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CHOOSING REGULARIZATION PARAMETER BY

GLOBAL L-CURVE CRITERION

SeYoung Oh* and SunJoo Kwon**

Abstract. As an efficient way to determine the regularization pa-
rameter in the discrete ill-posed problems with multiple right-hand
sides, we suggest global L-curve criterion as an extension of L-curve
technique for image restoration problems with single right-hand
side.

1. Introduction

Let H ∈ RN×N be an imaging system and B ∈ RN×s (N � s)
be a collection of the column stacking of each small blocks obtained
by partitioning the blurred and noisy images. The image deblurring
in reconstruction problem is stated by the following large-scale inverse
problems with multiple right-hand sides

HX = B.

The multiple right-hand sides B is contaminated by an error E which
may stem from either discretization or measurement inaccuracies. Let
B denote the unavailable error-free images of the object B,

B = B + E .

Typically H is a large full rank matrix, having singular values which
accumulate at the origin and gradually decay to zero, so it is difficult to
determine its numerical rank. This ill-posed nature of the problem may
give rise to significant errors in computing approximations of the true
image solution.
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Because of severely ill-conditioning of the matrix H and the pres-
ence of errors, the Tikhonov regularization method is applied to ap-
proximate the true image solution in deblurring problems. In general,
space-invariant imaging systems with multiple right-hand sides are often
modeled as equivalent minimization problem shown in the following:

(1.1) min
X

(‖HX −B‖2F + λ2 ‖X‖2F )

([10, 11]). The effectiveness of F -norm based Tikhonov regularization
strongly depends on the choice of the regularization parameter λ balanc-
ing the tradeoff between the smoothness of the solution and the fidelity
to the observed data where an appropriate value of this parameter λ is
not known a priori.

By applying the preconditioned global conjugate gradient linear least
squares (PGl-CGLS) method to image deblurring problems (1.1), it ev-
idently shows that there are great improvements in execution times[11].
The global generalized cross validation(GCV) technique is suggested to
determine the better regularization parameter λ in PGl-CGLS method[12].
To obtain more accurate approximation of the true images in deblurring
problems, [1] adapts the weighted global GCV function to determine the
Tikhonov parameter λ.

For 2-norm based image deblurring problems, i.e. the number of
column stacks s = 1 in (1.1), the determination of the regularization
parameter λ is from Morozov’s discrepancy principle, L-curve criterion,
generalized cross validation, and new variants of these methods are sug-
gested in [3, 5, 6, 14].

The L-curve, the plot of the norm of the regularized solution versus
the corresponding residual norm for each set of regularization parameter
values, was introduced by Lawson and popularized by Hansen [3, 4, 9].
There is an analysis for the shape of L-curve and theoretical justification
in choosing the regularization parameter [2, 13]. The underlying idea is
that a good method for choosing the regularization parameter for dis-
crete ill-posed problem must incorporate information about the solution
size along with the residual size. It becomes indeed quite natural to seek
a fair balance while keeping both of these values small. The L-curve has
a distinct L-shaped corner located exactly where the solution xλ changes
in nature from being dominated by regularization errors to being domi-
nated by the errors in the right-hand side. Hence the corner of L-curve
corresponds to a good balance between minimization of the sizes, and
the corresponding regularization parameter λ is an ideal solution.
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This paper will suggest global L-curve criterion as selection of reg-
ularization parameter in image deblurring problems (1.1) based on the
classical L-curved method.

The sequel is organized as follows: the brief description of the L-curve
criterion for the regularization problem with single right-hand side is
summarized in Section 2. Section 3 describes the global L-curve method
implemented for the image deblurring problems with multiple right-hand
sides. Results of numerical experiments including the analytical com-
ments are given in Section 4 and 5.

2. Review of the L-curve

The L-curve was introduced by Lawson and popularized by Hansen [9,
3]. The L-curve method was developed for the selection of regularization
parameters in the solution of discrete systems obtained from ill-posed
problems with single right-hand side,

(2.1) min
x

(‖Hx− b‖22 + λ2 ‖x‖22),

which can be obtained by considering s = 1 in (1.1). The unique so-
lution of (2.1) is xλ = (HTH + λ2I)−1HT b. Using the singular value

decomposition of H =
∑N

i=1 uiσiv
T
i , the regularized solution xλ is given

by

xλ =
N∑
i=1

σ2i
σ2i + λ2

uTi b

σi
vi.

Setting αi = uTi b, the norm of the solution xλ and the residual norm for
xλ are given by

ξ = ‖xλ‖22 =
N∑
i=1

σ2i α
2
i

(σ2i + λ2)2

and

ρ = ‖b−Hxλ‖22 =
N∑
i=1

λ4α2
i

(σ2i + λ2)2
.

As functions of regularization parameter λ, ‖xλ‖2 and ‖b−Hxλ‖2
are decreasing and increasing respectively since dξ

dλ = −4λ
∑N

i=1
σ2
i α

2
i

(σ2
i+λ

2)3

and dρ
dλ = 4λ3

∑N
i=1

σ2
i α

2
i

(σ2
i+λ

2)3
. Thus there exists a function λ(ρ) inverse to

ρ. Since dξ
dρ = − 1

λ2
, the solution norm ‖xλ‖2 is monotonically decreasing
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function of the residual norm ‖b−Hxλ‖2. Also, ξ(ρ) is strictly convex

from the fact that d2ξ
dρ2

= 2
λ3

dλ
dρ > 0.

If λ becomes too large then ‖b−Hxλ‖2 also becomes large while
‖xλ‖2 becomes small. Thus the problem we are solving has only a little
connection with the original equation. Hence the parameter λ controls
how much the weight is given to minimization of ‖xλ‖2 in relation to
the minimization of the residual ‖b−Hxλ‖2. To find a good balance
between these two terms, via suitable value of λ is expected so that the
regularized solution be a good approximation of the true solution.

A convenient way to display information about the regularized solu-
tion xλ to (2.1), as a function of the regularization parameter λ, is to plot
the norm ‖xλ‖2 of the solution versus the residual norm ‖b−Hxλ‖2 for
each set of regularization parameter values. L-curve is the continuous
curve consisting of all points (‖b−Hxλ‖2 , ‖xλ‖2) for λ ∈ [0,∞).

A good regularization parameter λ is one that corresponds to a reg-
ularization solution near the ”corner” of the L-curve since in this region
there is a good compromise between achieving a small residual norm
‖b−Hxλ‖2 while keeping the solution norm ‖x‖2 reasonably small.

Intuitively, the best regularization parameter should lie on the corner
of the L-curve, since for values higher than the best regularization pa-
rameter, the residuals increase without reducing the norm of the solution
much. On the other hand, for values smaller than the best regulariza-
tion parameter, the norm of the solution increases rapidly without much
decrease in residual. In practice, only a few points on the L-curve are
computed and the corner is located by estimating the point of maximum
curvature[4].

3. Global L-curve criterion for regularization parameters

An additional analysis of the L-curve criterion illustrated in the last
section for F -norm based on linear least squares problems (1.1) with
multiple right-hand sides is stated.

The regularization solution of (1.1) is expressed as Xλ = (HTH +
λ2I)−1HTB. To take account of the singular value decomposition of
H = UΣV T , the regularization solution can be transformed into

Xλ =
( ∑N

i=1
σi

σ2
i+λ

2 [UTi B1]Vi
∑N
i=1

σi

σ2
i+λ

2 [UTi B2]Vi · · ·
∑N
i=1

σi

σ2
i+λ

2 [UTi Bs]Vi
)
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where U =
[
U1 U2 . . . UN

]
and V =

[
V1 V2 . . . VN

]
. The

residual matrix also comes to be

HXλ −B = U(Σ(Σ2 + λ2I)−1Σ− I)UTB.

Taking F -norm, we then acquire

(3.1) ξ̃ = ‖Xλ‖2F =
s∑
j=1

N∑
i=1

(
σ2i

σ2i + λ2
[UTi Bj ]

σi

)2

and

ρ̃ = ‖HXλ −B‖2F =

s∑
j=1

N∑
i=1

(
λ2

σ2i + λ2
[UTi Bj ]

)2

.(3.2)

Theorem 3.1. For the Tikhonov regularized solution Xλ in (1.1),
‖Xλ‖F is a monotonically decreasing convex function of ‖HXλ −B‖F ,
and

0 ≤ ‖HXλ −B‖F ≤ ‖B‖F , 0 ≤ ‖Xλ‖F ≤ ‖XLS‖F .

Proof. From the formula (3.1)

(3.3) ξ̃ ′ =
dξ̃

dλ
=

s∑
j=1

N∑
i=1

− 4

λ

(
σ2i

σ2i + λ2

)2
λ2

σ2i + λ2

(
UTi Bj
σi

)2

.

Since ξ̃ ′ < 0 for all λ, ξ̃ is decreasing. From the formula (3.2)

ρ̃ ′ =
dρ̃

dλ
=

s∑
j=1

N∑
i=1

4

λ

(
λ2

σ2i + λ2

)2
σ2i

σ2i + λ2
(
UTi Bj

)2
.(3.4)

Since ρ̃ ′ > 0 for all λ, ρ̃ is increasing. Thus there exists a function λ(ρ̃)
inverse to ρ̃. From (3.3) and (3.4) we obtain

dξ̃

dρ̃
= − 1

λ2
< 0.

Therefore the solution norm ‖Xλ‖ is monotonically decreasing function
of the residual norm ‖B −HXλ‖. Since λ(ρ̃) is increasing,

d2ξ̃

dρ̃2
=

2

λ3
dλ

dρ̃
> 0.

This means ξ̃(ρ̃) is strictly convex.
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Moreover, a point (ρ̂, ξ̂) on the curve (‖HXλ −B‖F , ‖Xλ‖F ) is a
solution to the following two inequality-constrained least squares prob-
lems:

(3.5) ρ̂ = min
X
‖HX −B‖F subject to ‖X‖F ≤ ξ̂, 0 ≤ ξ̂ ≤ ‖XLS‖F ,

(3.6) ξ̂ = min
X
‖X‖F subject to ‖HX −B‖F ≤ ρ̂, 0 ≤ ρ̂ ≤ ‖B‖F .

Let Xλ = (HTH + λ2I)−1HTB be the regularized version of the
exact solution X = H†B for (1.1), and XEλ = (HTH + λ2I)−1HTE
be the solution matrix which is achieved by implementing Tikhonov
regularization to the pure noise component E of the multiple right-hand
sides. Then the Tikhonov solution for (1.1) can be rewritten as Xλ =
Xλ +XEλ .

In order to analyze the L-curve with respect to the exact data B,
assume that the exact SVD coefficients |UTi Bj | go gradually to zero at
faster speed than the σi for j = 1, 2, ..., s. This assumption confirms
that the least squares solution X to the noise-free problem, thus, does

not have a large norm since the exact solution coefficients
∥∥V T

i X
∥∥2
2

=∑s
j=1(U

T
i Bj/σi)

2 which also go to zero. It also gives a physically mean-
ingful solution to the underlying inverse problem. The solution can be
estimated by a regularized solution on the condition that an appropriate
regularization parameter can be found. See the details in [2].

Assume that the regularization parameter λ is located somewhere
between σ1 and σN , such that we have both some small filter factors,
σ2
i

σ2
i+λ

2 , and some filter factors close to 1. Let k indicate the number of

filter factors close to 1. Then, it is clear that k and λ are related by the
expression λ ' σk. Since the coefficients

∥∥V T
i X

∥∥
2

go to zero such that
the last N − k terms influence the sum at very minimal,

(3.7)
∥∥Xλ

∥∥2
F
'

k∑
i=1

∥∥V T
i X

∥∥2
2
'

N∑
i=1

∥∥V T
i X

∥∥2
2

=
∥∥X∥∥2

F
.

The above expression holds if λ is not too large. As λ→∞ and k → 0,
Xλ → O and thus

∥∥Xλ

∥∥
F
→ 0. As λ→ 0, Xλ → X and thus

∥∥Xλ

∥∥
F
→∥∥X∥∥

F
. Then, the residual for Xλ:

∥∥HXλ −B
∥∥2
F
'

s∑
j=1

N∑
i=k+1

(UTi Bj)
2,
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shows that the residual norm increases at a stable speed 0 to
∥∥B∥∥

F
as

λ increases steadily. Therefore, the L-curve for the noise-free problem is
an overall flat curve at

∥∥Xλ

∥∥
F
'
∥∥X∥∥

F
, with exceptions to large values

of the residual norm
∥∥HXλ −B

∥∥
F

where the curve gets closer to the
abscissa axis.

For considering an L-curve corresponding to multiple right-hand side
constructed with pure noise E , assume that the noise E is that the co-
variance matrix for j-th column Ej is a scalar times the identity matrix.
Then the expected values of the SVD coefficients uTi Ej become indepen-
dent of i,

E((UTi Ej)2) = ε2, i = 1, ..., N, j = 1, ...s.

On the other hand, by considering the norm of XEλ we get∥∥XEλ∥∥2F ' s∑
j=1

N∑
i=1

(
σiε

σ2i + λ2

)2

'
s∑
j=1

(
k∑
i=1

(
ε

σi
)2 +

N∑
i=k+1

(
σiε

λ2
)2

)

=

s∑
j=1

ε2

(
k∑
i=1

σ−2i + λ−4
N∑

i=k+1

σ2i

)
.

Since
∑k

i=1 σ
−2
i is dominated by σ−2k ' λ−2 while

∑N
i=k+1 σ

2
i is domi-

nated by σ2k+1 ' λ2, the following approximate expression can be ob-
tained: ∥∥XEλ∥∥F ' cλε√s/λ,
where cλ is a quantity that changes at a slow speed with respect to
λ. Thus, the norm of XEλ increases monotonically from 0 as long as λ

decreases until it reaches the value
∥∥H†E∥∥

F
' ε

∥∥H†∥∥
F

for λ = 0.
From the norm of the corresponding residual∥∥HXEλ − E∥∥2F ' s∑

j=1

N∑
i=k+1

ε2 = (N − k)sε2,

assure that
∥∥HXEλ − E∥∥F '√(N − k)sε is slowly changing function of λ

located in the range from 0 to ‖E‖ =
√
Nsε. The L-curve regards to E is

an overall very steep curve located slightly left of
∥∥HXEλ − E∥∥F ' ‖E‖F ,

with exception of some small values of λ approaching the ordinate axis.
Lastly, lets consider the L-curve with respect to the noisy right-hand

side B = B + E . As shown, it is either the noise-free components UTi B
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or the pure-noise components UTi E that dominate depending on the
value of λ. Hence, the resulting L-curve consists of one leg from the
unperturbed L-curve and one leg from the pure-noise L-curve. Note
that for small values of λ it is the pure-noise L-curve that controls since
Xλ is controlled by XEλ , and for large values of λ where Xλ is dominated

by Xλ it is the unperturbed L-curve that dominates. Somewhere in
between the two curves, there is a range of λ-values that correspond to
a transition between the two dominating L-curves.

The L-curve in the logarithmic scale highlights the difference between
the L-curves for an exact right-hand side B and for pure noise E , and
it further highlights the two opposing parts of the L-curve for multiple
noisy right-hand sides B = B + E .

If the function ρ̃ and ξ̃ are defined by some computable formula, and if
the L-curve is twice continuously differentiable, then it is straightforward
to compute the curvature κ̃λ of the L-curve by means of the formula

κ̃λ =
ρ̃ ′ξ̃ ′′ − ρ̃ ′′ξ̃ ′[

(ρ̃ ′)2 + (ξ̃ ′)2
]3/2(3.8)

since ρ̃ ′ = −λ2ξ̃ ′, ρ̃ ′′ = dρ̃ ′

dλ = d
dλ(−λ2ξ̃ ′) = −2λξ̃ ′ − λ2ξ̃ ′′. The

curvature κ̃λ in (3.8) becomes

(3.9) κ̃λ =
2λ(ξ̃ ′)2[

(ρ̃ ′)2 + (ξ̃ ′)2
]3/2 .

Therefore the curvature κ̃λ > 0 for all λ indicating the curve (ρ̃, ξ̃)
is convex. Any one dimensional optimization routine can be used in
locating the value of λ with respect to maximum curvature.

4. Numerical experiments

We investigated numerical results to illustrate the effectiveness of the
regularization parameters chosen from the maximization of the curvature
of the global L-curve. The image deblurring problems are solved by
algorithm combined with the global L-curve technique in preconditioned
Gl-CGLS method which is summarized below:

Algorithm 1. Preconditioned Gl-CGLS with the global L-curve criterion

1. Determine the maximizer λgL for the constrained maximization problem:

max
λ

κ̂λ

subject to σN ≤ λ ≤ σ1
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2. Solve the preconditioned problem Ω−T (HTH + λ2
gLI)X = Ω−THTB:

i. R0 =

(
B
O

)
−
(

H
λgLI

)
X0, P0 = S0 = Ω−T

(
H
λgLI

)T
R0, γ0 = (S0, S0)F .

ii. For k = 0, 1, 2, ... until ‖Rk‖F / ‖R0‖F ≤ tol

(i) Tk = Ω−1Pk Qk =

(
H
λgLI

)
Tk, αk = γk/(Qk, Qk)F ,

(ii) Xk+1 = Xk + αkTk, Rk+1 = Rk − αkQk,

(iii) Sk+1 = Ω−T
(

H
λgLI

)T
Rk+1, γk+1 = (Sk+1, Sk+1)F ,

(iv) βk = γk+1/γk, Pk+1 = Sk+1 + βkPk.
Enddo

In order to implement the above algorithm a few programs needed
for our test are developed by improving certain routines from Hansen’s
Regularization Tools[7]. We ran the algorithm with Matlab for four test
images named as x, grain, text1 and text2 and calculated the relative F -
norm difference between the regularized solution and the exact solutions.
The exact, noise-free solutions are known in these examples.

The first image has a size of 32-by-32 and others has a size of 256-
by-256. These are degraded by Gaussian blur and Gaussian noises are
added. Gaussian blurring parameter is set to 2 for x, text1 and 3 for
grain, text2. As the 256-by-256 images are divided into the collection
of smaller blocks using 32 × 32 sub-blocks, we have image deblurring
problems with 64 multiple right-hand sides. Each blocks of test images
include 0.5%, 0.9%, and 1% in noise level. All images are applied with
reflective boundary condition and so the preconditioner Ω in Algorithm
1 is set to Ω = CT (|ΛH |2 + λ2gLI)1/2C where H = CTΛHC and C is two
dimensional discrete cosine transformation matrix.

In order to get the local maximizer λgL of curvature function κλ of
global L-curve, we computed the minimum negative of the curvature κλ
in (3.9) by using the matlab function fminbnd to find a minimum of
single-variable function on fixed interval.

For the purpose of analysis of comparison results, we computed the
relative accuracy of approximated solution Xk, ‖X∗ −Xk‖F /‖X∗‖F ,
one of the measures for the approximation of the true image X∗, and
show them along the global L-curve criterion and PSNR in Table 1.
The approximated solutions were obtained by preconditioned Gl-CGLS
method with regularization parameters chosen from the global L-curve
criterion. The corner of the global L-curve for the Tikhonov were de-
termined using a new function lcorner g, a modification of Hansen’s
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Image Noise level(%) λgL Relative accuracy / PSNR

x 0.5 0.1969 4.71e-001 /59.54
grain 0.1758 2.70e-001 /58.83
text1 0.1087 1.67e-001 /52.51
text2 0.2089 7.33e-001 /51.08

x 0.9 0.1970 4.63e-001 /59.70
grain 0.1759 2.56e-001 /59.30
text1 0.1089 1.65e-001 /52.61
text2 0.2089 7.08e-001 /51.38

x 1 0.1970 4.57e-001 /59.81
grain 0.1759 2.41e-001 /59.83
text1 0.1090 1.64e-001 /52.67
text2 0.2089 6.87e-001 /51.65

Table 1
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Figure 1. Global L-curve for grain image: A log-log
plot of the solution norm ‖Xλ‖F versus the residual norm
‖Rλ‖F with λ as the parameter.

lcorner function. The stopping rule of the preconditioned Gl-CGLS it-

eration is the current residual Rk that satisfies the criteria
‖Rk‖F
‖R0‖F

≤ tol,
where tol is set to 10−2.

For grain image with 0.5% noise level, regularization parameter λgL
from global L-curve criterion can be chosen 0.1758 which lies near the
global L-curve’s corner. The Tikhonov global L-curve is shown in Fig-
ure 1. With λgL ≈ 0.1758, the approximated solution got the relative
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(a) Blurred & noisy (b) Restored by GL−CGLS

Figure 2. (a) Blurred and noisy image (b) Restored im-
age using global L-curve criterion.

accuracy of 0.270413 and PSNR of 58.83. Corresponding blurred and
noisy image and the restored image are shown in Figure 2.

5. Conclusions

To obtain more accurate approximation of the true images in de-
blurring problems, we have proposed an efficient way to determine the
regularization parameter by applying the global L-curve criterion to the
inverse problem with multiple right-hand sides. We also have analyzed
the experimental results for four test images.

In the future, our next study is to compare our study with both global
L-curve criterion and global GCV method to obtain the improved true
images in deblurring problems.

References

[1] S. Chung, S. J. Kwon, and S. Y. Oh, A weighted global generalized cross vali-
dation for Gl-CGLS regularization, J. of Chungcheong Math. Soc. 29 (2016),
59-71.

[2] P. C. Hansen, The L-curve and its use in the numerical treatment of inverse
problems.

[3] P. C. Hansen, Analysis of Discrete Ill-Posed Problems by means of the L-Curve,
SIAM Review, 34 (1992), 561-580.

[4] P. C. Hansen and D. P. O’Leary, The use of L-curve in the regularization of
discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993), 1487-1503.

[5] P. C. Hansen, Rank-deficient and discrete ill-posed problems, SIAM, 1998.
[6] P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
[7] P. C. Hansen, Regularization tools 4.0 for Matlab 7.3, Numerical Algorithms

46 (2007), no. 2, 189-194.



128 SeYoung Oh and SunJoo Kwon

[8] M. K. Ng, R. H. Chan, and W. C. Tang, A fast algorithm for deblurring models
with neumann boundary conditions, SIAM J. Sci. Comput. 21 (1999), no. 3,
851-866.

[9] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, SIAM, 1995.
[10] S. Y. Oh, S. J. Kwon, and J. H. Yun, A method for structured linear total

least norm on blind deconvolution problem, Journal of Applied Mathematics
and Computing 22 (2006), 373-385.

[11] S. Y. Oh, S. J. Kwon, and J. H. Yun, Image restoration by the global conjugate
gradient least squares method, J. Appl. Math. & Informatics 31 (2013), 353-363.

[12] S. Y. Oh and S. J. Kwon, Preconditioned Gl-CGLS method using regular-
ization parameters chosen from the global generalized cross validation, J. of
Chungcheong Math. Soc. 27 (2014), 675-688.

[13] T. Reginska, A regularization parameter in discrete ill-posed problems, SIAM
J. Sci. Comput. 17 (1999), no. 3, 740-749.

[14] M. Rezghi and S. M. Hosseini, A new variant of L-curve for Tikhonov reg-
ularization, Journal of Computational and Applied Mathematics 231 (2009)
914-924.

*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail : soh@cnu.ac.kr

**
Innovation Center of Engineering Education
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail : sjkw@cnu.ac.kr


