DERIVATION OF THE g-NAVIER-STOKES EQUATIONS

Јаюк Вон*

ABSTRACT. The 2D g-Navier-Stokes equations are a certain modified Navier-Stokes equations and have the following form,

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f}, \text{ in } \Omega$$

with the continuity equation

$$\nabla \cdot (q\mathbf{u}) = 0$$
, in Ω ,

where g is a suitable smooth real valued function. In this paper, we will derive 2D g-Navier-Stokes equations from 3D Navier-Stokes equations. In addition, we will see the relationship between two equations.

1. Introduction

By concerning the reaction-diffusion and damped wave equations on thin domains, Hale and Raugel([1], [2], [3]) originated the study of the Navier-Stokes equations on thin domains.

In [4] and [5], Raugel and Sell proved global existence of strong solutions for large initial data and forcing terms in thin three dimensional domains for the purely periodic boundary conditions and the periodic-Dirichlet boundary conditions, that is, periodic conditions in the thin vertical direction and homogeneous Dirichlet conditions on the lateral boundary condition $\Gamma_l = \partial\Omega \times (0, \epsilon)$, where $\Omega \subset \mathbb{R}^2$.

An essential tool in their proof is the vertical mean operator M, which allows the decomposition of every function \mathbf{U} on $\Omega_{\epsilon} = \Omega \times (0, \epsilon)$ into the sum of a function $M\mathbf{U} = \mathbf{v}(x_1, x_2)$ which does not depend on the vertical variable, and a function $(I - M)\mathbf{U} = \mathbf{w}(x_1, x_2, x_3)$, with vanishing vertical mean and thus to use more precise Sobolev and Poincaré

Received April 20, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary $34\mathrm{C}25,\ 35\mathrm{Q}30$ Secondary $76\mathrm{D}05.$

Key words and phrases: Navier-Stokes equations, Leray projection, $L^2(\Omega)$.

214 J. Roh

inequalities. Then, they showed that the reduced 3D Navier-Stokes evolutionary equations by \mathbf{v} incorporates the 2D Navier-Stokes equations on Ω . Later, by using same tool as Raugel and Sell with improved Agmon inequalities, Temam and Ziane([6], [7]) generalized the results of ([4], [5]) to other boundary conditions and, in the case of the free boundary conditions, to thin spherical domains.

In this paper, we apply Raugel and Sell methods on $\Omega_g = \Omega_2 \times (0, g)$, where Ω_2 is a bounded region in the plane and $g = g(x_1, x_2)$ is a smooth function defined on Ω_2 with $0 < m \le g(x_1, x_2) \le M$, for $(x_1, x_2) \in \Omega_2$. And we derive the 2D g-Navier-Stokes equations from 3D Navier-Stokes equations.

2. Main Theorems

Now, we consider 3D Navier-Stokes equations,

$$\frac{\partial \mathbf{U}}{\partial t} - \nu \Delta \mathbf{U} + (\mathbf{U} \cdot \nabla) \mathbf{U} + \nabla \Phi = \mathbf{F}, \text{ in } \Omega_g$$
$$\nabla \cdot \mathbf{U} = 0, \text{ in } \Omega_g,$$

with the boundary condition

(1)
$$\mathbf{U} \cdot \mathbf{n} = 0 \quad \text{on} \quad \partial_{top} \Omega_g \cup \partial_{bottom} \Omega_g$$

where

$$\begin{array}{lcl} \partial_{top}\Omega_g & = & \{(y_1,y_2,y_3) \in \Omega_g \ : \ y_3 = g(y_1,y_2)\}, \\ \partial_{bottom}\Omega_g & = & \{(y_1,y_2,y_3) \in \Omega_g \ : \ y_3 = 0\}. \end{array}$$

The lateral boundary condition corresponding to $\partial\Omega_2$ does not affect to the derivation of the 2D g-Navier-Stokes equations. But, in this paper we consider the periodic and Dirichlet boundary conditions to study the 2D g-Navier-Stokes equations.

Now we define $\mathbf{v}(y_1, y_2) = (\mathbf{v}_1(y_1, y_2), \mathbf{v}_2(y_1, y_2), \mathbf{v}_3(y_1, y_2))$ as

$$\mathbf{v}_i(y_1, y_2) = M\mathbf{U}_i(y_1, y_2, y_3) = \frac{1}{g(y_1, y_2)} \int_0^{g(y_1, y_2)} \mathbf{U}_i(y_1, y_2, y_3) \ dy_3,$$

where $\mathbf{U} = (\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_3)$, for i = 1, 2, 3. Now, for $\mathbf{w} = (\mathbf{v}_1, \mathbf{v}_2)$, we get the following theorem.

THEOREM 2.1. Assume that $\nabla \cdot \mathbf{U} = 0$ in Ω_g and that (1) is valid. Then one has

$$\nabla_2 \cdot (g\mathbf{w}) = \frac{\partial (g\mathbf{v}_1)}{\partial x_1} + \frac{\partial (g\mathbf{v}_2)}{\partial x_2} = \nabla g \cdot \mathbf{w} + g \ (\nabla_2 \cdot \mathbf{w}) = 0 \ \text{in } \Omega_2,$$

where $\nabla_2 = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2})$ and $\nabla g = (\frac{\partial g}{\partial x_1}, \frac{\partial g}{\partial x_2})$.

Proof. First we consider the change of variables

$$y_1 = x_1, \ y_2 = x_2, \ y_3 = x_3 g(x_1, x_2)$$

maps Ω_3 onto Ω_g , where $\Omega_3 = \Omega_2 \times (0,1)$. Then we obtain from the chain rule that

$$\frac{\partial x_3}{\partial y_1} = -\frac{y_3}{q^2(y_1, y_2)} \times \frac{\partial g}{\partial y_1} = -\frac{x_3}{q} \times \frac{\partial g}{\partial x_1} \text{ and } \frac{\partial x_3}{\partial y_2} = -\frac{x_3}{q} \times \frac{\partial g}{\partial x_2}.$$

Also, we have for $\mathbf{u}(x_1, x_2, x_3) = \mathbf{U}(y_1, y_2, y_3)$,

$$\begin{split} \frac{\partial \mathbf{U}}{\partial y_1} &= \frac{\partial \mathbf{u}}{\partial x_1} + \frac{\partial \mathbf{u}}{\partial x_3} \times \frac{\partial x_3}{\partial y_1} = \frac{\partial \mathbf{u}}{\partial x_1} - \frac{\partial \mathbf{u}}{\partial x_3} (\frac{x_3}{g} \times \frac{\partial g}{\partial x_1}) \\ \frac{\partial \mathbf{U}}{\partial y_2} &= \frac{\partial \mathbf{u}}{\partial x_2} - \frac{\partial \mathbf{u}}{\partial x_3} (\frac{x_3}{g} \times \frac{\partial g}{\partial x_2}), \quad \frac{\partial \mathbf{U}}{\partial y_3} &= \frac{\partial \mathbf{u}}{\partial x_3} (\frac{\partial x_3}{\partial y_3}) = (\frac{1}{g} \frac{\partial \mathbf{u}}{\partial x_3}). \end{split}$$

Therefore we have

(2)
$$\nabla \cdot \mathbf{U} = \left[\frac{\partial \mathbf{u}_1}{\partial x_1} + \frac{\partial \mathbf{u}_2}{\partial x_2} + \frac{1}{g} \frac{\partial \mathbf{u}_3}{\partial x_3} - \frac{x_3}{g} \left(\frac{\partial \mathbf{u}_1}{\partial x_3} \frac{\partial g}{\partial x_1} + \frac{\partial \mathbf{u}_2}{\partial x_3} \frac{\partial g}{\partial x_2} \right) \right].$$

Now we note

$$\mathbf{v}_i(x_1, x_2) = \frac{1}{g(y_1, y_2)} \int_0^{g(y_1, y_2)} \mathbf{U}_i(y_1, y_2, y_3) \, dy_3 = \int_0^1 \mathbf{u}_i(x_1, x_2, x_3) \, dx_3,$$

to obtain the followings:

$$\int_{0}^{1} g \frac{\partial \mathbf{u}_{1}}{\partial x_{1}} dx_{3} = g \frac{\partial \mathbf{v}_{1}}{\partial x_{1}}, \quad \int_{0}^{1} g \frac{\partial \mathbf{u}_{2}}{\partial x_{2}} dx_{3} = g \frac{\partial \mathbf{v}_{2}}{\partial x_{2}}$$

$$\int_{0}^{1} \frac{\partial \mathbf{u}_{3}}{\partial x_{3}} dx_{3} = \mathbf{u}_{3}(x_{1}, x_{2}, 1) - \mathbf{u}_{3}(x_{1}, x_{2}, 0)$$

$$-\int_{0}^{1} x_{3} \frac{\partial \mathbf{u}_{1}}{\partial x_{3}} \frac{\partial g}{\partial x_{1}} dx_{3} = -\frac{\partial g}{\partial x_{1}} \int_{0}^{1} x_{3} \frac{\partial \mathbf{u}_{1}}{\partial x_{3}} dx_{3}$$

$$= \frac{\partial g}{\partial x_{1}} \left[\int_{0}^{1} \mathbf{u}_{1} dx_{3} \right] - \frac{\partial g}{\partial x_{1}} x_{3} \mathbf{u}_{1} \right]_{0}^{1}$$

$$= \mathbf{v}_{1} \frac{\partial g}{\partial x_{1}} - \frac{\partial g}{\partial x_{1}} \mathbf{u}_{1}(x_{1}, x_{2}, 1)$$

$$-\int_{0}^{1} x_{3} \frac{\partial \mathbf{u}_{2}}{\partial x_{3}} \frac{\partial g}{\partial x_{2}} dx_{3} = \mathbf{v}_{2} \frac{\partial g}{\partial x_{2}} - \frac{\partial g}{\partial x_{2}} \mathbf{u}_{2}(x_{1}, x_{2}, 1).$$

216 J. Roh

Thus, we have

(3)
$$0 = \int_{0}^{g(y_{1}, y_{2})} \nabla \cdot \mathbf{U} \ dy_{3} = \int_{0}^{1} (\nabla \cdot \mathbf{U}) \ g \ dx_{3}$$
$$= g(\frac{\partial \mathbf{v}_{1}}{\partial x_{1}} + \frac{\partial \mathbf{v}_{2}}{\partial x_{2}}) + \mathbf{v}_{1} \frac{\partial g}{\partial x_{1}} + \mathbf{v}_{2} \frac{\partial g}{\partial x_{2}} + \mathrm{BC},$$

where BC is the boundary conditions on Ω_g , i.e.,

$$BC = \mathbf{u}_3(x_1, x_2, 1) - \mathbf{u}_3(x_1, x_2, 0) - \frac{\partial g}{\partial x_1} \mathbf{u}_1(x_1, x_2, 1) - \frac{\partial g}{\partial x_2} \mathbf{u}_2(x_1, x_2, 1).$$

For the bottom part of Ω_g , the normal vector **n** is $\mathbf{n} = (0, 0, -1)$. Thus

$$\mathbf{U} \cdot \mathbf{n} = -\mathbf{U}_3|_{y_3=x_3=0} = -\mathbf{U}_3(y_1, y_2, 0) = -\mathbf{u}_3(x_1, x_2, 0) = 0.$$

For the top of Ω_g , one has $\mathbf{n} = \alpha(-\frac{\partial g}{\partial y_1}, -\frac{\partial g}{\partial y_2}, 1)$ where α is chosen so that $\|\mathbf{n}\| = 1$. So we have

$$\alpha^{-1} \mathbf{U} \cdot \mathbf{n}|_{top} = \left(-\frac{\partial g}{\partial y_1} \mathbf{U}_1 - \frac{\partial g}{\partial y_2} \mathbf{U}_2 + \mathbf{U}_3\right)|_{top}$$
$$= -\frac{\partial g}{\partial x_1} \mathbf{u}_1(x_1, x_2, 1) - \frac{\partial g}{\partial x_2} \mathbf{u}_2(x_1, x_2, 1) + \mathbf{u}_3(x_1, x_2, 1) = 0.$$

It then follows from assumption that BC = 0. This complete the proof by (3).

Now, we assume that

$$\mathbf{U}(y_1, y_2, y_3) = (\mathbf{U}_1(y_1, y_2), \mathbf{U}_2(y_1, y_2), \mathbf{U}_3(y_1, y_2, y_3))$$

= $(\mathbf{u}_1(x_1, x_2), \mathbf{u}_2(x_1, x_2), \mathbf{u}_3(x_1, x_2, x_3)) = \mathbf{u}(x_1, x_2, x_3).$

Then, we raise the following questions:

- 1. What can we say about $\mathbf{u}_3(x_1, x_2, x_3) = \mathbf{U}_3(y_1, y_2, y_3)$ if $\nabla \cdot \mathbf{U} = 0$ in Ω_q ?
- 2. What can we say about $\mathbf{u}_3(x_1, x_2, x_3) = \mathbf{U}_3(y_1, y_2, y_3)$ if $\mathbf{U} \cdot \mathbf{n} = 0$ on the top and bottom of Ω_q ?

For the answer, we have the following theorem.

THEOREM 2.2. Let $\mathbf{U}(y_1, y_2, y_3) = (\mathbf{U}_1(y_1, y_2), \mathbf{U}_2(y_1, y_2), \mathbf{U}_3(y_1, y_2, y_3))$. Then we have $\nabla \cdot \mathbf{U} = 0$ on Ω_g and

$$\mathbf{U} \cdot \mathbf{n} = 0$$
 on the top and bottom of Ω_g ,

if and only if we obtain

$$\mathbf{u}_3(x_1, x_2, x_3) = x_3(\frac{\partial g}{\partial x_1}\mathbf{u}_1 + \frac{\partial g}{\partial x_2}\mathbf{u}_2) = -g \ x_3 \ (\frac{\partial \mathbf{u}_1}{\partial x_1} + \frac{\partial \mathbf{u}_2}{\partial x_2}).$$

Proof. First we know that if $\nabla \cdot \mathbf{U} = 0$ then (2) implies

$$\frac{\partial \mathbf{u}_1}{\partial x_1} + \frac{\partial \mathbf{u}_2}{\partial x_2} + \frac{1}{g} \frac{\partial \mathbf{u}_3}{\partial x_3} = 0.$$

Thus we have

$$\frac{\partial \mathbf{u}_3}{\partial x_3} = -g(\frac{\partial \mathbf{u}_1}{\partial x_1} + \frac{\partial \mathbf{u}_2}{\partial x_2}),$$

which implies that

$$\mathbf{u}_3 = -x_3 \ g \ (\frac{\partial \mathbf{u}_1}{\partial x_1} + \frac{\partial \mathbf{u}_2}{\partial x_2}) + c(x_1, x_2),$$

for some function $c(x_1, x_2)$. Since $\mathbf{U} \cdot \mathbf{n} = 0$ on the bottom, one has $\mathbf{U}_3(y_1, y_2, 0) = \mathbf{u}_3(x_1, x_2, 0) = 0$, which implies that

$$c(x_1, x_2) = 0$$
, and $\mathbf{u}_3(x_1, x_2, x_3) = -x_3 g \left(\frac{\partial \mathbf{u}_1}{\partial x_1} + \frac{\partial \mathbf{u}_2}{\partial x_2} \right)$.

By the definition of \mathbf{v}_i , note $\mathbf{v}_i = \mathbf{u}_i$, for i = 1, 2. So, by theorem 2.1 we have $\nabla_2 \cdot g\mathbf{u} = \frac{\partial (g\mathbf{u}_1)}{\partial x_1} + \frac{\partial (g\mathbf{u}_2)}{\partial x_2} = 0$ and

$$\mathbf{u}_3(x_1, x_2, x_3) = x_3(\frac{\partial g}{\partial x_1}\mathbf{u}_1 + \frac{\partial g}{\partial x_2}\mathbf{u}_2).$$

The converse comes from a direct calculation.

Now, let us go back to our problem, 3D Navier-Stokes equations on Ω_q ,

$$\frac{\partial \mathbf{U}}{\partial t} - \nu \Delta \mathbf{U} + (\mathbf{U} \cdot \nabla) \mathbf{U} + \nabla \Phi = \mathbf{F}, \text{ in } \Omega_g$$
$$\nabla \cdot \mathbf{U} = 0, \text{ in } \Omega_g$$

with the boundary condition

$$\mathbf{U} \cdot \mathbf{n} = 0$$
 on $\partial_{top} \Omega_q \cup \partial_{bottom} \Omega_q$.

Since $(\mathbf{U}(y_1, y_2, y_3)) = (\mathbf{U}_1(y_1, y_2), \mathbf{U}_2(y_1, y_2), \mathbf{U}_3(y_1, y_2, y_3))$ we have

$$\mathbf{v}_i(x_1, x_2) = \mathbf{U}_i(y_1, y_2) = \mathbf{u}_i(x_1, x_2), \quad i = 1, 2.$$

Therefore, by theorem 2.1 and theorem 2.2, $\mathbf{w} = (\mathbf{u}_1, \mathbf{u}_2) = (\mathbf{U}_1, \mathbf{U}_2)$ satisfies the 2D g-Navier-Stokes equations,

$$\frac{\partial \mathbf{w}}{\partial t} - \nu \Delta \mathbf{w} + (\mathbf{w} \cdot \nabla) \mathbf{w} + \nabla p = \mathbf{f}, \text{ in } \Omega_2$$
$$\nabla \cdot a \mathbf{w} = 0, \text{ in } \Omega_2$$

and third variable $\mathbf{U}_3(y_1, y_2, y_3) = \mathbf{u}_3(x_1, x_2, x_3)$ can be solved by $(\mathbf{U}_1, \mathbf{U}_2) = (\mathbf{u}_1, \mathbf{u}_2)$.

218 J. Roh

Therefore, we motivate to study 2D g-Navier-Stokes equations for 3D Navier-Stokes equations on thin domain Ω_q .

REMARK 2.1. In theorem 2.1 and theorem 2.2, we do not use any boundary condition other than (2). If **U** is periodic in (y_1, y_2) , i.e., $\mathbf{U}(0, y_2, y_3) = \mathbf{U}(1, y_2, y_3)$ and $\mathbf{U}(y_1, 0, y_3) = \mathbf{U}(y_1, 1, y_3)$, then **w** is also periodic in (y_1, y_2) . Likewise, if **U** satisfies Dirichlet conditions for $(y_1, y_2) \in \partial \Omega_2$, then **w** does as well.

Also, since $\mathbf{u}_3(x_1, x_2, x_3) = x_3(\frac{\partial g}{\partial x_1}\mathbf{u}_1 + \frac{\partial g}{\partial x_2}\mathbf{u}_2)$, for smooth and bounded function $g(x_1, x_2)$, we have

 $\| \mathbf{U}_3 \|_{L^2(\Omega_g)} \leq \alpha \| \mathbf{w} \|_{L^2(\Omega_2)}, \| \nabla \mathbf{U}_3 \|_{L^2(\Omega_g)} \leq \beta \| \mathbf{w} \|_{H^1(\Omega_2)},$ for some positive constants α, β .

References

- J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc. 329(1992), 185-219.
- [2] J. K. Hale and G. Raugel, Partial differential equations on thin domains, in "Differential Equations and Mathematical Physis, Birmingham, AL, 1990", Academic Press, Boston, 1992, 63-97.
- [3] J. K. Hale and G. Raugel, *Reaction-diffusion equation on thin domains*, J. Math. Pures Appl. 71(1992), 33-95.
- [4] G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6(1993), 503-568.
- [5] G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. II. Global regularity of spatially periodic solutions, in "Nonlinear Partial Differential Equations and Their Applications", Coll/'ege de France Seminar, Longman, Harlow, 1994, Vol. XI, 205-247.
- [6] R. Temam and M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1(1996), 499-546.
- [7] R. Temam and M. Ziane, Navier-Stokes equations in thin spherical domains, Contemp. Math. 209(1997), 281-314.

*

Department of Mathematics Hallym University Chuncheon 200-702, Republic of Korea E-mail: joroh@hallym.ac.kr