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A SHORT NOTE ON THE HYERS-ULAM STABILITY

IN MULTI-VALUED DYNAMICS

Hahng-Yun Chu* and Seung Ki Yoo**

Abstract. In this paper, we consider the Hyers-Ulam stability on
multi-valued dynamics. For a generalized n-dimensional quadratic
set-valued functional equation, we prove the Hyers-Ulam stability
for the functional equation in multi-valued dynamics.

1. Introduction

The aim of this article is to establish the Hyers-Ulam stability of the
generalized quadratic set-valued functional equation. The original sta-
bility problem of functional equation concerning group homomorphisms
had been first raised by S. M. Ulam [25]. D. H. Hyers [12] gave a first
affirmative partial answer to the question of S. M. Ulam for Banach
spaces. Hyers’ theorem was generalized by T. Aoki [1] for additive map-
ping. Th. M. Rassias [22] proved the stability of the linear mapping
by being a Cauchy difference of ε(∥x∥p + ∥y∥p) for some ε ≥ 0 and
0 ≤ p < 1. J. M. Rassias [21] investigated the same problem with
ε(∥x∥p · ∥y∥p). Thereafter, P. Gǎvruta [11] provided a generalization of
Th. M. Rassias’ theorem in which replaced the bound ε(∥x∥p + ∥y∥p)
by a general control function ϕ(x, y) for the existence of a unique linear
mapping. The functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y)
is called the quadratic functional equation and every solution of the qua-
dratic functional equation is called a quadratic function.

The Hyers-Ulam stability of quadratic functional equation was proved
by F. Skof [24] for function f : E1 → E2 where E1 is normed space and
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E2 is a Banach space. P. W. Cholewa [5] extended Skof’s theorem by
replacing X by an abelian group. Skof’s result was generalized by S. Cz-
erwik [10]. He proved the generalized Hyers-Ulam stability of quadratic
functional equation in the spirit of Rassias approach. Chu et al. [6]
extended the quadratic functional equation to the following generalized
form

n−2Cm−2f(
n∑

j=1

xj)+n−2Cm−1

n∑
i=1

f(xi) =
∑

1≤i1<···<im≤n

f(xi1+· · ·+xim),

where n ≥ 3 and 2 ≤ m ≤ n− 1. In [6, 7], they investigated the Hyers-
Ulam stability for the generalized quadratic functional equation. Lu and
Park [15] defined the additive set-valued functional equations and proved
the Hyers-Ulam stability of the set-valued functional equations. Park et
al. [17] futher investigated stability problems of the Jensen additive,
quadratic, cubic and quartic set-valued functional equation. Kenary et
al. [14] proved the stability for various types of the set-valued functional
equation using the fixed point alternative.

In [2], Brzdek investigated some earlier classical results concerning
the stability of the additive Cauchy equation. He also disprove a conjec-
ture of Th. M. Rassias and present a new method for proving stability
results for functional equations in [3]. In [18, 19], Piszczek obtained some
results of stability of functional equation in some classes of multi-valued
functions.

Recently, Chu and Yoo [9] investigated the Hyers-Ulam stability of
the n-dimensional additive set-valued functional equation. In [8], they
also investigated the Hyers-Ulam stability of the n-dimensional cubic
set-valued functional equation.

Now we briefly introduce some definitions and notations which are
needed to prove main theorems. Let CB(Y ) be the set of all closed
bounded subsets of Y and CC(Y ) the set of all closed convex subsets of
Y . Let CBC(Y ) be the set of all closed bounded convex subsets of Y .
For elements A,B of CC(Y ) and α, β ∈ R+, we denote A⊕B := A+B.
If A is convex, then we obtain that (α+β)A = αA+βA for all α, β ∈ R+.
And nCm is defined by nCm = n!

(n−m)!m! . Let f : X → CBC(Y ) be a

mapping. The quadratic set-valued functional equation is defined by

(1.1) f(x+ y)⊕ f(x− y) = 2f(x)⊕ 2f(y)
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for all x, y ∈ X. Every solution of the quadratic set-valued functional
equation is said to be a quadratic set-valued mapping. In the present pa-
per, we define the generalized n-dimensional quadratic set-valued func-
tional equation and investigate the Hyers-Ulam-Rassias stability of the
functional equation as follows

n−2Cm−2f(
n∑

j=1

xj) ⊕ n−2Cm−1

n∑
i=1

f(xi)(1.2)

=
∑

1≤i1<···<im≤n

f(xi1 + · · ·+ xim)

where n ≥ 3 and 2 ≤ m ≤ n − 1. Every solution of the generalized
n-dimensional quadratic set-valued functional equation is called a n-
dimensional quadratic set-valued mapping.

In the next section, to obtain the Hyers-Ulam-Rassias stability of
a generalized n-dimensional quadratic functional equation, we use the
most popular method induced from the completeness of the phase spaces
and another method to gain the stability which is called the fixed point
method.

Before we deal with the method, we need a terminology. For a set
X, we say a function d : X ×X → [0,∞) a generalized metric on X if d
satisfies the following properties:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

2. Stability of the quadratic set-valued functional equation

In this section, we first give basic definitions to prove main theorems
and prove the Hyers-Ulam-Rassias stability.

For A,B ∈ CB(Y ), the Hausdorff distance dH(A,B) is defined by

dH(A,B) := inf{α ≥ 0| A ⊆ B + αBY , B ⊆ A+ αBY },

where BY is the closed unit ball in Y .
In [4], it was proved that a Hausdorff metric space (CBC(Y ),⊕, dH)

is a complete metric semigroup. R̊adström [20] proved that (CBC(Y ),⊕,
dH) is isometrically embedded in a Banach space. To prove main theo-
rems, we need the next remark which states fundamental properties for
the Hausdorff distance.
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Remark 2.1. Let A,A′, B,B′, C ∈ CBC(Y ) and α > 0. Then we
have that

(1) dH(A⊕A′, B ⊕B′) ≤ dH(A,B) + dH(A′, B′);
(2) dH(αA,αB) = αdH(A,B);
(3) dH(A,B) = dH(A⊕ C,B ⊕ C).

Now, we prove the Hyers-Ulam stability of the n-dimensional qua-
dratic set-valued functional equation.

Theorem 2.2. Let n ≥ 3 be an integer and let ϕ : Xn → [0,∞) be a
function such that

∞∑
i=0

1

4i
ϕ(2ix1, . . . , 2

ixn) < ∞(2.1)

for all x1, . . . , xn ∈ X. Suppose that f : X −→ (CBC(Y ), dH) is an
even set-valued mapping with f(0) = {0} and

dH

(
n−2Cm−2f(

n∑
j=1

xj)⊕ n−2Cm−1

n∑
i=1

f(xi),(2.2)

∑
1≤i1<···<im≤n

f(xi1 + · · ·+ xim)
)
≤ ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ X. Then for any m ∈ {2, 3, . . . , n − 1}, there ex-
ists a unique n-dimensional quadratic set-valued mapping Q : X →
(CBC(Y ), dH) such that

dH(f(x), Q(x)) ≤ 1

4n−3Cm−2

∞∑
i=0

1

4i
ϕ(2ix,−2ix, 2ix, 0, . . . , 0)(2.3)

for all x ∈ X.

Proof. Put x1 = x, x2 = −x, x3 = x and x4 = x5 = · · · = xn = 0 in
(2.2). We have

dH

(
n−2Cm−2f(x) ⊕ 3n−2Cm−1f(x), 3n−3Cm−1f(x)

⊕ n−3Cm−3f(x)⊕ n−3Cm−2f(2x)
)

(2.4)

≤ ϕ(x,−x, x, 0, . . . , 0)

for all x ∈ X. From the condition of remark 2.1, we obtain

dH
(
f(x),

1

4
f(2x)

)
≤ 1

4n−3Cm−2
ϕ(x,−x, x, 0, . . . , 0)(2.5)



A short note on the Hyers-Ulam stability in multi-valued dynamics 93

for all x ∈ X. Replace x by 2x and divide by 4 in (2.5). Then we get

dH

(1
4
f(2x) ,

1

42
f(4x)

)
≤(2.6)

1

42n−3Cm−2
ϕ(2x,−2x, 2x, 0, . . . , 0)

for all x ∈ X. From (2.5) and (2.6), we obtain

dH

(
f(x),

1

42
f(4x)

)
≤ 1

4n−3Cm−2
ϕ(x,−x, x, 0, . . . , 0)(2.7)

+
1

42n−3Cm−2
ϕ(2x,−2x, 2x, 0, . . . , 0)

for all x ∈ X. Using the induction on i, we get that

dH

(
f(x),

1

4s
f(2sx)

)
≤(2.8)

1

4n−3Cm−2

s−1∑
i=0

1

4i
ϕ(2ix,−2ix, 2ix, 0, . . . , 0)

for any positive integer s and for all x ∈ X.

For all integer r and l(r > l > 0), we have

dH

( 1

4r
f(2rx),

1

4l
f(2lx)

)
≤

(2.9)

1

4n−3Cm−2

r−1∑
k=l

1

4k
ϕ(2kx,−2kx, 2kx, 0, . . . , 0)

for all x ∈ X. Since the right-hand side of the inequality (2.9) tends

to zero as k tends to infinity, the sequence {f(2sx
4s } is a Cauchy se-

quence in (CBC(Y ), dH). Therefore, we can define a mapping Q : X →
(CBC(Y ), dH) as Q(x) := lims→∞

1
4s f(2

sx) for all x ∈ X. Now, we
show that Q : X → (CBC(Y ), dH) is a quadratic set-valued mapping.
By taking x1 = · · · = xn = 0 in (1.2), we have

n−2Cm−2Q(0)⊕ nn−2Cm−1Q(0) = nCmQ(0).

Then we obtain

(m− 1)(n− 1)!

m!(n−m− 1)!
Q(0) = {0}.
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Since n ≥ 3, Q(0) = {0}. By putting x1 = x, x2 = −y, x3 = y and
x4 = · · · = xn = 0 in (1.2), we have

n−2Cm−2Q(x)⊕ n−2Cm−1Q(x)⊕ 2n−2Cm−1Q(y)

= n−3Cm−2(Q(x+ y)⊕Q(x− y))⊕ n−3Cm−3Q(x)

⊕ n−3Cm−1Q(x)⊕ 2n−3Cm−1Q(y).

Hence we may have n−3Cm−2(Q(x+y)⊕Q(x−y)) = 2n−3Cm−2(Q(x)⊕
Q(y)), that is, Q is a quadratic. Also, a mapping Q satisfies

n−2Cm−2Q(
n∑

j=1

xj)⊕n−2Cm−1

n∑
i=1

Q(xi)

=
∑

1≤i1<···<im≤n

Q(xi1 + · · ·+ xim),

where n ≥ 3 is an integer and 2 ≤ m ≤ n− 1.
Now, letting l = 0 and taking the limit r → ∞ in (2.9), we obtain

the inequality (2.3).
To prove the uniqueness of the n-dimensional quadratic set-valued

mapping, we assume that Q′ : X → (CBC(Y ), dH) be another n-
dimensional quadratic set-valued mapping satisfying (2.3). Then

dH(Q(x), Q′(x)) ≤ dH(Q(x), f(x))⊕ dH(f(x), Q′(x))(2.10)

≤ 21−2r

4n−3Cm−2

r−1∑
i=0

1

4i
ϕ(2ix,−2ix, 2ix, 0, . . . , 0)

for all x ∈ X. Taking the limit as r → ∞ in (2.10), we haveQ(x) = Q′(x)
for all x ∈ X. This completes the proof.

Remark 2.3. Let n ≥ 3 be an integer. Consider a change of control
function ϕ in the theorem 2.2. Let ϕ : Xn → [0,∞) be a function such
that

∞∑
i=0

4iϕ(
x1
2i

, . . . ,
xn
2i

) < ∞(2.11)

for all x1, . . . , xn ∈ X. Suppose that f : X −→ (CBC(Y ), dH) is an
even set-valued mapping with f(0) = {0} and

dH

(
n−2Cm−2f(

n∑
j=1

xj)⊕ n−2Cm−1

n∑
i=1

f(xi),(2.12)

∑
1≤i1<···<im≤n

f(xi1 + · · ·+ xim)
)
≤ ϕ(x1, . . . , xn)
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for all x1, . . . , xn ∈ X. Then for any m ∈ {2, 3, . . . , n − 1}, there ex-
ists a unique n-dimensional quadratic set-valued mapping Q : X →
(CBC(Y ), dH) such that

dH(f(x), Q(x))(2.13)

≤ 1

n−3Cm−2

∞∑
i=0

4iϕ(
1

2i
x,− 1

2i
x,

1

2i
x, 0, . . . , 0)

for all x ∈ X.

Corollary 2.4. Let n ≥ 3 be an integer, 0 < p < 2 and θ ≥ 0 be
real numbers. Suppose that f : X → (CBC(Y ), dH) is an even mapping
satisfying

dH

(
n−2Cm−2f(

n∑
j=1

xj)⊕ n−2Cm−1

n∑
i=1

f(xi),

∑
1≤i1<···<im≤n

f(xi1 + · · ·+ xim)
)
≤ θ

n∑
i=1

∥xi∥p

for all x1, . . . , xn ∈ X and m ∈ {2, 3, . . . , n − 1}. Then there ex-
ists a unique n-dimensional quadratic set-valued mapping Q : X →
(CBC(Y ), dH) such that

dH(f(x), Q(x)) ≤ 1

2n−3Cm−2

θ

4− 2p
∥x∥p

for all x ∈ X.

Proof. The result follows theorem 2.2 by setting ϕ(x1, x2, . . . , xn) =
θ
∑n

i=1 ∥xi∥p for all x1, . . . , xn ∈ X.

Remark 2.5. By setting ϕ(x1, x2, . . . , xn) = θ
∑n

i=1 ∥xi∥p for all
x1, . . . , xn ∈ X in the remark 2.3, we obtain the following statement.
Let n ≥ 3 be an integer, p > 2 and θ ≥ 0 be real numbers. Suppose that
f : X → (CBC(Y ), dH) is an even mapping satisfying

dH

(
n−2Cm−2f(

n∑
j=1

xj)⊕ n−2Cm−1

n∑
i=1

f(xi),

∑
1≤i1<···<im≤n

f(xi1 + · · ·+ xim)
)
≤ θ

n∑
i=1

∥xi∥p

for all x1, . . . , xn ∈ X and m ∈ {2, 3, . . . , n − 1}. Then there ex-
ists a unique n-dimensional quadratic set-valued mapping Q : X →
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(CBC(Y ), dH) such that

dH(f(x), Q(x)) ≤ 1

2n−3Cm−2

θ

2p − 4
∥x∥p

for all x ∈ X.

Next we use another method closely related to a fixed point theory to
prove the Hyers-Ulam stability of the generalized quadratic set-valued
functional equation. We first introduce a useful theorem to prove our
results. In [16], the following lemma is due to Margolis and Diaz.

Lemma 2.6. Let (X, d) be a complete generalized metric space and
let J : X → X be a strictly contractive mapping with Lipschitz constant
L < 1. Then for each element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <

∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y.

Generally, the fixed point method is so popular technique to prove
the Hyers-Ulam stability. In the set-valued version, we also use this
useful method to prove the Hyers-Ulam stability.

Theorem 2.7. Let 2 ≤ m ≤ n − 1 be an integer. Suppose that an
even mapping f : X −→ (CBC(Y ), dH) with f(0) = {0} satisfies the
inequality

dH

(
n−2Cm−2f(

n∑
j=1

xj)⊕ n−2Cm−1

n∑
i=1

f(xi),

(2.14)

∑
1≤i1<···<im≤n

f(xi1 + · · ·+ xim)
)
≤ ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ X and there exists a constant L with 0 < L < 1 for
which the function ϕ : Xn → [0,∞) satisfies

ϕ(2x,−2x, 2x, 0, . . . , 0) ≤ 4Lϕ(x,−x, x, 0, . . . , 0)(2.15)
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for all x ∈ X. Then there exists a unique n-dimensional quadratic set-
valued mapping Q : X → (CBC(Y ), dH) such that

dH
(
f(x), Q(x)

)
≤ 1

4(1− L)
ϕ(x,−x, x, 0, . . . , 0)(2.16)

for all x ∈ X.

Proof. Set x1 = x, x2 = −x, x3 = x and x4 = · · · = xn = 0 in (2.14).
Since f is even and the range of f is convex, we have that

dH
(
f(x),

1

4
f(2x)

)
≤ 1

4n−3Cm−2
ϕ(x,−x, x, 0, . . . , 0)(2.17)

for all x ∈ X.
Let S := {g | g : X → CBC(Y ), g(0) = {0}}. We define a generalized

metric on S defined by

d(g1, g2) := inf
{
µ ∈ (0,∞) | dH(g1(x), g2(x))

≤ µϕ(x,−x, x, 0, . . . , 0), x ∈ X
}
,

where, as usual, inf∅ := ∞.
Now, we define the mapping J : (S, d) → (S, d) given by Jg(x) =

1
4g(2x) for all x ∈ X. For g1, g2 ∈ S, let d(g1, g2) < µ. Then

dH
(
g1(x), g2(x)

)
≤ µϕ(x,−x, x, 0, . . . , 0)

for all x ∈ X. By (2.15), we have

dH
(
Jg1(x), Jg2(x)

)
=

1

4
dH(g1(2x), g2(2x))

≤ 1

4
µϕ(2x,−2x, 2x, 0, . . . , 0)

≤ Lµϕ(x,−x, x, 0, . . . , 0)

for all x ∈ X.
Therefore, we have that d(Jg1, Jg2) ≤ Ld(g1, g2) for all g1, g2 ∈ S.

Hence J is a strictly contractive mapping with the Lipschitz constant
L. From (2.17), we can obtain that d(f, Jf) ≤ 1

4 . By theorem 2.6,
there exists a unique fixed point Q : X → (CBC(Y ), dH) of J such that
{Jrf} → 0 as r → ∞. Then we have

Q(x) = lim
r→∞

1

4r
f(2rx)(2.18)

for all x ∈ X. Also, from the fixed point alternative, we get d(f,Q) ≤
1

1−Ld(Jf, f) ≤
1

4(1−L) , which implies the inequality (2.16) holds.
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From (2.14) and (2.18), it follows that

dH

(
n−2Cm−2Q(

∑
n
j=1xj)⊕ n−2Cm−1

n∑
i=1

Q(xi),∑
1≤i1<···<im≤n

Q(xi1 + · · ·+ xim)
)

≤ lim
r→∞

1

4r
ϕ(2rx1, . . . , 2

rxn) = 0

for all x1, . . . , xn ∈ X.
Therefore, Q is a unique n-dimensional quadratic set-valued mapping

as desired.

Remark 2.8. Let 2 ≤ m ≤ n − 1 be an integer. Suppose that an
even mapping f : X −→ (CBC(Y ), dH) with f(0) = {0} satisfies the
inequality

dH

(
n−2Cm−2f(

n∑
j=1

xj)⊕ n−2Cm−1

n∑
i=1

f(xi),

∑
1≤i1<···<im≤n

f(xi1 + · · ·+ xim)
)
≤ ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ X and there exists a constant L with 0 < L < 1 for
which the function ϕ : Xn → [0,∞) satisfies

ϕ(
x

2
,−x

2
,
x

2
, 0, . . . , 0) ≤ L

4
ϕ(x,−x, x, 0, . . . , 0)

for all x ∈ X. Then there exists a unique n-dimensional quadratic set-
valued mapping Q : X → (CBC(Y ), dH) such that

dH
(
f(x), Q(x)

)
≤ L

4− 4L
ϕ(x,−x, x, 0, . . . , 0)

for all x ∈ X.

Corollary 2.9. Let 0 < p < 2 and θ ≥ 0 be real number. Suppose
that f : X −→ (CBC(Y ), dH) is an even mapping satisfying

dH

(
n−2Cm−2f(

n∑
j=1

xj)⊕ n−2Cm−1

n∑
i=1

f(xi),

∑
1≤i1<···<im≤n

f(xi1 + · · ·+ xim)
)
≤ θ

n∑
i=1

∥xi∥p
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for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional qua-
dratic set-valued mapping Q : X → (CBC(Y ), dH) such that

dH
(
f(x), Q(x)

)
≤ 3θ

22 − 2p
∥x∥p

for all x ∈ X.

Proof. The proof follows from theorem 2.7 by setting ϕ(x1, x2, . . . , xn) =
θ
∑n

i=1 ∥xi∥p for every x1, . . . , xn ∈ X. Then we can choose L = 2p−2

and we get the desired results.

Remark 2.10. In remark 2.8, we set ϕ(x1, x2, . . . , xn) = θ
∑n

i=1 ∥xi∥p
for every x1, . . . , xn ∈ X. Then we obtain the following statement. Let
p > 2 and θ ≥ 0 be real number. Suppose that f : X −→ (CBC(Y ), dH)
is an even mapping satisfying

dH

(
n−2Cm−2f(

n∑
j=1

xj)⊕ n−2Cm−1

n∑
i=1

f(xi),

∑
1≤i1<···<im≤n

f(xi1 + · · ·+ xim)
)
≤ θ

n∑
i=1

∥xi∥p

for all x1, . . . , xn ∈ X. Then there exists a unique n-dimensional qua-
dratic set-valued mapping Q : X → (CBC(Y ), dH) such that

dH
(
f(x), Q(x)

)
≤ θ

2p − 22
∥x∥p

for all x ∈ X.
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