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NOTE ON SPECTRUM OF LINEAR DIFFERENTIAL

OPERATORS WITH PERIODIC COEFFICIENTS

Soyeun Jung *

Abstract. In this paper, by rigorous calculations, we consider
L2(R)-spectrum of linear differential operators with periodic coeffi-
cients. These operators are usually seen in linearization of nonlinear
partial differential equations about spatially periodic traveling wave
solutions. Here, by using the solution operator obtained from Flo-
quet theory, we prove rigorously that L2(R)-spectrum of the linear
operator is determined by the eigenvalues of Floquet matrix.

1. Introduction

In this note, we characterize the spectrum of the following n-th order
linear differential operator with periodic coefficients
(1.1)
Lu := (D∂n

x +An−1(x)∂
n−1
x +An−2(x)∂

n−2
x · · ·+A1(x)∂x +A0(x))u,

where u : R −→ Cm, m ≥ 1, D ∈ Rm×m is a constant nonsingular
matrix, and the coefficients matrices Aj(x) ∈ Rm×m are continuous π-
periodic, that is, Aj(x + π) = Aj(x) for all x ∈ R. Here, we consider
the operator L on L2(R) with densely defined domain Hn(R). This
differential operator typically arises from the linearization of nonlinear
partial differential equations about spatially periodic solutions. As an
example, the Swift-Hohenberg equation

(1.2) ut = −(1 + ∂2
x)

2u+ ε2u− u3, (t ≥ 0, x ∈ R)

has a family of stationary periodic solutions ū(x) for sufficiently small
ε2 > 0 (see [8] for detailed form of solutions). If we linearize (1.2)
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about ū we obtain a 4-th order linear differential operator with periodic
coefficients L := −(1 + ∂2

x)
2 + ε2 − 3ū2(x).

Characterization of the spectrum of (1.1) plays an important role in
study of stability of periodic solutions. Nonlinear stability of spectrally
stable periodic traveling waves have been widely studied in [1, 2, 3, 4,
5, 6] for the system of reaction diffusion equations and of conservation
laws by using the fact that L2(R)-spectrum of the linear operator (1.1)
is entirely essential spectrum. The purpose of this note is to provide a
rigorous proof of the fact for general n,m ≥ 1.

The spectrum of exponentially asymptotic linear operators of the
form (1.1) without periodicity of coefficients have been characterized
rigorously in [7] for m = 1. Here we modify their prove for the linear
operator with periodic coefficients.

We begin by writing definitions of resolvent set and spectrum of L,
denoted by ρ(L) and σ(L).

Definition 1.1. We say that λ ∈ C lies in the resolvent set of L,
that is, λ ∈ ρ(L) if L− λI has a bounded inverse. In other words, there
is a constant C > 0 such that for any f ∈ L2(R), there exists u ∈ Hn(R)
which satisfies (L − λI)u = f and ∥u∥Hn(R) ≤ C∥f∥L2(R). We define
spectrum as σ(L) = C \ ρ(L).

1.1. The first order ODE system

In order to characterize L2(R)-spectrum of L, we need to consider an
eigenvalue problem

(1.3) λu = Lu,

which can be written as the following first order ODE system

(1.4) U ′ = A(x, λ)U,
where

U =
(
u u′ · · · u(n−2) Du(n−1)

)t
,

A(x, λ) =


0m Im 0m · · · 0m
0m 0m Im · · · 0m
...

...
...

...
...

0m 0m 0m · · · Im
λIm −A0(x) −A1(x) −A2(x) · · · −An−1(x)

 .

(1.5)

Here, the superscript “t” means “transpose” of a matrix. By recalling
u ∈ Cm, we notice that U ∈ Cmn, 0m ∈ Rm×m, and A(x, λ) ∈ Cmn×mn.
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Since Aj(x) is π-periodic, A(x + π, λ) = A(x, λ). We now state the
Floquet theory for (1.4) which is a key theory for characterizing the
spectrum of linear differential operator with periodic coefficients. We
denote the fundamental matrix solution of (1.4) by Ψ(x, λ). See [7] for
the proof.

Theorem 1.2 (Floquet’s Theorem, [7]). If A(x, λ) ∈ Cmn×mn is con-
tinuous π-periodic, then the fundamental matrix solution Ψ(x, λ) for the
system (1.4) has the form

(1.6) Ψ(x, λ) = P (x, λ)eR(λ)x,

where R(λ) ∈ Cmn×mn is a constant matrix and P (x, λ) ∈ Cmn×mn is
continuous π-periodic in x.

Without loss of generality, one can assume Ψ(x, λ) is the principle fun-
damental matrix solution, that is, Ψ(0, λ) = P (0, λ) = Imn. Throughout
this paper, we denote by Es, Eu and Ec the stable eigenspace, unsta-
ble eigenspace and center eigenspace of the constant matrix R(λ), re-
spectively. Since Cmn = Es ⊕ Eu ⊕ Ec, each vector V ∈ Cmn can be
decomposed into V = Vs + Vu + Vc for some Vs,u,c ∈ Es,u,c. We now set

Ps,u,c : Cn −→ Es,u,c

as the eigen-projection onto Es,u,c, that is, Ps,u,cV = Vs,u,c. Here, we
use the Euclidean norm for vectors on Cn and for matrices we use the
operator norm induced by the Euclidean norm.

1.2. Main theorem

We now state the main theorem of this paper.

Theorem 1.3. λ ∈ σL2(R)(L) if and only if R(λ) is not hyperbolic,
that is, there exists a pure imaginary eigenvalue of R(λ).

Remark 1.4. Here, the matrix R(λ) is referred to as the Floquet
matrix. By the above theorem, one can say that λ ∈ σL2(R)(L) if and
only if there is a solution U of the ODE system (1.4) has the form

U(x) = eiξxW (iξ, x) for some ξ ∈ R,

where iξ is an eigenvalue of R(λ) and W (iξ, x) ∈ Cmn is π-periodic in

x. Since U = (u, u′, · · · , u(n−2), Du(n−1))t, the eigenfunction u of the
eigenvalue problem (1.3) corresponding to λ ∈ σL2(R)(L) has the form

u(x) = eiξxw(iξ, x),
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where w is the first m component of W . Since w is nonzero periodic
in x, u /∈ L2(R); so λ is not a point spectrum. Thus we conclude that
L2(R)-spectrum of L is entirely essential.

In order to prove Theorem 1.3, we first prove the following lemma,
showing an exponential dichotomy of the system (1.4) when R(λ) has
no pure imaginary eigenvalue.

2. Exponential dichotomy

Lemma 2.1. For fixed λ ∈ C, assume R(λ) is hyperbolic, that is, Ec

contains only zero vector. Then the system (1.4) has an exponential
dichotomy, that is, for any vector V ∈ Cmn, there are constants M > 0
and k > 0 such that

|Ψ(x, λ)PsV | ≤ Me−kx|V |, x > 0,

|Ψ(x, λ)PuV | ≤ Mekx|V |, x < 0.

Thus, we say that Ψ(x, λ)Ps and Ψ(x, λ)Pu decay exponentially as x →
∞ and x → −∞, respectively.

Proof. Recalling R(λ) is a constant matrix, we denote the maximum
real part of stable eigenvalues and the minimum real part of unstable
eigenvalues of R(λ) by αs

M and αu
m, respectively. Then we have αs

M <
0 < αu

m.
By using a Jordan canonical form, it is trivial that each entry of eR(λ)x

is composed of linear combinations of q(x)eαx cosβx and q(x)eαx sinβx,
where α and β are real and complex parts of eigenvalues of R(λ) and
q(x) is a polynomial with deg(q(x)) ≤ mn− 1. We notice that if α < 0
then α < αs

M < 0 and if 0 < α then 0 < αu
m < α.

Since eR(λ)xEs ⊂ Es, for any V ∈ Cmn every entry of eR(λ)xPsV
is composed of linear combinations of q(x)eαx cosβx and q(x)eαx sinβx
with α < 0; so we conclude that for all ε > 0, there is M = M(ε) > 0
such that

|P (x, λ)eR(λ)xPsV | ≤ Me(α
s
M+ε)x|V |, for x > 0.

Similarly, since eR(λ)xEu ⊂ Eu, we have

|P (x, λ)eR(λ)xPuV | ≤ Me(α
u
m+ε)x|V |, for x < 0.

Here, we used the fact that P is a continuous periodic function on R
and ε controls the polynomials q(x) because for each ε > 0 and n ∈ N,

xn ≤ n!

εn
eεx for all x ≥ 0. If R(λ) is semisimple, then q(x) ≡ 1; so in
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this case we take ε = 0 and hence k = min{|αs
M |, αu

m}. If R(λ) is not
semisimple, we take ε > 0 such that αs

M + ε < 0; hence we complete the
proof with k = min{|αs

M + ε|, αu
m + ε}.

We are ready to prove Theorem 1.3.

3. Proof of the main theorem

Proof of Theorem 1.3. For fixed λ ∈ C, we first assume R(λ) is hy-
perbolic, that is, there is no pure imaginary eigenvalue of R(λ) so that
Es ⊕ Eu = Cmn. In order to prove that λ lies in resolvent set of L,
for any fixed f ∈ L2(R) there exists u ∈ Hn(R) satisfying the following
nonhomogeneous problem:

(3.1) (L− λ)u = f.

We first rewrite (3.1) as the following nonhomogeneous ODE system

(3.2) U ′ = A(x, λ)U + F,

where U and A are introduced in (1.5) and F = (0, 0, · · · , 0, f)t ∈ Rmn.
Since R(λ) is hyperbolic, Ps + Pu = Imn; so by introducing the Green’s
function,

(3.3) G(z) =

 −Ψ(z, λ)Pu(λ), z < 0;

Ψ(z, λ)Ps(λ), z > 0,

we can solve (3.2) as

U(x) =

∫ ∞

−∞
G(x− y)F (y)dy

=

∫ x

−∞
Ψ(x− y, λ)PsF (y)dy −

∫ ∞

x
Ψ(x− y, λ)PuF (y)dy.

(3.4)

Indeed, since Ψ′ = AΨ and Ψ(0, λ) = Imn, by differentiating (3.4) we
have

U ′(x) = A
∫ x

−∞
Ψ(x− y)PsF (y)dy

− A
∫ ∞

x
Ψ(x− y, λ)PuF (y)dy + (Ps + Pu)F (y)

= AU(x) + F (y).
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Here, we used Ps+Pu = Imn because R(λ) is hyperbolic. We now apply
Young’s inequality to (3.4), then we obtain

∥U∥L2(R) = ∥G ∗ F∥L2(R) ≤ ∥G∥L1(R)∥F∥L2(R).

We proved that the system (1.4) has an exponential dichotomy in Lemma
2.1, that is, G decays exponentially as x → ±∞; so ∥G∥L1(R) is definitely
bounded and hence

∥U∥L2(R) ≤ C∥F∥L2(R).

Noting that U = (u, ∂xu, · · · , ∂n−2
x u,D∂n−1

x u)t is continuous and D is
nonsingular, we conclude that

∥u∥Hn(R) ≤ C∥f∥L2(R);

which means λ lies in the resolvent set.

We now prove the opposite direction by assuming R(λ) is not hyper-
bolic which means there is an eigenvalue iξ of R(λ) for some ξ ∈ R. As
a consequence of Floquet theory, there is a solution to the system (1.4)
of the form

U(x, λ) = eiξxp(x, ξ, λ)

where p(x, ξ, λ) ∈ Cmn is a π-periodic function in x. If p1 ∈ Cm denotes
the first m component of p, by recalling u ∈ Cm is the first m component
of U , we know that u(x) = eiξxp1(x, ξ, λ) solves (L − λ)u = 0 and
∥u∥L2(R) = ∥p1∥L2(R) = ∞ because p1 is a nonzero periodic function.

For each k ∈ N, we now define uk(x) ∈ Hn(R) with ∥uk∥Hn(R) = 1 ;

uk(x) = Ckχku(x) = Ckχke
iξxp1(x, ξ, λ),

where χk is a smooth cut off function, namely, χk(x) = 1 for |x| ≤ k and

χk(x) = 0 for |x| ≥ k+1 such that |∂j
xχ(x)| is uniformly bounded for all

j = 0, 1, · · · , n, and Ck is a nonzero constant to make ∥uk∥Hn(R) = 1, i.e.,

Ck = 1
∥χkp1∥Hn(R)

. We then notice that lim
k→∞

Ck = 0 because lim
k→∞

χk(x) ≡
1 and lim

k→∞
∥χkp1∥Hn(R) = ∞; which implies that lim

k→∞
∥uk∥Wn,∞ = 0.

In order to argue by contradiction we assume λ lies in the resolvent set
of L. Then since uk(x) ∈ Hn(R), there is a constant C > 0, independent
of k, such that

1 = ∥uk(x)∥Hn(R) ≤ C∥(L− λ)uk∥L2(R) for all k ∈ N.

However, we know that

∥(L− λ)uk∥L2(R) = ∥(L− λ)uk∥L2([−k−1,−k]∪[k,k+1]) ≤ C∥uk∥Wn,∞ ;
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which is a definitely contradiction to the fact that ∥uk∥Hn(R) = 1 and

lim
k→∞

∥uk∥Wn,∞ = 0. Thus λ lies in L2(R)-spectrum of L. We complete

the proof.
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