries of f(;;1)(), respectively. This means that
the periodicity of U is the same as the periodicity of T in Proposition
3.1. This completes the proof. O
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Now we will repeat the discussion on the periodicities of some hybrid
linear CA with null boundary condition which are parts of the proof of
Theorem 3.3 in [5]. Let H be a hybrid CA configured with rules 60
and 102 and null boundary condition and R the rule vector of H. Then
there are combined parts of different rules in the rule vector R. For
each 60 — 102 combined part in R, i.e., for each part where rule 102
just follows rule 60, we can see there is no interaction between the rules
60 and 102 in CA application. On the other hand for each 102 — 60
combined part in R, i.e., for each part where rule 60 just follows rule
102, we can see there are interactions between the rules 102 and 60
in CA application. Now let a maximal 102 — 60 combined part in R
denote < 102,---,102,60,---,60 > which could not be extended more
in R such a manner that rule 102’s in a row then rule 60’s in a row.
And let a maximal uniform rule part in R denote < 60,---,60 > or
< 102, -+ ,102 > which could not be extended more in R as a uniform
rule vector and could not be extended to a maximal 102 — 60 combined
part in R. Then R is a combination of maximal 102 — 60 combined parts
and maximal uniform rule parts of which all the parts are completely
independent of each other in CA application. For each maximal 120 —60
combined part R, in R with m, 102’s and n, 60’s, let a, be the least
non-negative integer such that maz{m,,n,} < 2% + 1. And for each
maximal uniform rule part R, of length ¢, in R, a, be the non-negative
integer such that 20u—l < ¢ < 20w Then we have T212" = T2 where T
is the characteristic matrix of H and a is the least common multiple of
a,’s and ay’s.

We are ready to get main result.

THEOREM 3.3. Let H be a hybrid linear CA configured with rules 60
and 102 and periodic boundary condition. Let T' be the characteristic
matrix of H and R the rule vector of H. And let a,’s, m,’s and n,’s be
as in the discussion above. Then T?*12" = T? where a takes the value as
in the following:

(1) If the leftmost rule in R is 102 and the rightmost rule in R is 60,
then a is the least common multiple of a,,’s.

(2) If the leftmost rule in R is 60 and the rightmost rule in R is 102,
then the rightmost maximal uniform part with rule 102 in R may
be regarded to move to the left side of the leftmost maximal uni-
form part with rule 60 so that it produce a new 102 — 60 combined
part making a new a,, after then, a is the least common multiple
of a,’s.
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(3) If both of the leftmost rule and the rightmost rule in R are 102,
then the rightmost maximal uniform part with rule 102 in R may
be regarded to move to the left side of the leftmost maximal 102 —
60 combined part R, with m, 102’s so that the m, increases and
corresponding a, could increase, after then, a is the least common
multiple of a,’s.

(4) If both of the leftmost rule and the rightmost rule in R are 60,
then the leftmost maximal uniform part with rule 60 in R may
be regarded to move to the right side of the rightmost maximal
102—60 combined part R, with n, 60’s so that the n, increases and
corresponding a, could increase, after then, a is the least common
multiple of a,’s.

Proof. For (1), the characteristic matrix of H with periodic boundary
condition is the same as the characteristic matrix of H with null bound-
ary condition and there are only maximal 102 — 60 combined parts in R,
thus we have conclusion. For (2), as same as in the proof of Proposition
3.2, the rightmost maximal uniform part with rule 102 in R may be
regarded to move to the left side of the leftmost maximal uniform part
with rule 60. After then, it suffices to consider only maximal 102 — 60
combined parts in R and it can be dealt with null boundary condition,
thus we have the conclusion. For (3) and (4), it can be easily shown in
the similar manner with (2). O]

COROLLARY 3.4. Let H be a hybrid linear CA configured with rules
60 and 102 and periodic boundary condition. Let T' be the characteristic
matrix of H. And let a,’s be as in (1), (2), (3) and (4) of Theorem 3.3.

Then T?t2* = T? where a is the maximum of a,’s in each case.

Proof. By the proof of Theorem 3.3, we can regard that the rule vec-
tor of H consists of independent maximal 102 —60 combined parts. Thus
we can regard that T' consists of independent submatrices correspond-
ing to maximal 102 — 60 combined parts. And A?T%* = A2 for a square
matrix A if A?t?” = A2 and p < ¢ for non-negative integers p and ¢q. So
we can have the conclusion. O
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