A SHORT NOTE ON THE HYERS-ULAM STABILITY IN MULTI-VALUED DYNAMICS

HAHNG-YUN CHU* AND SEUNG KI YOO**

ABSTRACT. In this paper, we consider the Hyers-Ulam stability on multi-valued dynamics. For a generalized n-dimensional quadratic set-valued functional equation, we prove the Hyers-Ulam stability for the functional equation in multi-valued dynamics.

1. Introduction

The aim of this article is to establish the Hyers-Ulam stability of the generalized quadratic set-valued functional equation. The original stability problem of functional equation concerning group homomorphisms had been first raised by S. M. Ulam [25]. D. H. Hyers [12] gave a first affirmative partial answer to the question of S. M. Ulam for Banach spaces. Hyers' theorem was generalized by T. Aoki [1] for additive mapping. Th. M. Rassias [22] proved the stability of the linear mapping by being a Cauchy difference of $\varepsilon(\|x\|^p + \|y\|^p)$ for some $\varepsilon \geq 0$ and $0 \leq p < 1$. J. M. Rassias [21] investigated the same problem with $\varepsilon(\|x\|^p \cdot \|y\|^p)$. Thereafter, P. Găvruta [11] provided a generalization of Th. M. Rassias' theorem in which replaced the bound $\varepsilon(\|x\|^p + \|y\|^p)$ by a general control function $\phi(x,y)$ for the existence of a unique linear mapping. The functional equation f(x+y) + f(x-y) = 2f(x) + 2f(y) is called the quadratic functional equation and every solution of the quadratic functional equation is called a quadratic function.

The Hyers-Ulam stability of quadratic functional equation was proved by F. Skof [24] for function $f: E_1 \to E_2$ where E_1 is normed space and

Received January 05, 2018; Accepted January 20, 2018.

²⁰¹⁰ Mathematics Subject Classification: 39B82, 47H04, 47H10, 54C60.

Key words and phrases: Hyers-Ulam stability, quadratic set-valued functional equation.

^{*}This research was supported by Physical Metrology for National Strategic Needs funded by Korea Research Institute of Standards and Science (KRISS-2018-GP2018-0005).

Correspondence should be addressed to Seung Ki Yoo, skyoo@cnu.ac.kr.

 E_2 is a Banach space. P. W. Cholewa [5] extended Skof's theorem by replacing X by an abelian group. Skof's result was generalized by S. Czerwik [10]. He proved the generalized Hyers-Ulam stability of quadratic functional equation in the spirit of Rassias approach. Chu et al. [6] extended the quadratic functional equation to the following generalized form

$$_{n-2}C_{m-2}f(\sum_{j=1}^{n}x_{j})+_{n-2}C_{m-1}\sum_{i=1}^{n}f(x_{i})=\sum_{1\leq i_{1}<\dots< i_{m}\leq n}f(x_{i_{1}}+\dots+x_{i_{m}}),$$

where $n \geq 3$ and $2 \leq m \leq n-1$. In [6, 7], they investigated the Hyers-Ulam stability for the generalized quadratic functional equation. Lu and Park [15] defined the additive set-valued functional equations and proved the Hyers-Ulam stability of the set-valued functional equations. Park et al. [17] futher investigated stability problems of the Jensen additive, quadratic, cubic and quartic set-valued functional equation. Kenary et al. [14] proved the stability for various types of the set-valued functional equation using the fixed point alternative.

In [2], Brzdek investigated some earlier classical results concerning the stability of the additive Cauchy equation. He also disprove a conjecture of Th. M. Rassias and present a new method for proving stability results for functional equations in [3]. In [18, 19], Piszczek obtained some results of stability of functional equation in some classes of multi-valued functions.

Recently, Chu and Yoo [9] investigated the Hyers-Ulam stability of the n-dimensional additive set-valued functional equation. In [8], they also investigated the Hyers-Ulam stability of the n-dimensional cubic set-valued functional equation.

Now we briefly introduce some definitions and notations which are needed to prove main theorems. Let CB(Y) be the set of all closed bounded subsets of Y and CC(Y) the set of all closed convex subsets of Y. Let CBC(Y) be the set of all closed bounded convex subsets of Y. For elements A, B of CC(Y) and $\alpha, \beta \in \mathbb{R}^+$, we denote $A \oplus B := \overline{A+B}$. If A is convex, then we obtain that $(\alpha+\beta)A = \alpha A + \beta A$ for all $\alpha, \beta \in \mathbb{R}^+$. And ${}_nC_m$ is defined by ${}_nC_m = \frac{n!}{(n-m)!m!}$. Let $f: X \to CBC(Y)$ be a mapping. The quadratic set-valued functional equation is defined by

$$(1.1) f(x+y) \oplus f(x-y) = 2f(x) \oplus 2f(y)$$

for all $x, y \in X$. Every solution of the quadratic set-valued functional equation is said to be a quadratic set-valued mapping. In the present paper, we define the generalized n-dimensional quadratic set-valued functional equation and investigate the Hyers-Ulam-Rassias stability of the functional equation as follows

$$(1.2) n_{-2}C_{m-2}f(\sum_{j=1}^{n} x_j) \oplus n_{-2}C_{m-1}\sum_{i=1}^{n} f(x_i)$$

$$= \sum_{1 \le i_1 < \dots < i_m \le n} f(x_{i_1} + \dots + x_{i_m})$$

where $n \geq 3$ and $2 \leq m \leq n-1$. Every solution of the generalized n-dimensional quadratic set-valued functional equation is called a *n*-dimensional quadratic set-valued mapping.

In the next section, to obtain the Hyers-Ulam-Rassias stability of a generalized n-dimensional quadratic functional equation, we use the most popular method induced from the completeness of the phase spaces and another method to gain the stability which is called the *fixed point method*.

Before we deal with the method, we need a terminology. For a set X, we say a function $d: X \times X \to [0, \infty)$ a generalized metric on X if d satisfies the following properties:

- (1) d(x,y) = 0 if and only if x = y;
- (2) d(x,y) = d(y,x) for all $x, y \in X$;
- (3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

2. Stability of the quadratic set-valued functional equation

In this section, we first give basic definitions to prove main theorems and prove the Hyers-Ulam-Rassias stability.

For $A, B \in CB(Y)$, the Hausdorff distance $d_H(A, B)$ is defined by

$$d_H(A, B) := \inf\{\alpha \ge 0 | A \subseteq B + \alpha B_Y, B \subseteq A + \alpha B_Y\},\$$

where B_Y is the closed unit ball in Y.

In [4], it was proved that a Hausdorff metric space $(CBC(Y), \oplus, d_H)$ is a complete metric semigroup. Rådström [20] proved that $(CBC(Y), \oplus, d_H)$ is isometrically embedded in a Banach space. To prove main theorems, we need the next remark which states fundamental properties for the Hausdorff distance.

REMARK 2.1. Let $A, A', B, B', C \in CBC(Y)$ and $\alpha > 0$. Then we have that

- (1) $d_H(A \oplus A', B \oplus B') \le d_H(A, B) + d_H(A', B');$
- (2) $d_H(\alpha A, \alpha B) = \alpha d_H(A, B);$
- (3) $d_H(A, B) = d_H(A \oplus C, B \oplus C)$.

Now, we prove the Hyers-Ulam stability of the n-dimensional quadratic set-valued functional equation.

THEOREM 2.2. Let $n \geq 3$ be an integer and let $\phi: X^n \to [0, \infty)$ be a function such that

(2.1)
$$\sum_{i=0}^{\infty} \frac{1}{4^i} \phi(2^i x_1, \dots, 2^i x_n) < \infty$$

for all $x_1, \ldots, x_n \in X$. Suppose that $f: X \longrightarrow (CBC(Y), d_H)$ is an even set-valued mapping with $f(0) = \{0\}$ and

(2.2)
$$d_H \left(\sum_{j=1}^n x_j \right) \oplus \sum_{n-2} C_{m-1} \sum_{i=1}^n f(x_i),$$

$$\sum_{1 \le i_1 < \dots < i_m \le n} f(x_{i_1} + \dots + x_{i_m}) \le \phi(x_1, \dots, x_n)$$

for all $x_1, \ldots, x_n \in X$. Then for any $m \in \{2, 3, \ldots, n-1\}$, there exists a unique n-dimensional quadratic set-valued mapping $Q: X \to (CBC(Y), d_H)$ such that

$$(2.3) d_H(f(x), Q(x)) \le \frac{1}{4_{n-3}C_{m-2}} \sum_{i=0}^{\infty} \frac{1}{4^i} \phi(2^i x, -2^i x, 2^i x, 0, \dots, 0)$$

for all $x \in X$.

Proof. Put $x_1 = x, x_2 = -x, x_3 = x$ and $x_4 = x_5 = \cdots = x_n = 0$ in (2.2). We have

$$d_{H}\Big(_{n-2}C_{m-2}f(x) \oplus 3_{n-2}C_{m-1}f(x), 3_{n-3}C_{m-1}f(x)\Big)$$

$$\oplus _{n-3}C_{m-3}f(x) \oplus _{n-3}C_{m-2}f(2x)\Big)$$

$$\leq \phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$. From the condition of remark 2.1, we obtain

(2.5)
$$d_H(f(x), \frac{1}{4}f(2x)) \le \frac{1}{4_{n-3}C_{m-2}}\phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$. Replace x by 2x and divide by 4 in (2.5). Then we get

(2.6)
$$d_{H}\left(\frac{1}{4}f(2x), \frac{1}{4^{2}}f(4x)\right) \leq \frac{1}{4^{2}_{n-3}C_{m-2}}\phi(2x, -2x, 2x, 0, \dots, 0)$$

for all $x \in X$. From (2.5) and (2.6), we obtain

(2.7)
$$d_H \left(f(x), \frac{1}{4^2} f(4x) \right) \le \frac{1}{4_{n-3} C_{m-2}} \phi(x, -x, x, 0, \dots, 0)$$

$$+ \frac{1}{4^2_{n-3} C_{m-2}} \phi(2x, -2x, 2x, 0, \dots, 0)$$

for all $x \in X$. Using the induction on i, we get that

$$(2.8) \quad d_H\left(f(x), \frac{1}{4^s} f(2^s x)\right) \le \frac{1}{4_{n-3} C_{m-2}} \sum_{i=0}^{s-1} \frac{1}{4^i} \phi(2^i x, -2^i x, 2^i x, 0, \dots, 0)$$

for any positive integer s and for all $x \in X$.

For all integer r and l(r > l > 0), we have

$$d_{H}\left(\frac{1}{4^{r}}f(2^{r}x), \frac{1}{4^{l}}f(2^{l}x)\right) \leq \frac{1}{4_{n-3}C_{m-2}} \sum_{k=l}^{r-1} \frac{1}{4^{k}} \phi(2^{k}x, -2^{k}x, 2^{k}x, 0, \dots, 0)$$

for all $x \in X$. Since the right-hand side of the inequality (2.9) tends to zero as k tends to infinity, the sequence $\{\frac{f(2^sx)}{4^s}\}$ is a Cauchy sequence in $(CBC(Y), d_H)$. Therefore, we can define a mapping $Q: X \to (CBC(Y), d_H)$ as $Q(x) := \lim_{s \to \infty} \frac{1}{4^s} f(2^sx)$ for all $x \in X$. Now, we show that $Q: X \to (CBC(Y), d_H)$ is a quadratic set-valued mapping. By taking $x_1 = \cdots = x_n = 0$ in (1.2), we have

$$n_{n-2}C_{m-2}Q(0) \oplus n_{n-2}C_{m-1}Q(0) = {}_{n}C_{m}Q(0).$$

Then we obtain

$$\frac{(m-1)(n-1)!}{m!(n-m-1)!}Q(0) = \{0\}.$$

Since $n \geq 3$, $Q(0) = \{0\}$. By putting $x_1 = x, x_2 = -y, x_3 = y$ and $x_4 = \cdots = x_n = 0$ in (1.2), we have

$$n_{-2}C_{m-2}Q(x) \oplus n_{-2}C_{m-1}Q(x) \oplus 2_{n-2}C_{m-1}Q(y)$$

$$= n_{-3}C_{m-2}(Q(x+y) \oplus Q(x-y)) \oplus n_{-3}C_{m-3}Q(x)$$

$$\oplus n_{-3}C_{m-1}Q(x) \oplus 2_{n-3}C_{m-1}Q(y).$$

Hence we may have $_{n-3}C_{m-2}(Q(x+y)\oplus Q(x-y))=2_{n-3}C_{m-2}(Q(x)\oplus Q(y))$, that is, Q is a quadratic. Also, a mapping Q satisfies

$${}_{n-2}C_{m-2}Q(\sum_{j=1}^{n} x_j) \oplus_{n-2}C_{m-1} \sum_{i=1}^{n} Q(x_i)$$

$$= \sum_{1 \le i_1 < \dots < i_m \le n} Q(x_{i_1} + \dots + x_{i_m}),$$

where $n \geq 3$ is an integer and $2 \leq m \leq n-1$.

Now, letting l=0 and taking the limit $r\to\infty$ in (2.9), we obtain the inequality (2.3).

To prove the uniqueness of the n-dimensional quadratic set-valued mapping, we assume that $Q': X \to (CBC(Y), d_H)$ be another n-dimensional quadratic set-valued mapping satisfying (2.3). Then

$$(2.10) d_H(Q(x), Q'(x)) \le d_H(Q(x), f(x)) \oplus d_H(f(x), Q'(x))$$

$$\le \frac{2^{1-2r}}{4_{n-3}C_{m-2}} \sum_{i=1}^{r-1} \frac{1}{4^i} \phi(2^i x, -2^i x, 2^i x, 0, \dots, 0)$$

for all $x \in X$. Taking the limit as $r \to \infty$ in (2.10), we have Q(x) = Q'(x) for all $x \in X$. This completes the proof.

REMARK 2.3. Let $n \geq 3$ be an integer. Consider a change of control function ϕ in the theorem 2.2. Let $\phi: X^n \to [0, \infty)$ be a function such that

$$(2.11) \qquad \sum_{i=0}^{\infty} 4^i \phi(\frac{x_1}{2^i}, \dots, \frac{x_n}{2^i}) < \infty$$

for all $x_1, \ldots, x_n \in X$. Suppose that $f: X \longrightarrow (CBC(Y), d_H)$ is an even set-valued mapping with $f(0) = \{0\}$ and

$$(2.12) d_{H} \Big(\sum_{i=1}^{n} x_{i} \Big) \oplus \sum_{n-2} C_{m-1} \sum_{i=1}^{n} f(x_{i}),$$

$$\sum_{1 \leq i_{1} < \dots < i_{m} \leq n} f(x_{i_{1}} + \dots + x_{i_{m}}) \Big) \leq \phi(x_{1}, \dots, x_{n})$$

for all $x_1, \ldots, x_n \in X$. Then for any $m \in \{2, 3, \ldots, n-1\}$, there exists a unique n-dimensional quadratic set-valued mapping $Q: X \to (CBC(Y), d_H)$ such that

$$(2.13)$$
 $d_H(f(x), Q(x))$

$$\leq \frac{1}{n-3C_{m-2}} \sum_{i=0}^{\infty} 4^{i} \phi(\frac{1}{2^{i}}x, -\frac{1}{2^{i}}x, \frac{1}{2^{i}}x, 0, \dots, 0)$$

for all $x \in X$.

COROLLARY 2.4. Let $n \geq 3$ be an integer, $0 and <math>\theta \geq 0$ be real numbers. Suppose that $f: X \to (CBC(Y), d_H)$ is an even mapping satisfying

$$d_{H}\left(n-2C_{m-2}f(\sum_{j=1}^{n} x_{j}) \oplus n-2C_{m-1}\sum_{i=1}^{n} f(x_{i}),\right)$$

$$\sum_{1 \leq i_{1} < \dots < i_{m} \leq n} f(x_{i_{1}} + \dots + x_{i_{m}}) \leq \theta \sum_{i=1}^{n} \|x_{i}\|^{p}$$

for all $x_1, \ldots, x_n \in X$ and $m \in \{2, 3, \ldots, n-1\}$. Then there exists a unique n-dimensional quadratic set-valued mapping $Q: X \to (CBC(Y), d_H)$ such that

$$d_H(f(x),Q(x)) \leq \frac{1}{2_{n-3}C_{m-2}} \frac{\theta}{4-2^p} ||x||^p$$

for all $x \in X$.

Proof. The result follows theorem 2.2 by setting $\phi(x_1, x_2, \dots, x_n) = \theta \sum_{i=1}^n ||x_i||^p$ for all $x_1, \dots, x_n \in X$.

REMARK 2.5. By setting $\phi(x_1, x_2, ..., x_n) = \theta \sum_{i=1}^n ||x_i||^p$ for all $x_1, ..., x_n \in X$ in the remark 2.3, we obtain the following statement. Let $n \geq 3$ be an integer, p > 2 and $\theta \geq 0$ be real numbers. Suppose that $f: X \to (CBC(Y), d_H)$ is an even mapping satisfying

$$d_{H}\left(n-2C_{m-2}f\left(\sum_{j=1}^{n}x_{j}\right) \oplus n-2C_{m-1}\sum_{i=1}^{n}f(x_{i}),\right.$$

$$\sum_{1\leq i_{1}<\dots< i_{m}\leq n}f(x_{i_{1}}+\dots+x_{i_{m}})\right)\leq \theta\sum_{i=1}^{n}\|x_{i}\|^{p}$$

for all $x_1, \ldots, x_n \in X$ and $m \in \{2, 3, \ldots, n-1\}$. Then there exists a unique n-dimensional quadratic set-valued mapping $Q: X \to \mathbb{R}$

 $(CBC(Y), d_H)$ such that

$$d_H(f(x), Q(x)) \le \frac{1}{2_{n-3}C_{m-2}} \frac{\theta}{2^p - 4} ||x||^p$$

for all $x \in X$.

Next we use another method closely related to a fixed point theory to prove the Hyers-Ulam stability of the generalized quadratic set-valued functional equation. We first introduce a useful theorem to prove our results. In [16], the following lemma is due to Margolis and Diaz.

LEMMA 2.6. Let (X,d) be a complete generalized metric space and let $J: X \to X$ be a strictly contractive mapping with Lipschitz constant L < 1. Then for each element $x \in X$, either

$$d(J^n x, J^{n+1} x) = \infty$$

for all nonnegative integers n or there exists a positive integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty, \forall n > n_0$;
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $Y = \{y \in X | d(J^{n_0}x, y) < \infty\}$;
- (4) $d(y, y^*) \leq \frac{1}{1-L}d(y, Jy)$ for all $y \in Y$.

Generally, the fixed point method is so popular technique to prove the Hyers-Ulam stability. In the set-valued version, we also use this useful method to prove the Hyers-Ulam stability.

THEOREM 2.7. Let $2 \le m \le n-1$ be an integer. Suppose that an even mapping $f: X \longrightarrow (CBC(Y), d_H)$ with $f(0) = \{0\}$ satisfies the inequality

(2.14)

$$d_{H}\left(n-2C_{m-2}f(\sum_{j=1}^{n}x_{j}) \oplus n-2C_{m-1}\sum_{i=1}^{n}f(x_{i}),\right.$$

$$\sum_{1\leq i_{1}<\dots< i_{m}\leq n}f(x_{i_{1}}+\dots+x_{i_{m}})\right)\leq \phi(x_{1},\dots,x_{n})$$

for all $x_1, \ldots, x_n \in X$ and there exists a constant L with 0 < L < 1 for which the function $\phi: X^n \to [0, \infty)$ satisfies

$$(2.15) \phi(2x, -2x, 2x, 0, \dots, 0) \le 4L\phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$. Then there exists a unique n-dimensional quadratic setvalued mapping $Q: X \to (CBC(Y), d_H)$ such that

(2.16)
$$d_H(f(x), Q(x)) \le \frac{1}{4(1-L)}\phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$.

Proof. Set $x_1 = x, x_2 = -x, x_3 = x$ and $x_4 = \cdots = x_n = 0$ in (2.14). Since f is even and the range of f is convex, we have that

(2.17)
$$d_H(f(x), \frac{1}{4}f(2x)) \le \frac{1}{4n-3C_{m-2}}\phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$.

Let $S := \{g \mid g : X \to CBC(Y), \ g(0) = \{0\}\}$. We define a generalized metric on S defined by

$$d(g_1, g_2) := \inf \Big\{ \mu \in (0, \infty) \mid d_H(g_1(x), g_2(x)) \\ \leq \mu \phi(x, -x, x, 0, \dots, 0), x \in X \Big\},\,$$

where, as usual, $inf\emptyset := \infty$.

Now, we define the mapping $J:(S,d)\to (S,d)$ given by $Jg(x)=\frac{1}{4}g(2x)$ for all $x\in X$. For $g_1,g_2\in S$, let $d(g_1,g_2)<\mu$. Then

$$d_H(g_1(x), g_2(x)) \le \mu \phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$. By (2.15), we have

$$d_{H}(Jg_{1}(x), Jg_{2}(x)) = \frac{1}{4}d_{H}(g_{1}(2x), g_{2}(2x))$$

$$\leq \frac{1}{4}\mu\phi(2x, -2x, 2x, 0, \dots, 0)$$

$$\leq L\mu\phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$.

Therefore, we have that $d(Jg_1, Jg_2) \leq Ld(g_1, g_2)$ for all $g_1, g_2 \in S$. Hence J is a strictly contractive mapping with the Lipschitz constant L. From (2.17), we can obtain that $d(f, Jf) \leq \frac{1}{4}$. By theorem 2.6, there exists a unique fixed point $Q: X \to (CBC(Y), d_H)$ of J such that $\{J^r f\} \to 0$ as $r \to \infty$. Then we have

(2.18)
$$Q(x) = \lim_{r \to \infty} \frac{1}{4^r} f(2^r x)$$

for all $x \in X$. Also, from the fixed point alternative, we get $d(f,Q) \le \frac{1}{1-L}d(Jf,f) \le \frac{1}{4(1-L)}$, which implies the inequality (2.16) holds.

From (2.14) and (2.18), it follows that

$$d_H\left(n-2C_{m-2}Q\left(\sum_{j=1}^n x_j\right) \oplus n-2C_{m-1}\sum_{i=1}^n Q(x_i),\right.$$

$$\sum_{1 \le i_1 < \dots < i_m \le n} Q(x_{i_1} + \dots + x_{i_m})\right)$$

$$\leq \lim_{r \to \infty} \frac{1}{4^r} \phi(2^r x_1, \dots, 2^r x_n) = 0$$

for all $x_1, \ldots, x_n \in X$.

Therefore, Q is a unique n-dimensional quadratic set-valued mapping as desired. \Box

REMARK 2.8. Let $2 \le m \le n-1$ be an integer. Suppose that an even mapping $f: X \longrightarrow (CBC(Y), d_H)$ with $f(0) = \{0\}$ satisfies the inequality

$$d_{H}\left(n-2C_{m-2}f(\sum_{j=1}^{n}x_{j}) \oplus n-2C_{m-1}\sum_{i=1}^{n}f(x_{i}),\right.$$

$$\sum_{1\leq i_{1}<\dots< i_{m}\leq n}f(x_{i_{1}}+\dots+x_{i_{m}})\right)\leq \phi(x_{1},\dots,x_{n})$$

for all $x_1, \ldots, x_n \in X$ and there exists a constant L with 0 < L < 1 for which the function $\phi: X^n \to [0, \infty)$ satisfies

$$\phi(\frac{x}{2}, -\frac{x}{2}, \frac{x}{2}, 0, \dots, 0) \le \frac{L}{4}\phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$. Then there exists a unique n-dimensional quadratic setvalued mapping $Q: X \to (CBC(Y), d_H)$ such that

$$d_H(f(x), Q(x)) \le \frac{L}{4 - 4L} \phi(x, -x, x, 0, \dots, 0)$$

for all $x \in X$.

COROLLARY 2.9. Let $0 and <math>\theta \ge 0$ be real number. Suppose that $f: X \longrightarrow (CBC(Y), d_H)$ is an even mapping satisfying

$$d_{H}\left(n-2C_{m-2}f(\sum_{j=1}^{n}x_{j}) \oplus n-2C_{m-1}\sum_{i=1}^{n}f(x_{i}),\right)$$

$$\sum_{1 \leq i_{1} < \dots < i_{m} \leq n}f(x_{i_{1}} + \dots + x_{i_{m}}) \leq \theta \sum_{i=1}^{n} \|x_{i}\|^{p}$$

for all $x_1, \ldots, x_n \in X$. Then there exists a unique n-dimensional quadratic set-valued mapping $Q: X \to (CBC(Y), d_H)$ such that

$$d_H(f(x), Q(x)) \le \frac{3\theta}{2^2 - 2^p} ||x||^p$$

for all $x \in X$.

Proof. The proof follows from theorem 2.7 by setting $\phi(x_1, x_2, \ldots, x_n) = \theta \sum_{i=1}^n ||x_i||^p$ for every $x_1, \ldots, x_n \in X$. Then we can choose $L = 2^{p-2}$ and we get the desired results.

REMARK 2.10. In remark 2.8, we set $\phi(x_1, x_2, \dots, x_n) = \theta \sum_{i=1}^n ||x_i||^p$ for every $x_1, \dots, x_n \in X$. Then we obtain the following statement. Let p > 2 and $\theta \ge 0$ be real number. Suppose that $f: X \longrightarrow (CBC(Y), d_H)$ is an even mapping satisfying

$$d_{H}\left(n-2C_{m-2}f(\sum_{j=1}^{n}x_{j}) \oplus n-2C_{m-1}\sum_{i=1}^{n}f(x_{i}),\right.$$

$$\sum_{1 \leq i_{1} < \dots < i_{m} \leq n}f(x_{i_{1}} + \dots + x_{i_{m}})\right) \leq \theta \sum_{i=1}^{n} \|x_{i}\|^{p}$$

for all $x_1, \ldots, x_n \in X$. Then there exists a unique n-dimensional quadratic set-valued mapping $Q: X \to (CBC(Y), d_H)$ such that

$$d_H\big(f(x),Q(x)\big) \leq \frac{\theta}{2^p-2^2} \|x\|^p$$

for all $x \in X$.

Competing interesting: The authors declare that they have no competing interests.

Authors contributions: All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

References

- [1] T. Aoki, On the stability of the linear transformation in the Banach space, J. Math. Soc. Jap. 2 (1950), 64-66.
- [2] J. Brzdek, Stability of additivity and fixed point methods, Fixed Point Theory and Appl. **2013** 2013:285, 9pages.
- [3] J. Brzdek, Note on stability of the Cauchy equation an answer to a problem of Th.M. Rassias, Carpathian Journal of Mathematics, **30** (2014), 47-54.
- [4] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lec. Notes in Math. Springer, Berlin, 580, 1977.

- [5] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
- [6] H.-Y. Chu, D. S. Kang, and Th. M. Rassias, On the stability of a mixed ndimensional quadratic functional equation, Bull. Belg. Math. Soc. 15 (2008), 9-24.
- [7] H.-Y. Chu, A. Kim, and J.-S. Park, On the Hyers-Ulam stabilities of functional equations on n-Banach spaces, Math. Nachr. 289 (2016), 1177-1188.
- [8] H.-Y. Chu, A. Kim, and S. K. Yoo, On the stability of generalized cubic set-valued functional equation, Appl. Math. Lett. 37 (2014), 7-14.
- [9] H.-Y. Chu and S. K. Yoo, On the stability of an additive set-valued functional equation, J. Chungcheong Math. Soc. 27 (2014), 455-467.
- [10] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
- [11] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
- [13] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
- [14] H. A. Kenary, H. Rezaei, Y. Gheisari, and C. Park, On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory and Appl. 2012 2012:81, 17pages.
- [15] G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional euqtions, Appl. Math. Lett. 24 (2011), 1312-1316.
- [16] B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
- [17] C. Park, D. O'Regan and R. Saadati, Stability of some set-valued functional equations, Appl. Math. Lett. 24 (2011), 1910-1914.
- [18] M. Piszczek, The properties of functional inclusions and Hyers-Ulam stability, Aequationes Math. 85 (2013), 111-118.
- [19] M. Piszczek, On selections of set-valued inclusions in a single variable with applications to several variables, Results Math. **64** (2013), 1-12.
- [20] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
- [21] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
- [22] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [23] Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai, 43 (1998), 89-124.
- [24] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano, 53 (1983), 113-129.
- [25] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

*

Department of Mathematics Chungnam National University Daejon 34134, Republic of Korea *E-mail*: hychu@cnu.ac.kr.

**

Department of Mathematics Chungnam National University Daejeon 34134, Republic of Korea *E-mail*: skyoo@cnu.ac.kr.