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DERIVATION OF THE ¢g-NAVIER-STOKES EQUATIONS

Jalok Ron*

ABSTRACT. The 2D g-Navier-Stokes equations are a certain modi-

fied Navier-Stokes equations and have the following form,
ou

a—l/Au—l—(u-V)u—i—Vp:f, in Q

with the continuity equation
V-(gu) =0, in Q,

where ¢ is a suitable smooth real valued function. In this paper,
we will derive 2D g-Navier-Stokes equations from 3D Navier-Stokes
equations. In addition, we will see the relationship between two
equations.

1. Introduction

By concerning the reaction-diffusion and damped wave equations on
thin domains, Hale and Raugel([1], [2], [3]) originated the study of the
Navier-Stokes equations on thin domains.

In [4] and [5], Raugel and Sell proved global existence of strong so-
lutions for large initial data and forcing terms in thin three dimensional
domains for the purely periodic boundary conditions and the periodic-
Dirichlet boundary conditions, that is, periodic conditions in the thin
vertical direction and homogeneous Dirichlet conditions on the lateral
boundary condition I'; = 9Q x (0, €), where Q C R2.

An essential tool in their proof is the vertical mean operator M, which
allows the decomposition of every function U on Q. = Q x (0,¢€) into
the sum of a function MU = v(x1,z2) which does not depend on the
vertical variable, and a function (I — M)U = w(z1, z2,x3), with van-
ishing vertical mean and thus to use more precise Sobolev and Poincaré
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inequalities. Then, they showed that the reduced 3D Navier-Stokes evo-
lutionary equations by v incorporates the 2D Navier-Stokes equations on
Q. Later, by using same tool as Raugel and Sell with improved Agmon
inequalities, Temam and Ziane([6], [7]) generalized the results of ([4],
[5]) to other boundary conditions and, in the case of the free boundary
conditions, to thin spherical domains.

In this paper, we apply Raugel and Sell methods on €, = Q2 x (0, g),
where Q9 is a bounded region in the plane and g = g(x1, z2) is a smooth
function defined on Qo with 0 < m < g(z1,22) < M, for (z1,z2) € Qo.
And we derive the 2D g-Navier-Stokes equations from 3D Navier-Stokes
equations.

2. Main Theorems

Now, we consider 3D Navier-Stokes equations,

%Y AU+ (U.-V)U+VD = F, in Q,

ot
V.U = 0, in Q

with the boundary condition

(1) U-n=0 on 6topQg U abottong
where
OopSlyg = {(W1,92,93) € Q : y3=9(y1,92)},
Obottomg = {(y1,92,y3) € Qg : y3 =0},

The lateral boundary condition corresponding to 9€2s does not affect to
the derivation of the 2D g-Navier-Stokes equations. But, in this paper
we consider the periodic and Dirichlet boundary conditions to study the
2D g-Navier-Stokes equations.

Now we define v(y1,y2) = (vi(y1,92), va(y1,y2), v3(y1, y2)) as

1 9(y1,y2)
/ Ui;(y1,y2,93) dys,
9(y1,92) Jo

where U = (Uy, Uq, Us), for i = 1,2,3. Now, for w = (vy,va), we get
the following theorem.

Vi(yl,y2) = MUi<y17 Y2, y3) =

THEOREM 2.1. Assume that V- U = 0 in Qg and that (1) is valid.
Then one has

Vs - (gw) _ a(gvl) + a(gVQ)

83:1 (9172

=Vg-w+g (Va-w)=0 inQy,
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0 15)
where Vo = (8%1, 8%2) and Vg = (8—:&, 87’;).

Proof. First we consider the change of variables

Y1 = T1, Y2 = T2, y3 = x39(x1,T2)

maps {23 onto €y, where 3 = Qs x (0,1). Then we obtain from the
chain rule that

Ox3 Y3 0g T3 dg Oxs T3 dg
= X — =—"2x — and — = - x —~.
oy 9*(y1,y2) O g On Yo g Oz

Also, we have for u(z1, z2,x3) = U(y1, y2, y3),

oU  Ou ou  Oxs ou ou  x3 dg

op  Om | Ows Oy Om O g om
oU  Ou ou 3 @ oU  Ou 0drz, 10u

(— x (;8773

Dgs  Oma  Oms\g (Ors) Oy 0wy Oys)  \gows)

Therefore we have
8u1 8u2 18113 X3 8111 8g GuQ@

@) VU=l T o, T 90w g \Ows 01 T 9y O

Now we note

1 9(y1,y2) 1
vi(r1,22) = )/0 Ui(yl,y2,y3)dy3=/0 u; (1,2, 3) drs,

g(yh Y2

to obtain the followings:

Pow o [ dup o O
0 g@xl 3_96.%1’ 0 981‘2 3_9821?2
L du
875;? drs3 = uz(xy,x2,1) — uz(wy,22,0)
0
_/lx ow 99 __89/133 ow
0 3 6%’3 8.7}1 37 8.1‘1 0 3 a:Eg 3
N dg ! Jg 1
— (‘%1[/0 up d{lﬁ‘g] — aiwlxguﬂo
dg  Og
—n Y 9 1
Vig,: 81:1111(331’362’ )

L duy dg dg dg
/0 r3 O3 O T3 = V2 Ozy O ug(w1, 72, 1)
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Thus, we have

9(y1,y2) 1
O:/ V-Udygz/(V-U)gdxg
0 0

ovy  0Ovs dg dg
=95+ —= f vy +B
(3) g(al‘l + 8952) TV 6331 AL 81’2 + C’

where BC is the boundary conditions on ), i.e.,

0 15)
BC = u3(x1,22,1) —ug(z1,2,0) — 8751111(561,932, 1) — 67692112(331, r2,1).

For the bottom part of €4, the normal vector n is n = (0,0, —1). Thus
U -n = —U3|y3:x3:0 = —Ug(yl, Y2, 0) = —ug(fL’l, 9, 0) = 0.

For the top of €y, one has n = a(—aa—ygl, —(%92, 1) where « is chosen so
that || n || = 1. So we have
_ 0 0
o 1 U.- n’top = (_TZ/glUl - 873/g2U2 + U3)‘top
0
= —67;91111(361%2, 1) - 8752“2(361’:62’ 1) +ug(w1,22,1) = 0.
It then follows from assumption that BC = 0. This complete the proof

by (3). O
Now, we assume that

U(y1,92,y3) = (Ui(y1,42), Ua(y1,92), Us(y1, ¥2, ¥3))
= (ui(z1, 72), uz(z1, 72), uz(21, 72, 73)) = U(T1, T2, T3).
Then, we raise the following questions:

1. What can we say about us(x1,x2,x3) = Us(y1,¥2,y3) if V-U =0
in Q47

2. What can we say about us(z1,z2,23) = Us(y1,92,y3) f U-n=0
on the top and bottom of 2,7

For the answer, we have the following theorem.

THEOREM 2.2. Let U(y1,vy2,y3) = (U1(y1,y2), U2(y1,y2), Us(y1, y2,93))-
Then we have V - U = 0 on ), and

U n=0 on the top and bottom of (g,

if and only if we obtain

89 39 ou ouy
us(w1, v, 73) = 1‘3(8761111 + a—muz) = —g x3 (8751 92,
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Proof. First we know that if V- U = 0 then (2) implies
8111 8u2 4 }8113
Ory Oxs g Oxs

=0.
Thus we have 5 5 5
us up u9

)

81‘3 61’1 61’2
which implies that

8111 8u2
uz = —x3 g (8751 + 87:52) + c(z1, 72),

for some function c¢(z1,z2). Since U-n = 0 on the bottom, one has
Us(y1,y2,0) = uz(z1, z2,0) = 0, which implies that

8u1 au2

c(rx1,x2) =0, and uz(x1,x2,23) =—2 + —).
(z1,22) 3(1, v, 73) 39(8531 Oy
By the definition of v;, note v; = u;, for ¢ = 1,2. So, by theorem 2.1 we
have Vs - gu = 8(52111) —i—a(angf) =0 and
dg dg
usz(ri,2,r3) = r3(=—u; + =—uy).
3(z1, 72, 23) 3((%;1 ' o 2)

The converse comes from a direct calculation. ]

Now, let us go back to our problem, 3D Navier-Stokes equations on
Q
g»

a—U—VAU—I—(U-V)U—i—V(I) = F, in Q

ot
V-U = 0, in Qg
with the boundary condition
U-n=0 on Orop$lg U OpottomSdg-
Since (U(y1,y2,¥3)) = (U1(y1,y2), U2(y1,92), Us(y1, Y2, y3)) we have
vi(r1,z2) = Ui(y1,y2) = wi(x1,22), i=1,2.

Therefore, by theorem 2.1 and theorem 2.2, w = (uj,u) = (Up, Uy)
satisfies the 2D g-Navier-Stokes equations,

W AWt (w-VIwW+Vp = f, in O

ot
V-gw = 0, in Qo

and third variable Us(y1, y2, y3) = us(x1, 2, r3) can be solved by (Uy, Us)
= (uy,ug).
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Therefore, we motivate to study 2D g-Navier-Stokes equations for 3D
Navier-Stokes equations on thin domain €.

REMARK 2.1. In theorem 2.1 and theorem 2.2, we do not use any
boundary condition other than (2). If U is periodic in (y1,y2), i.e.,
U(0,y2,y3) = U(1,y2,y3) and U(y1,0,y3) = U(y1,1,y3), then w is
also periodic in (y1,y2). Likewise, if U satisfies Dirichlet conditions
for (y1,y2) € 0, then w does as well.

Also, since ug(x1, x2,x3) = $3(%U1+8%92UQ), for smooth and bounded
function g(z1, z2), we have

1 Us 200, S a W 2y [ VUs 2, < B8 1w 510y

for some positive constants «, 3.
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