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BOUNDEDNESS IN FUNCTIONAL PERTURBED
DIFFERENTIAL SYSTEMS VIA {,-SIMILARITY

DoNG MAN Im*, SANG IL CHOI**, AND YOON HOE GOO***

ABSTRACT. This paper shows that the solutions to the perturbed
differential system

t

V' = 1)+ [ 9(su(s). Tigl)ds + hit, (0, Tey(0),
to

have bounded properties by imposing conditions on the perturbed

part f:o g(s,y(s), Triy(s))ds, h(t,y(t), Toy(t)), and on the fundamen-

tal matrix of the unperturbed system y’ = f(¢,y) using the notion

of h-stability.

1. Introduction and preliminaries

The papers [2-6,8-11,14-17] discuss boundedness, perturbations, sta-
bility, and h-stability of nonlinear systems of differential equations,

(1.1) 2(t) = f(t, (1), w(to) = 0.
It is interesting and worthwhile to investigate the bounded perporty for
the solutions of the perturbed type of (1.1)

(1.2)
y = flty) + / o(s,9(s). Try(s))ds + h(t, y(t), Toy (1)), y(to) = v,

to
where f € C(RT x R",R"), g,h € C(RT x R" x R",R"), RT = [0, ),
f(t,0)=0,g(t,0,0) = h(t,0,0) = 0, and Ty, T5 : C(RT,R") — C(RT,R")
are continuous operators and R" is an n-dimensional Euclidean space.
The notion of h-stability (hS) was introduced by Pinto [16, 17] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
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under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems. Pachpatte [14, 15] investigated the stability, boundedness,
and the asymptotic behavior of the solutions of perturbed nonlinear sys-
tems under some suitable conditions on the perturbation term g and on
the operator 7. Choi and Ryu [6] and Choi et al. [7] investigated h-
stability of solutions for nonlinear perturbed systems. Also, Goo [9, 10]
and Goo et al. [3] studied the boundedness of solutions for the perturbed
differential systems.

We always assume that the Jacobian matrix f, = 0f/0x exists and
is continuous on R™ x R™. The symbol | - | will be used to denote any
convenient vector norm in R™. Let x(¢,to, xo) denote the unique solution
of (1.1) with z(to, to, zo) = xo, existing on [tg, 00). Then, we can consider
the associated variational systems around the zero solution of (1.1) and
around xz(t), respectively,

(1.3) V'(t) = fo(t,0)v(t), v(to) = vo
and
(1.4) 2(t) = fo(t,z(t, to, m0))2(t), 2(to) = 20.

The fundamental matrix ®(¢, %o, zo) of (1.4) is given by
0
P(t,t = —ux(t, ¢
( P 07:1:0) 81‘0x( ) 07:1:0)

and ®(¢,19,0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [17].

DEFINITION 1.1. The system (1.1) (the zero solution 2 = 0 of (1.1))
is called an h-system if there exist a constant ¢ > 1, and a positive
continuous function h on R™ such that

[2(t)] < cwo| A(t) h(to) ™"

for t > tg > 0 and |zo| small enough (here h(t)~! = m)

DEFINITION 1.2. The system (1.1) (the zero solution z = 0 of (1.1))
is called h-stable (hS) if there exists § > 0 such that (1.1) is an h-system
for |zo| < d and h is bounded.

Let M denote the set of all n x n continuous matrices A(t) defined on
R* and A be the subset of M consisting of those nonsingular matrices
S(t) that are of class C' with the property that S(¢) and S~!(¢) are
bounded. The notion of t-similarity in M was introduced by Conti

8].
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DEFINITION 1.3. A matrix A(t) € M is to-similar to a matrix B(t) €
M if there exists an n x n matrix F(t) absolutely integrable over R,
that is,

o0
/ [F(8)]dt < 0o
0

such that
(1.5) S(t) + S(t)B(t) — A(t)S(t) = F(t)
for some S(t) € N.

The notion of t..-similarity is an equivalence relation in the set of
all n x n continuous matrices on R™, and it preserves some stability
concepts [8, 12].

Before proceeding to the statement of main results, we set forth some
known results.

LEMMA 1.4. [17] The linear system
(1.6) a’ = A(t)z, x(to) = o,

where A(t) is an n X n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist ¢ > 1 and a positive and continuous
(respectively bounded) function h defined on R such that

(1.7) |p(t, t0)| < ch(t) h(to) "
for t >ty > 0, where ¢(t,to) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

(1.8) y' = f(t.y) +9(t.y), y(to) = vo,

where g € C(RT x R",R") and ¢(t,0) = 0. Let y(¢) = y(t, to, yo) denote

the solution of (1.8) passing through the point (¢g, o) in R x R”™.
The following is a generalization to nonlinear system of the variation

of constants formula due to Alekseev [1].

LEMMA 1.5. [2] Let x and y be a solution of (1.1) and (1.8), re-
spectively. If yo € R™, then for all t > ty such that x(t, tg,y9) € R,

y(t7t07y0) S Rn’
t
y(t,to, o) = x(t, fo, o) + / B(t,5,y(s)) g5, y(s)) ds.
to

THEOREM 1.6. [6] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.
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THEOREM 1.7. [7] Suppose that f,(t,0) is too-similar to fr(t, z(t, to, x0))
for t > ty > 0 and |zg| < & for some constant 6 > 0. If the solution
v =0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

LEMMA 1.8. (Bihari — type inequality) Let u,A € C(RT), w €
C((0,00)) and w(u) be nondecreasing in u. Suppose that for some ¢ > 0

t
u(t) < c+/ A(s)w(u(s))ds, t > tg > 0.
Then
u(t) < Wt [W(c) + t)\(s)ds}, to <t <by,
to

where W (u) = [ 45 W ~1(u) is the inverse of W (u) and

up w(s)’

t
by = sup {t > to: W(e) +/ A(s)ds € domWfl}.
to
LEMMA 1.9. [4] Let u, A1, A2, A3, Aa, A5, Ag, A7, Ag, Ag, A9 € C(R+),
w € C((0,00)), and w(u) be nondecreasing in u, w < w(u). Suppose
that for some ¢ > 0 and 0 <ty < t,

u(t) §c+/ Al(s)u(s)ds—i-/ X2 (s)w(u(s))ds

to to

[ %6 [ () + 2560 [t yutrar

to to to

+A7(7) /T Ag(r)w(u(r))dr> drds

N /t: )\9(30) /t: Nao(7)w(u(r))drds.

Then

u(t) < W1 {W(c) + / t (Al(s) 4 ho(s)

to

Fag(s) / ") + As(7) / " Ao(r)dr

to to

+A7(7) /T As(r)dr)dT + Ao(s) /8 )\10(T)d7) ds} ,

to to
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where tqg < t < by, W, W~ are the same functions as in Lemma 1.8,
and

blzsup{tztoz +ft ( (s) + Aa(s) + As(s) [ir (Aa(7)
+A5(T ft Xe(r)dr + A7 (T ft Ag(r)dr)dr
+9(s) [i2 Mo(7)dr )ds € domW L.

We need the following two corollaries for the proof.

COROLLARY 1.10. Let u, A1, A2, A3, A1, A5, Ag, A7, Ag, Ag € C(RT), w €
C((0,00)), and w(u) be nondecreasing in u, u < w(u). Suppose that for
some ¢ >0 and 0 < ty <'t,

u(t) <c+/ Al(s)u(s)ds+/ Ae(s)w(u(s))ds

to to

+/t: As(s) /t: <>\4(7) /t: As(r)u(r)dr

Fag(r) / ’ Me(r)w(u(r))dr ) drds

to

+ [ nts) [ dotrytatryyaras

to to

Then

u(t) < W W+ / t (M) + hals) + Aa(s) / () / " s (r)dr

to to to

+ A6(7) / " Ar(r)dr)dr + As(s) / | AQ(T)dT) ds} ,

to to

where ty < t < by, W, W~ are the same functions as in Lemma 1.8,
and

b= sup {£ >t s W(e) iy (M) +dols) + () f a(r) Jiy As(r)r

FA6(7) [ Ar(r)dr)dr + As(s) [ Ao(T dr)ds € domW~ }
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COROLLARY 1.11. Let u, A1, A2, A3, A4, A5, Ag € C(RT), w € C((0,00))
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0,

u(t) < c+/ Al(s)u(s)ds+/ Ao(s)w(u(s))ds

to to

4 / "N() / " (r)u(r)drds

to to

4 / Xo(s) / () w(u(r))drds, 0 <ty <t.

to to
Then
t

u(®) < W)+ [ (u)+ als) + Xalo) [ ()

to to

ass) [ AG(r)dT)ds} :

to
where tqg <t < by, W, W~ are the same functions as in Lemma 1.8,
and

s

b= sup {t > 1 : W(c)+/t()\1(s)+)\2(s)+/\3(s)/ Na(r)dr

to to

+ 2s(s) / " No(r)dr)ds € domw—l}.

to

2. Main Results

In this section, we investigate boundedness for solutions of the per-
turbed differential systems via t.-similarity.
To obtain the bounded result for solutions of the perturbed differen-
tial systems, the following assumptions are needed:
(H1) f.(t,0)1is too-similar to f, (¢, z(t, to,x0)) for t >ty > 0 and |zo| <
for some constant § > 0.
(H2) The solution x = 0 of (1.1) is hS with the increasing function h.
(H3) w(u) is nondecreasing in u such that u < w(u) and Lw(u) < w(%)
for some v > 0.

THEOREM 2.1. Let a,b,c,d, k,m,n,p,q € C(RT). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.1) l9(t,y, Thy)| < a(®)w(|y@®)]) + [T1y(t)],
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t

(2.2) Tay(t)] Sb(t)/ k(S)\y(S)\dS+d(t)/ p(s)w(ly(s)])ds,

to to
and

h(t,y(8), Tay (1)) < c(®)w(ly(@)]) + T2y (2)],

Tay(8)] < m(t)]y(t)] +n(t)/ q(s)ly(s)lds,

to

(2.3)

where a,b,c,d,k,m,n,p,q € L'(R"), w € C((0,00)), and Ty, T» are
continuous operators. Then any solution y(t) = y(t,to,y0) of (1.2) is
bounded on on [ty, o) and it satisfies

ol <hoW W) +er [ (o) +mls) + [ (atr)

to to

+b(T1) /T k(r)dr + d(T) /Tp(r)dr)dT +n(s) /S q(T)dT> ds} ,

to to to

t

where tg < t < by, ¢ = c1|yo| h(to) L, W, WL are the same functions
as in Lemma 1.8, and

by = sup {tzto LW () + e /t (c(s)+m(s)+/ (a(r) + b(7) /Tk:(r)dr

to to to

s

s

() / " p(r)dr)dr + n(s) /

to to

q(T)dT) ds € domW~* }

Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,to,y0) be solutions of
(1.1) and (1.2), respectively. By Theorem 1.6, since the solution z = 0
of (1.1) is hS, the solution v = 0 of (1.3) is hS. Therefore, from (H1), by
Theorem 1.7, the solution z = 0 of (1.4) is hS. Applying the nonlinear
variation of constants formula due to Lemma 1.5, together with (2.1),
(2.2), and (2.3), we have

ly(t)]
< @]+ |19t sy()( tsrgv,y(r»ﬂy(f))rdwrh<s,y<s>7Tgy<s>>|)ds
< aluln®) bt + [ ool ( [ arulur))

+0(7) /T k(T)\y(T)IdT‘+d(T)/ p(r)w(ly(r))dr)dr

to to

+m(s)ly(s)] + els)uu(s)) +nls) [ a(n)ly(rldr)ds.

to
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By the assumptions (H2) and (H3), we obtain

WQNScnmmuwwm>1+/"@maon@ﬂﬁgl
|

to
dr

+ /t (a(r ) 'Zig) +b(r) /t "k(r) 'ZE:;
ly(r)|

NG
n(r) )dr)d7+n(s)/ q(7) dT)dS.

to

+ e(s)w 'ig' )

+d(r) [ plru

to
Let u(t) = |y(t)||h(t)|~'. Then, by Lemma 1.9, we have

s

O] < AOWH W) 4 [ (els) 4+ m(s) + [ (@t

() [ ke atr) [ pirnyar (o) [ atryar)as]

where ¢ = c1|yo| h(to)~!. From the above estimation, we obtain the
desired result. Thus, the proof is complete. O

REMARK 2.2. Letting c(t) = k(t) = m(t) = ¢(t) = 0 in Theorem 2.1,
we obtain the similar result as that of Theorem 3.4 in [5].

THEOREM 2.3. Let a,b,c,d, k,m,p,q € C(R"). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.4) 19(s,y(s), Try(s))|ds < a®)w(ly(t)]) + |T1y(1)],

to

t

(2.5) Ty (t)] < b(t)/ k(S)Iy(S)\d8+d(t)/ p(s)w(ly(s)|)ds,

(2.6) |h(t,y(t), Tay(t))| < b(t)/t c(s)y(s)lds + [T2y(t)],
and
(2.7) Ty (8)] < m(t)|y(?)] +d(t)/t a(s)w(ly(s)[)ds,

where a,b, ¢, d, k,m,p,q € L*(R"), w € C((0,0)), T1, Ts are continuous
operators. Then any solution y(t) = y(t,t0,y0) of (1.2) is bounded on
[to, 00) and it satisfies
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t

O] < W [Wie) 2 [ (als) 4 m(s)

+b(s) /ts(c(T) + k(7))dT + d(s) /ts(p(T) + q(T))dT> ds} ,

where tg < t < by, W, W™ are the same functions as in Lemma 1.8,
and

t s
by = sup {t >t : W(e) + CQ/ (a(s) +m(s) + b(s)/ (c(1) + k(1))dT
to to
+ d(s)/ (p(1) + q(7))dr]ds € domW_l}.
to

Proof. Let x(t) = x(t,to,yo) and y(t) = y(¢,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Using the nonlinear vari-

ation of constants formula due to Lemma 1.5, together with (2.4),(2.5),
(2.6), and (2.7), we have

(0] < el i) + [ cah(e)hs)™ (als)ully(o))
+8(s) [ (elr) + br)lar)lar
+d) [ 0r)+ a)ulr)hir + ()] ) ds.

It follows from (H2) and (H3) that

()] < cilyolh(t) hlto) ™" +/t cah(t) (m(s)zi;’ + a(s)w(|y(8)|)

e /t (e(r) + k(7)) zgi‘ dr

+d(s) [ o) + a5 ar)ds

Let u(t) = |y(t)||h(t)|~'. Then, by Corollary 1.11, we have

O] < W W) e [ (als) 4o

+0(s) [ (etr) 4 k) + dls) [ (o) +atr))ar)as],
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where ¢ = ci|yo|h(t) h(to)~'. Thus any solution y(t) = y(t,to,yo) of
(1.2) is bounded on [tg, o), and so the proof is complete. O

REMARK 2.4. Letting c(t) = k(t) = m(t) = ¢(t) = 0 in Theorem 2.3,
we obtain the same result as that of Theorem 3.3 in [5].

THEOREM 2.5. Let a,b,c,d,k,m,p,q € C(RT). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.8) l9(t,y, Tiy)| < a®w(ly(t)]) + | Tay(1)],

t

(2.9) Tay(®)] < b() | k(s)y(s)lds + C(t)/ p(s)w(ly(s)|)ds,

to to

and

(2.10) h(t, y(t), Tay(t))| S/ q(s)w(ly(s)))ds + |Tay ()],

Toy ()] < m(B)ly(@)] + dB)w(ly(#)]),

where a, b, c,d, k,m,p,q € L*(R*), w € C((0,0)), T1, T are continuous
operators. Then, any solution y(t) = y(t,to,yo) of (1.2) is bounded on
[to, 00) and it satisfies

S

ol < hOW W) e [ (46 +m(s) + [ (atr) +a0r)

to to

+b(r) / " l(r)dr + o(7) /

to to

T

p(r)dr)d7'> ds} ,

where W, W1 are the same functions as in Lemma 1.8, and

s

by = sup {t >to: Wic) +co /t (d(s) +m(s) + / (a(T) +q(1)

to to
T

+b(r) / " l(r)dr + o(r) /

to to

p(T)d’l”)dT) ds € domWfl}.

Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,t0,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying the nonlinear
variation of constants formula due to Lemma 1.5, together with (2.8),
(2.9), and (2.10), we have
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()
< crlunlb(@) h(to) "+ [ eah®h(s) (m(ly()] + d(s)u(lu(s)

to

" / (a(r) + a(r)w(ly(r)]) + b(r) / B(r)ly(r)ldr
welr) [ plryulr))aryar)ds.

By the assumptions (H2) and (H3), we obtain

(0] <erlnlne) (to) ™ + [ eah(t) () U3 + oy LN

: () G|
# [ o)+ gty ) [k

+¢(7) /tTp(r)w( ly(r) )dr)ch) ds.

Let u(t) = |y(t)||h(¢)| L. Then, by Corollary 1.10, we have

WO <HOW @) +ex [ (d6) +mis) + [ (ol +atr
+ b(T) ' k(r)dr 4 c(T) /tT p(r)dr)dT) ds] ,

to

where ¢ = ¢1]yo| h(tp) "!. The above estimation yields the desired result
since the function A is bounded. This completes the proof. ]

REMARK 2.6. Letting d(t) = k(t) = m(t) = ¢(t) = 0 in Theorem 2.5,
we obtain the similar result as that of Theorem 3.4 in [5].

THEOREM 2.7. Let a,b,c,d,k,m,p,q € C(RT). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.11) 19(s,y(s), Try(s))|ds < a(t)w(ly(t)]) + |Tiy(1)],

to

(2.12) [Ty < b(t)/t k(S)!y(S)!dSJrC(t)/t p(s)w(ly(s)])ds,

and
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t

o1y PEVODON<e) | al@ulyds + Ty

Toy ()] < m(B)ly()] + dB)w(ly(8)])

where a,b, c,d, k,m,p,q € L*(R*), w € C((0,00)), T1, T» are continuous
operators. Then, any solution y(t) = y(t,to,yo) of (1.2) is bounded on
[to, 00) and it satisfies

O] < W (W) +ea [ (as) +d(s) + m(s)

to

+b(s) /S E(T)dr + c(s) /

to to

S

(p(7) + g(r))dr ) ds|.

where tyg < t < by, W, W~ are the same functions as in Lemma 1.8,
and

by = sup {t >ty : W(e) + 2 /tt (a(s) + d(s) + m(s)

+b(s) / T k(r)dr + ols) /

(p(1) + q(T))dT) ds € domW_l}.
to to

Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof
in Theorem 2.1, the solution z = 0 of (1.4) is hS. Using the nonlinear
variation of constants formula due to Lemma 1.5, together with (2.11),
(2.12), and (2.13), we have

)] < alul(®) hlto) "+ [ cah(n(s) (m(s)lus)

to

+Hals) + d(sDu(ly(&)) +4(s) [ kolu(r)ldr

to

+els) [ (o) +a()uutr)r) ds.

to

It follows from (H2) and (H3) that
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coh(t) (m(s) ’z(sﬂ

ly(t)] < ealyol h(t) a(to) ™! +/

to

als) + d(s))w( Zégl) 5(5) /t " ol

+et) [ ) + ) dr) s

Let u(t) = |y(¢)||h(t)|~*. Then, by Corollary 1.11, we have

O] < W (W) +ex [ (as) +d(s) + m(s)

to
+b(s)/ k(T)dr +d(s)/ (p(T) + Q(T))dT)d8:|,
to to
where ¢ = c1|yo|h(t) h(to)~'. Thus any solution y(t) = y(t,to,yo) of
(1.2) is bounded on [tg,c0). Hence the proof is complete. O

REMARK 2.8. Letting d(t) = k(t) = m(t) = ¢(t) = 0 in Theorem 2.7,
we obtain the same result as that of Theorem 3.3 in [5].

Acknowledgement. The authors are very grateful for the referee’s
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