JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **31**, No. 3, August 2018 http://dx.doi.org/10.14403/jcms.2018.31.1.333

ON CONVERGENCE THEOREMS OF THE AP-HENSTOCK-STIELTJES INTEGRAL FOR FUZZY NUMBER-VALUED FUNCTIONS

JU HAN YOON*

ABSTRACT. In this paper we introduce the concept of equi-integrability of sequence of the fuzzy number-valued AP-Henstock-Stieltjes integrable functions. Under this concept, we prove two convergence theorems for sequences of the fuzzy number-valued AP-Henstock-Stieltjes integrable functions.

1. Introduction and Preliminaries

That the Henstock integral of real valued function was first defined by Henstock in 1963 [2, 4]. It is well known that the Henstock integral is more powerful and simpler than the Lebesgue and Feynman integrals.

In 2018, J. H. Yoon introduced the AP-Henstock-Stieltjes integral of fuzzy number-valued functions and investigated some properties [9].

In this paper we introduce the concept of equi-integrability of sequence of the fuzzy number-valued AP-Henstock-Stieltjes integrable functions. Under this concept, we prove convergence theorems for sequences of the fuzzy number-valued AP-Henstock-Stieltjes integrable functions.

A Henstock partition of [a, b] is a finite collection $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ such that $\{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ is a non-overlapping family of subintervals of [a, b] covering [a, b] and $\xi_i \in [x_{i-1}, x_i]$ for each $1 \le i \le n$. A gauge on [a, b] is a function $\delta : [a, b] \to (0, \infty)$. A Henstock partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ is said to be δ -fine on [a, b] if $[x_{i-i}, x_i] \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ for each $1 \le i \le n$.

Let α be an increasing function on [a, b]. A function $f : [a, b] \to R$ is said to be Henstock-Stieltjes integrable to $L \in R$ with respect to α on [a, b] if for every $\epsilon > 0$ there exists a positive function δ on [a, b] such that

Received July 16, 2018; Accepted August 03, 2018.

²⁰¹⁰ Mathematics Subject Classification: Primary 12A34, 56B34; Secondary 78C34.

Key words and phrases: Fuzzy number, AP-Henstock-Stieltjes integral .

n} is a δ -fine Henstock partition of [a, b]. We write $(HS) \int_a^b f(x) d\alpha = L$ and $f \in HS[a, b]$. The function f is Henstock-Stieltjes integrable with respect to α on a set $E \subset [a, b]$ if f_{χ_E} is Henstock-Stieltjes integrable with respect to α on [a, b], where χ_E denotes the characteristic function of E.

Fuzzy set $u: R \to [0,1]$ is called a fuzzy number if u is a normal, convex fuzzy set, upper semi-continuous and supp $u = \{x \in R | u(x) > 0\}$ is compact. Here \overline{A} denotes the closure of A. We use E^1 to denote the fuzzy number space [5].

Let $u, v \in E^1, k \in R$. The addition and scalar multiplication are defined by

$$[u+v]_{\lambda} = [u]_{\lambda} + [v]_{\lambda}, \ [ku]_{\lambda} = k[u]_{\lambda},$$

where $[u]_{\lambda} = \{x : u(x) \ge \lambda\} = [u_{\lambda}^{-}, u_{\lambda}^{+}]$ for any $\lambda \in [0, 1]$.

We use the Hausdorff distance between fuzzy numbers given by D: $E^1 \times E^1 \to [0, \infty)$ as follows

$$D(u,v) = \sup_{\lambda \in [0,1]} d([u]_{\lambda}, [v]_{\lambda}) = \sup_{\lambda \in [0,1]} \max\{|u_{\lambda}^{-} - v_{\lambda}^{-}|, |u_{\lambda}^{+} - v_{\lambda}^{+}|\},\$$

where d is the Hausdorff metric. D(u, v) is called the distance between u and v.

LEMMA 1.1. [3] If $u \in E^1$, then

- (1) $[u]_{\lambda}$ is non-empty bounded closed interval for all $\lambda \in [0, 1]$.
- (2) $[u]_{\lambda_1} \supset [u]_{\lambda_2}$ for any $0 \le \lambda_1 \le \lambda_2 \le 1$. (3) for any $\{\lambda_n\}$ converging increasingly to $\lambda \in (0, 1]$,

$$\bigcap_{n=1}^{\infty} [u]_{\lambda_n} = [u]_{\lambda}.$$

Conversely, if for all $\lambda \in [0,1]$, there exists $A_{\lambda} \subset R$ satisfying (1) ~ (3), then there exists a unique $u \in E^1$ such that $[u]_{\lambda} = A_{\lambda}, \lambda \in (0, 1]$, and $[u]_0 = \overline{\bigcup_{\lambda \in (0,1]} [u]_\lambda} \subset A_0.$

DEFINITION 1.2. [3] Let α be an increasing function on [a, b]. A fuzzy number-valued function F is Henstock-Stieltjes integrable with respect to α on [a, b] if there exists a fuzzy number $K \in E^1$ such that for every $\epsilon > 0$ there exists a positive function $\delta(x)$ such that

$$D\left(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), K\right) < \epsilon$$

whenever $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ is a δ -fine Henstock partition of [a, b]. We write $(FHS) \int_a^b F(x) d\alpha = K$ and $(F, \alpha) \in FHS[a, b]$. The fuzzy number-valued function F is Henstock-Stieltjes integrable

The fuzzy number-valued function F is Henstock-Stieltjes integrable with respect to α on a set $E \subset [a, b]$ if F_{χ_E} is Henstock-Stieltjes integrable with respect to α on [a, b], where χ_E denotes the characteristic function of E.

2. Convergence theorems for sequence of the fuzzy numbervalued AP-Henstock-Stieltjes integrable functions.

In this section, we define the concept of equi-integrablility for sequence of fuzzy number-valued AP-Henstock-Stieltjes integrable functions and prove two convergence theorems for sequences of the fuzzy number-valued AP-Henstock-Stieltjes integrable functions.

Let E be a measurable set and let x be a real number. The density of E at x is defined by

$$d_x E = \lim_{h \to 0+} \frac{\mu(E \cap (x - h, x + h))}{2h},$$

provided the limit exists. The point x is called a point of density of E if $d_x E = 1$. The E^d represents the set of all $x \in E$ such that x is a point of density of E.

An approximate neighborhood (or ap-nbd) of $x \in [a, b]$ is a measurable set $S_x \subset [a, b]$ containing x as a point of density. For every $x \in E \subset [a, b]$, choose an ap-nbd $S_x \subset [a, b]$ of x. Then we say that $S = \{S_x : x \in E\}$ is a choice on E. A tagged interval ([u, v], x) is said to fine to the choice $S = \{S_x\}$ if $u, v \in S_x$. Let $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ be a finite collection of non-overlapping tagged intervals. If $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ is fine to a choice S for each i, then we say that P is an S-fine. Let $E \subset [a, b]$. If P is S-fine and each $\xi_i \in E$, then P is called S-fine on E. If P is S-fine and $[a, b] = \bigcup_{i=1}^n [u_i, v_i]$, then we say that Pis an S-fine Henstock partition of [a, b]. we denote that N is the set of natural numbers.

DEFINITION 2.1. [8] A function $f : [a, b] \to R$ is AP-Henstock integrable if there exists a real number $A \in R$ such that for each $\epsilon > 0$ there is a choice S on [a, b] such that

$$\left|\sum_{i=1}^{n} f(\xi_i)(v_i - u_i) - A\right| < \epsilon$$

for each S-fine Henstock partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ of [a, b]. In this case, A is called the AP-Henstock integral of f on [a, b], and we write $A = (APH) \int_a^b f$.

DEFINITION 2.2. [9] Let α be an increasing function on [a, b]. A fuzzy number valued function F is AP-Henstock-Stieltjes integrable with respect to α on [a, b] if there exists a fuzzy number $K \in E^1$ such that for every $\epsilon > 0$ there exists a choice S on [a, b] such that

$$D\left(\sum_{i=1}^{n} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), K\right) < \epsilon$$

whenever $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ is an S-fine Henstock partition of [a, b]. We write $(APFHS) \int_a^b F(x) d\alpha = K$ and $(F, \alpha) \in APFHS[a, b]$.

The fuzzy number-valued function F is AP-Henstock-Stieltjes integrable with respect to α on a set $E \subset [a, b]$ if F_{χ_E} is AP-Henstock-Stieltjes integrable with respect to α on [a, b], where χ_E denotes the characteristic function of E.

DEFINITION 2.3. Let $\alpha : [a, b] \to R$ be an increasing function and for each $n \in N$ let $F_n : [a, b] \to E^1$ be an AP-Henstock-Stieltjes integrable functions with respect to α . The sequence $\{F_n\}$ is equi-integrable with respect to α on [a, b] if for every $\epsilon > 0$ there exists a choice S on [a, b] such that for any S-fine Henstock partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq k\}$, we have

$$D\left(\sum_{i=1}^{k} F_n(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), (APFHS)\int_a^b F_n(x)d\alpha\right) < \epsilon$$

for all $n \in N$.

DEFINITION 2.4. Let $\{\alpha_n\}$ be a sequence of increasing functions defined on [a, b] and let $F : [a, b] \to E^1$ be an AP-Henstock-Stieltjes integrable function with respect to α_n on [a, b] for every $n \in N$. The fuzzy number-valued function F is equi-integrable on [a, b] with respect to the sequence $\{\alpha_n\}$ on [a, b] if for every $\epsilon > 0$ there exists a choice S on [a, b]such that for any S-fine Henstock partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq k\}$, we have

$$D\left(\sum_{i=1}^{k} F(\xi_i)(\alpha_n(x_i) - \alpha_n(x_{i-1})), (APFHS)\int_a^b F(x)d\alpha_n\right) < \epsilon$$

for all $n \in N$.

THEOREM 2.5. Let $\{F_n\}$ be a sequence of fuzzy number-valued AP-Henstock-Stieltjes integrable functions with respect to α on [a, b] and let $\{F_n\}$ converge pointwise to F on [a, b]. If $\{F_n\}$ is equi-integrable with respect to α on [a, b], then F is AP-Henstock-Stieltjes integrable with respect to α on [a, b] and

$$(APFHS)\int_{a}^{b} F(x) \, d\alpha = \lim_{n \to \infty} (APFHS)\int_{a}^{b} F_{n}(x) \, d\alpha.$$

Proof. Since $\{F_n\}$ is a sequence of fuzzy number-valued AP-Henstock-Stieltjes integrable functions with respect to α on [a, b], for each $\epsilon > 0$ there exists a choice S on [a, b] such that for any S-fine Henstock partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le k\}$, we have

$$D\left(\sum_{i=1}^{k} F_n(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), (APFHS) \int_a^b F_n(x) d\alpha\right) < \epsilon$$

for all $n \in N$. Let us show that $\{(APFHS) \int_a^b F_n(x) d\alpha\}$ is a Cauchy sequence in the complete space (E^1, D) . Let $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq k\}$ be a S- fine Henstock partition on [a, b]. Note that

$$D(\sum_{i=1}^{k} F_{n}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})), \sum_{i=1}^{k} F(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})))$$

$$\leq \sum_{i=1}^{k} D(F_{n}(\xi_{i}), F(\xi_{i}))(\alpha(b) - \alpha(a)).$$

Since $\{F_n\}$ converges pointwise to F on [a, b], for each ξ_i there exists a $K_i(\xi_i) \in N$ such that

$$D(F_n(\xi_i), F(\xi_i)) < \frac{\epsilon}{k(\alpha(b) - \alpha(a))}$$

for all $n \ge K_i(\xi_i)$. Set $N_1 = \max\{K_i(\xi_i) : 1 \le i \le k\}$. Then

$$D\left(\sum_{i=1}^{k} F_n(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), \sum_{i=1}^{k} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1}))\right) < \epsilon$$

for all $n \geq N_1$. Thus we have

$$D\left(\sum_{i=1}^{k} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), (APFHS) \int_a^b F_n(x) \, d\alpha\right)$$

$$\leq D\left(\sum_{i=1}^{k} F(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})), \sum_{i=1}^{k} F_{n}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1}))\right) + D\left(\sum_{i=1}^{k} F_{n}(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})), (APFHS) \int_{a}^{b} F_{n}(x) d\alpha\right) < 2\epsilon$$

for all $n \ge N_1$. Therefore, for all $n, m \ge N_1$, we have

$$D\left((APFHS)\int_{a}^{b}F_{m}(x)\,d\alpha,\,(APFHS)\int_{a}^{b}F_{n}(x)\,d\alpha\right)$$

$$\leq D((APFHS)\int_{a}^{b}F_{m}(x)\,d\alpha,\,\sum_{i=1}^{k}F(\xi_{i})(\alpha(x_{i})-\alpha(x_{i-1}))$$

$$+D(\sum_{i=1}^{k}F(\xi_{i})(\alpha(x_{i})-\alpha(x_{i-1})),\,(APFHS)\int_{a}^{b}F_{n}(x)\,d\alpha)<4\epsilon.$$

It follows that $\{(APFHS) \int_a^b F_n(x) d\alpha\}$ is a Cauchy sequence in the complete space (E^1, D) . Let $\lim_{n\to\infty} (APFHS) \int_a^b F_n(x) d\alpha = H \in E^1$. We show that $(APFHS) \int_a^b F(x) d\alpha = H$. By hypothesis, there exists $N_2 \geq N_1$ such that

$$D\left((APFHS)\int_{a}^{b}F_{n}(x)\,d\alpha,\,H\right)<\epsilon$$

for all $n \ge N_2$. Set $N = \max\{N_1, N_2\}$. For all $n \ge N$, we obtain

$$D\left(\sum_{i=1}^{k} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), H\right)$$

$$\leq D\left(\sum_{i=1}^{k} F(\xi_i)(\alpha(x_i) - \alpha(x_{i-1})), (APFHS) \int_a^b F_n(x) d\alpha\right)$$

$$+ D\left((APFHS) \int_a^b F_n(x) d\alpha, H\right) < 3\epsilon.$$

Hence, F is AP-Henstock-Stieltjes integrable with respect to α on [a, b] and

$$(APFHS)\int_{a}^{b} F(x) \, d\alpha = \lim_{n \to \infty} (APFHS)\int_{a}^{b} F_{n}(x) \, d\alpha.$$

This completes the proof.

THEOREM 2.6. Let $F : [a,b] \to E^1$ be a bounded AP-Henstock-Stieltjes integrable function with respect to a sequence of increasing functions $\{\alpha_n\}$ on [a,b] and $\{\alpha_n\}$ converges pointwise to α on [a,b]. If F is equi-integrable with respect to the sequence $\{\alpha_n\}$ on [a,b], then Fis AP-Henstock-Stieltjes integrable with respect to α on [a,b] and

$$(APFHS)\int_{a}^{b} F(x) \, d\alpha = \lim_{n \to \infty} (APFHS)\int_{a}^{b} F(x) \, d\alpha_{n}$$

Proof. Since F is equi-integrable with respect to the sequence of increasing functions $\{\alpha_n\}$ on [a,b], for every $\epsilon > 0$, there exists a choice S on [a,b] such that for any S-fine Henstock partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le k\}$, we have

$$D\left(\sum_{i=1}^{k} F(\xi_i)(\alpha_n(x_i) - \alpha_n(x_{i-1})), (APFHS) \int_a^b F(x) \, d\alpha_n\right) < \epsilon$$

for all $n \in N$. Let $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq k\}$ be an *S*-fine Henstock partition on [a, b]. Since *F* is bounded on [a, b], $\sup_{x \in [a, b]} D(F(x), 0)$ exists. Since $\{\alpha_n\}$ converges pointwise to α on [a, b], for each $x_i \in [a, b]$, there exists a $K_i(x_i) \in N$ such that for all $n \geq K_i(x_i)$, we have

$$|\alpha_n(x_i) - \alpha(x_i)| < \frac{\epsilon}{k \sup_{x \in [a,b]} D(F(x),0)}.$$

Now, we show that $\{\int_a^b F(x) d\alpha_n\}$ is a Cauchy sequence in the complete space (E^1, D) . Set $N_1 = \max\{K_i(x_i) : 1 \le i \le k\}$. Then for $n \ge N_1$, we obtain

$$D\left(\sum_{i=1}^{k} F(\xi_{i})(\alpha_{n}(x_{i}) - \alpha_{n}(x_{i-1})), \sum_{i=1}^{k} F(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1}))\right)\right)$$

$$\leq \sum_{i=1}^{k} D(F(\xi_{i})(\alpha_{n}(x_{i}) - \alpha_{n}(x_{i-1})), F(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})))$$

$$= \sum_{i=1}^{k} \sup_{\lambda \in [0,1]} \max\{|F_{\lambda}^{-}(\xi_{i})(\alpha_{n}(x_{i}) - \alpha_{n}(x_{i-1}) - \alpha(x_{i}) + \alpha(x_{i-1}))|, |F_{\lambda}^{+}(\xi_{i})(\alpha_{n}(x_{i}) - \alpha_{n}(x_{i-1}) - \alpha(x_{i}) + \alpha(x_{i-1}))|\}$$

$$\leq \sum_{i=1}^{k} |\alpha_{n}(x_{i}) - \alpha_{n}(x_{i-1}) - \alpha(x_{i}) + \alpha(x_{i-1})|$$

$$\sup_{\lambda \in [0,1]} \max\{|F_{\lambda}^{-}(\xi_{i})|, |F_{\lambda}^{+}(\xi_{i})|\}$$

$$\leq k \frac{2\epsilon}{k \sup_{x \in [a,b]} D(F(x),0)} \sup_{x \in [a,b]} D(F(x),0) = 2\epsilon.$$

Hence, $\{\int_a^b F(x) d\alpha_n\}$ is a Cauchy sequence in the complete space (E^1, D) . Let $\lim_{n\to\infty} \int_a^b F(x) d\alpha_n = K \in E^1$. We show that $K = \int_a^b F(x) d\alpha$. By hypothesis, there exists $N_2 \ge N_1$ such that

$$D\left((APFHS)\int_{a}^{b}F(x)\,d\alpha_{n},K\right)<\epsilon$$

for all $n \ge N_2$. For all $n \ge N_2$, we obtain

$$D\left(\sum_{i=1}^{k} F(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})), K\right)$$

$$\leq D\left(\sum_{i=1}^{k} F(\xi_{i})(\alpha(x_{i}) - \alpha(x_{i-1})), \sum_{i=1}^{k} F(\xi_{i})(\alpha_{n}(x_{i}) - \alpha_{n}(x_{i-1}))\right)$$

$$+ D\left(\sum_{i=1}^{k} F(\xi_{i})(\alpha_{n}(x_{i}) - \alpha_{n}(x_{i-1})), (APFHS) \int_{a}^{b} F(x) d\alpha_{n}\right)$$

$$+ D\left((APFHS) \int_{a}^{b} F(x) d\alpha_{n}, K\right) < 4\epsilon.$$

Hence, F is AP-Henstock-Stieltjes integrable with respect to α and $(APFHS) \int_{a}^{b} F(x) d\alpha = \lim_{n \to \infty} \int_{a}^{b} F(x) d\alpha_{n}$.

References

- J. H. Eun, J. H. Yoon, J. M. Park, and D. H. Lee, On Henstock integrals of interval-valued functions, Journal of the Chungcheoug Math. Soc. 25 (2012), 291-287.
- [2] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Studia Math. 92 1994.
- [3] Z. Gong and L. Wang, On Henstock-Stieltjes integral for fuzzy number-valued functions, Information Siences, 188 (2012), 276-297.
- [4] P. Y. Lee, Lanzhou Lectures in Henstock Integration, World Scientific, 1989.
- [5] S. Nada, On integration of fuzzy mapping, Fuzzy Sets and Systems, 32 (1989), 95-101.
- [6] C. Wu and Z. Gong, On Henstock integrals of interval-valued functions and fuzzyvalued functions, Fuzzy Sets and Systems, 115 (2000), 377-392.

- [7] C. Wu and Z. Gong, On Henstock integrals of fuzzy number-valued functions(I), Fuzzy Sets and Systems, 120 (2001), 523-532.
- [8] J. H. Yoon, J. M. Park, Y. K. Kim, and B. M. Kim, The AP-Henstock Extension of the Dunford and Pettis Integrals, Journal of the Chungcheoug Math. Soc. 23 (2010), no. 4, 879-884.
- [9] J. H. Yoon, On AP-Henstock-Stieltjes integrals for fuzzy number-valued functions, Journal of the Chungcheoug Math. Soc. 31 (2018), no. 1, 151-160.

*

Department of Mathematics Education Chungbuk National University Cheongju 28644, Republic of Korea *E-mail*: yoonjh@cbnu.ac.kr