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BOUNDEDNESS IN FUNCTIONAL PERTURBED

DIFFERENTIAL SYSTEMS VIA t∞-SIMILARITY
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Abstract. This paper shows that the solutions to the perturbed
differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds+ h(t, y(t), T2y(t)),

have bounded properties by imposing conditions on the perturbed
part

∫ t

t0
g(s, y(s), T1y(s))ds, h(t, y(t), T2y(t)), and on the fundamen-

tal matrix of the unperturbed system y′ = f(t, y) using the notion
of h-stability.

1. Introduction and preliminaries

The papers [2-6,8-11,14-17] discuss boundedness, perturbations, sta-
bility, and h-stability of nonlinear systems of differential equations,

x′(t) = f(t, x(t)), x(t0) = x0.(1.1)

It is interesting and worthwhile to investigate the bounded perporty for
the solutions of the perturbed type of (1.1)
(1.2)

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T1y(s))ds+ h(t, y(t), T2y(t)), y(t0) = y0,

where f ∈ C(R+ × Rn,Rn), g, h ∈ C(R+ × Rn × Rn,Rn), R+ = [0,∞),
f(t, 0) = 0, g(t, 0, 0) = h(t, 0, 0) = 0, and T1, T2 : C(R+,Rn) → C(R+,Rn)
are continuous operators and Rn is an n-dimensional Euclidean space.

The notion of h-stability (hS) was introduced by Pinto [16, 17] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
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under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems. Pachpatte [14, 15] investigated the stability, boundedness,
and the asymptotic behavior of the solutions of perturbed nonlinear sys-
tems under some suitable conditions on the perturbation term g and on
the operator T . Choi and Ryu [6] and Choi et al. [7] investigated h-
stability of solutions for nonlinear perturbed systems. Also, Goo [9, 10]
and Goo et al. [3] studied the boundedness of solutions for the perturbed
differential systems.

We always assume that the Jacobian matrix fx = ∂f/∂x exists and
is continuous on R+ × Rn. The symbol | · | will be used to denote any
convenient vector norm in Rn. Let x(t, t0, x0) denote the unique solution
of (1.1) with x(t0, t0, x0) = x0, existing on [t0,∞). Then, we can consider
the associated variational systems around the zero solution of (1.1) and
around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(1.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(1.4)

The fundamental matrix Φ(t, t0, x0) of (1.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0)

and Φ(t, t0, 0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [17].

Definition 1.1. The system (1.1) (the zero solution x = 0 of (1.1))
is called an h-system if there exist a constant c ≥ 1, and a positive
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)).

Definition 1.2. The system (1.1) (the zero solution x = 0 of (1.1))
is called h-stable (hS) if there exists δ > 0 such that (1.1) is an h-system
for |x0| ≤ δ and h is bounded.

Let M denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[8].
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Definition 1.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
that is, ∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(1.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [8, 12].

Before proceeding to the statement of main results, we set forth some
known results.

Lemma 1.4. [17] The linear system

x′ = A(t)x, x(t0) = x0,(1.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|ϕ(t, t0)| ≤ c h(t)h(t0)
−1(1.7)

for t ≥ t0 ≥ 0, where ϕ(t, t0) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(1.8)

where g ∈ C(R+ ×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (1.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 1.5. [2] Let x and y be a solution of (1.1) and (1.8), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 1.6. [6] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.
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Theorem 1.7. [7] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

Lemma 1.8. (Bihari − type inequality) Let u, λ ∈ C(R+), w ∈
C((0,∞)) and w(u) be nondecreasing in u. Suppose that for some c > 0

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W

−1(u) is the inverse of W (u) and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 1.9. [4] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10 ∈ C(R+),
w ∈ C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose
that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

(
λ4(τ)u(τ) + λ5(τ)

∫ τ

t0

λ6(r)u(r)dr

+λ7(τ)

∫ τ

t0

λ8(r)w(u(r))dr
)
dτds

+

∫ t

t0

λ9(s)

∫ s

t0

λ10(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s)

+λ3(s)

∫ s

t0

(λ4(τ) + λ5(τ)

∫ τ

t0

λ6(r)dr

+λ7(τ)

∫ τ

t0

λ8(r)dr)dτ + λ9(s)

∫ s

t0

λ10(τ)dτ
)
ds
]
,
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where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s
t0
(λ4(τ)

+λ5(τ)
∫ τ
t0
λ6(r)dr + λ7(τ)

∫ τ
t0
λ8(r)dr)dτ

+λ9(s)
∫ s
t0
λ10(τ)dτ

)
ds ∈ domW−1

}
.

We need the following two corollaries for the proof.

Corollary 1.10. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for
some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

(
λ4(τ)

∫ τ

t0

λ5(r)u(r)dr

+λ6(τ)

∫ τ

t0

λ7(r)w(u(r))dr
)
dτds

+

∫ t

t0

λ8(s)

∫ s

t0

λ9(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

(λ4(τ)

∫ τ

t0

λ5(r)dr

+ λ6(τ)

∫ τ

t0

λ7(r)dr)dτ + λ8(s)

∫ s

t0

λ9(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s
t0
(λ4(τ)

∫ τ
t0
λ5(r)dr

+λ6(τ)
∫ τ
t0
λ7(r)dr)dτ + λ8(s)

∫ s
t0
λ9(τ)dτ

)
ds ∈ domW−1

}
.
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Corollary 1.11. Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+ λ5(s)

∫ s

t0

λ6(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+ λ5(s)

∫ s

t0

λ6(τ)dτ)ds ∈ domW−1
}
.

2. Main Results

In this section, we investigate boundedness for solutions of the per-
turbed differential systems via t∞-similarity.

To obtain the bounded result for solutions of the perturbed differen-
tial systems, the following assumptions are needed:

(H1) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ
for some constant δ > 0.

(H2) The solution x = 0 of (1.1) is hS with the increasing function h.
(H3) w(u) is nondecreasing in u such that u ≤ w(u) and 1

vw(u) ≤ w(uv )
for some v > 0.

Theorem 2.1. Let a, b, c, d, k,m, n, p, q ∈ C(R+). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.1) |g(t, y, T1y)| ≤ a(t)w(|y(t)|) + |T1y(t)|,
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(2.2) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds+ d(t)

∫ t

t0

p(s)w(|y(s)|)ds,

and

(2.3)

|h(t, y(t), T2y(t))| ≤ c(t)w(|y(t)|) + |T2y(t)|,

|T2y(t)| ≤ m(t)|y(t)|+ n(t)

∫ t

t0

q(s)|y(s)|ds,

where a, b, c, d, k,m, n, p, q ∈ L1(R+), w ∈ C((0,∞)), and T1, T2 are
continuous operators. Then any solution y(t) = y(t, t0, y0) of (1.2) is
bounded on on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
c(s) +m(s) +

∫ s

t0

(a(τ)

+b(τ)

∫ τ

t0

k(r)dr + d(τ)

∫ τ

t0

p(r)dr)dτ + n(s)

∫ s

t0

q(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, c = c1|y0|h(t0)−1, W , W−1 are the same functions
as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(
c(s) +m(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr

+d(τ)

∫ τ

t0

p(r)dr)dτ + n(s)

∫ s

t0

q(τ)dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By Theorem 1.6, since the solution x = 0
of (1.1) is hS, the solution v = 0 of (1.3) is hS. Therefore, from (H1), by
Theorem 1.7, the solution z = 0 of (1.4) is hS. Applying the nonlinear
variation of constants formula due to Lemma 1.5, together with (2.1),
(2.2), and (2.3), we have

|y(t)|

≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
(∫ s

t0

|g(τ, y(τ), T1y(τ))|dτ + |h(s, y(s), T2y(s))|
)
ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1

(∫ s

t0

(a(τ)w(|y(τ)|)

+ b(τ)

∫ τ

t0

k(r)|y(r)|dr + d(τ)

∫ τ

t0

p(r)w(|y(r)|)dr)dτ

+m(s)|y(s)|+ c(s)w(|y(s)|) + n(s)

∫ s

t0

q(τ)|y(τ)|dτ
)
ds.
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By the assumptions (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)
(
m(s)

|y(s)|
h(s)

+ c(s)w(
|y(s)|
h(s)

)

+

∫ s

t0

(a(τ)w(
|y(τ)|
h(τ)

) + b(τ)

∫ τ

t0

k(r)
|y(r)|
h(r)

dr

+d(τ)

∫ τ

t0

p(r)w(
|y(r)|
h(r)

)dr)dτ + n(s)

∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ
)
ds.

Let u(t) = |y(t)||h(t)|−1. Then, by Lemma 1.9, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
c(s) +m(s) +

∫ s

t0

(a(τ)

+b(τ)

∫ τ

t0

k(r)dr + d(τ)

∫ τ

t0

p(r)dr)dτ + n(s)

∫ s

t0

q(τ)dτ
)
ds
]

where c = c1|y0|h(t0)−1. From the above estimation, we obtain the
desired result. Thus, the proof is complete.

Remark 2.2. Letting c(t) = k(t) = m(t) = q(t) = 0 in Theorem 2.1,
we obtain the similar result as that of Theorem 3.4 in [5].

Theorem 2.3. Let a, b, c, d, k,m, p, q ∈ C(R+). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.4)

∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)w(|y(t)|) + |T1y(t)|,

(2.5) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds+ d(t)

∫ t

t0

p(s)w(|y(s)|)ds,

(2.6) |h(t, y(t), T2y(t))| ≤ b(t)

∫ t

t0

c(s)|y(s)|ds+ |T2y(t)|,

and

(2.7) |T2y(t)| ≤ m(t)|y(t)|+ d(t)

∫ t

t0

q(s)w(|y(s)|)ds,

where a, b, c, d, k,m, p, q ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are continuous
operators. Then any solution y(t) = y(t, t0, y0) of (1.2) is bounded on
[t0,∞) and it satisfies
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|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) +m(s)

+b(s)

∫ s

t0

(c(τ) + k(τ))dτ + d(s)

∫ s

t0

(p(τ) + q(τ))dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) +m(s) + b(s)

∫ s

t0

(c(τ) + k(τ))dτ

+ d(s)

∫ s

t0

(p(τ) + q(τ))dτ ]ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Using the nonlinear vari-
ation of constants formula due to Lemma 1.5, together with (2.4),(2.5),
(2.6), and (2.7), we have

|y(t)| ≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1

(
a(s)w(|y(s)|)

+ b(s)

∫ s

t0

(c(τ) + k(τ))|y(τ)|dτ

+ d(s)

∫ s

t0

(p(τ) + q(τ))w(|y(τ)|)dτ +m(s)|y(s)|
)
ds.

It follows from (H2) and (H3) that

|y(t)| ≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)
(
m(s)

|y(s)|
h(s)

+ a(s)w(
|y(s)|
h(s)

)

+b(s)

∫ s

t0

(c(τ) + k(τ))
|y(τ)|
h(τ)

dτ

+d(s)

∫ s

t0

(p(τ) + q(τ))w(
|y(τ)|
h(τ)

)dτ
)
ds.

Let u(t) = |y(t)||h(t)|−1. Then, by Corollary 1.11, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) +m(s)

+ b(s)

∫ s

t0

(c(τ) + k(τ))dτ + d(s)

∫ s

t0

(p(τ) + q(τ))dτ
)
ds
]
,
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where c = c1|y0|h(t)h(t0)−1. Thus any solution y(t) = y(t, t0, y0) of
(1.2) is bounded on [t0,∞), and so the proof is complete.

Remark 2.4. Letting c(t) = k(t) = m(t) = q(t) = 0 in Theorem 2.3,
we obtain the same result as that of Theorem 3.3 in [5].

Theorem 2.5. Let a, b, c, d, k,m, p, q ∈ C(R+). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.8) |g(t, y, T1y)| ≤ a(t)w(|y(t)|) + |T1y(t)|,

(2.9) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds+ c(t)

∫ t

t0

p(s)w(|y(s)|)ds,

and

h(t, y(t), T2y(t))| ≤
∫ t

t0

q(s)w(|y(s)|)ds+ |T2y(t)|,(2.10)

|T2y(t)| ≤ m(t)|y(t)|+ d(t)w(|y(t)|),

where a, b, c, d, k,m, p, q ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are continuous
operators. Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on
[t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
d(s) +m(s) +

∫ s

t0

(a(τ) + q(τ)

+ b(τ)

∫ τ

t0

k(r)dr + c(τ)

∫ τ

t0

p(r)dr)dτ
)
ds
]
,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(
d(s) +m(s) +

∫ s

t0

(a(τ) + q(τ)

+ b(τ)

∫ τ

t0

k(r)dr + c(τ)

∫ τ

t0

p(r)dr)dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying the nonlinear
variation of constants formula due to Lemma 1.5, together with (2.8),
(2.9), and (2.10), we have
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|y(t)|

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1

(
m(s)|y(s)|+ d(s)w(|y(s)|)

+

∫ s

t0

((a(τ) + q(τ))w(|y(τ)|) + b(τ)

∫ τ

t0

k(r)|y(r)|dr

+ c(τ)

∫ τ

t0

p(r)w(|y(r)|)dr)dτ
)
ds.

By the assumptions (H2) and (H3), we obtain

|y(t)| ≤c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)
(
m(s)

|y(s)|
h(s)

+ d(s)w(
|y(s)|
h(s)

)

+

∫ s

t0

((a(τ) + q(τ))w(
|y(τ)|
h(τ)

) + b(τ)

∫ τ

t0

k(r)
|y(r)|
h(r)

dr

+ c(τ)

∫ τ

t0

p(r)w(
|y(r)|
h(r)

)dr)dτ
)
ds.

Let u(t) = |y(t)||h(t)|−1. Then, by Corollary 1.10, we have

|y(t)| ≤h(t)W−1
[
W (c) + c2

∫ t

t0

(
d(s) +m(s) +

∫ s

t0

(a(τ) + q(τ)

+ b(τ)

∫ τ

t0

k(r)dr + c(τ)

∫ τ

t0

p(r)dr)dτ
)
ds
]
,

where c = c1|y0|h(t0)−1. The above estimation yields the desired result
since the function h is bounded. This completes the proof.

Remark 2.6. Letting d(t) = k(t) = m(t) = q(t) = 0 in Theorem 2.5,
we obtain the similar result as that of Theorem 3.4 in [5].

Theorem 2.7. Let a, b, c, d, k,m, p, q ∈ C(R+). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfies

(2.11)

∫ t

t0

|g(s, y(s), T1y(s))|ds ≤ a(t)w(|y(t)|) + |T1y(t)|,

(2.12) |T1y(t)| ≤ b(t)

∫ t

t0

k(s)|y(s)|ds+ c(t)

∫ t

t0

p(s)w(|y(s)|)ds,

and
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(2.13)
|h(t, y(t), T2y(t))| ≤ c(t)

∫ t

t0

q(s)w(|y(s)|)ds+ |T2y(t)|,

|T2y(t)| ≤ m(t)|y(t)|+ d(t)w(|y(t)|)

where a, b, c, d, k,m, p, q ∈ L1(R+), w ∈ C((0,∞)), T1, T2 are continuous
operators. Then, any solution y(t) = y(t, t0, y0) of (1.2) is bounded on
[t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + d(s) +m(s)

+b(s)

∫ s

t0

k(τ)dτ + c(s)

∫ s

t0

(p(τ) + q(τ))dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(
a(s) + d(s) +m(s)

+b(s)

∫ s

t0

k(τ)dτ + c(s)

∫ s

t0

(p(τ) + q(τ))dτ
)
ds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof
in Theorem 2.1, the solution z = 0 of (1.4) is hS. Using the nonlinear
variation of constants formula due to Lemma 1.5, together with (2.11),
(2.12), and (2.13), we have

|y(t)| ≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1

(
m(s)|y(s)|

+(a(s) + d(s))w(|y(s)|) + b(s)

∫ s

t0

k(τ)|y(τ)|dτ

+c(s)

∫ s

t0

(p(τ) + q(τ))w(|y(τ)|)dτ
)
ds.

It follows from (H2) and (H3) that
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|y(t)| ≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)
(
m(s)

|y(s)|
h(s)

+(a(s) + d(s))w(
|y(s)|
h(s)

) + b(s)

∫ s

t0

k(τ)
|y(τ)|
h(τ)

dτ

+c(s)

∫ s

t0

(p(τ) + q(τ))w(
|y(τ)|
h(τ)

)dτ
)
ds.

Let u(t) = |y(t)||h(t)|−1. Then, by Corollary 1.11, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(
a(s) + d(s) +m(s)

+b(s)

∫ s

t0

k(τ)dτ + d(s)

∫ s

t0

(p(τ) + q(τ))dτ
)
ds
]
,

where c = c1|y0|h(t)h(t0)−1. Thus any solution y(t) = y(t, t0, y0) of
(1.2) is bounded on [t0,∞). Hence the proof is complete.

Remark 2.8. Letting d(t) = k(t) = m(t) = q(t) = 0 in Theorem 2.7,
we obtain the same result as that of Theorem 3.3 in [5].
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