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ON EXISTENCE AND DISTRIBUTION OF

CONJUGATE POINTS IN FINSLER GEOMETRY

Chang-Wan Kim*

Abstract. In this paper, we shall study the existence and distri-
bution of conjugate points in Finsler geometry from the viewpoint
of the oscillation and Morse index theory.

1. Introduction

With the appearance of the classical Myers-Auslander theorem [3] on
the compactness of a complete Finsler manifold under an appropriate
Ricci curvature condition, an entire field of research rose to clarify the
interplay between curvature, Jacobi fields and conjugate points. This
relationship has been investigated by many authors, notably, Galloway
[5], and, more recently for instance by Anastasiei [2] and Mastrolia et
al. [8]. In particular, these latter have shown that the original Myers-
Auslander problem can be shifted to the analysis of the solutions f of
the linear differential equation f ′′ +Ric · f = 0. On the other hand, the
above linear differential equation has been the subject of an intensive
independent research in the last century (for an account, see [9]), and
the possibility of exploiting these available analytical results has highly
improved the original conclusions of Myers and Auslander.

Theorem 1.1. Let M be a complete Finsler manifold. If, for some
point p ∈ M, every geodesic γ issuing from p ∈ M has the property that∫ ∞

0
tk · Ric

(
γ′(t)

)
dt = ∞

for some k < 1, then M is compact and has finite fundamental group.

One of the important features of this result is that the Ricci curvature
is not required to be bounded below. Galloway [5] gave an example to
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show that the curvature condition of Theorem 1.1 cannot be improved
to allow k = 1. Setting k = 0 we can also consult [6], Corollary 2.6 for a
different proof and a generalization.

Adapting the Riccati inequality, we are able to extend Theorem 1.1 to
the case where the Ricci curvature is bounded from below by a negative
curvature.

Theorem 1.2. Let M be a complete n-dimensional Finsler manifold
satisfying Ric ≥ −(n − 1)B2 for some B ≥ 0. Suppose that, for each
geodesic γ, there exist 0 < a < b and k ̸= 1 for which either

(1.3)

∫ b

a
t · Ric

(
γ′(t)

)
dt > B

{
b+ a

e2Ba + 1

e2Ba − 1

}
+

1

4
ln

( b

a

)
or
(1.4)∫ b

a
tk · Ric

(
γ′(t)

)
dt > B

{
bk + ak

e2Ba + 1

e2Ba − 1

}
+

k2

4(1− k)

(
ak−1 − bk−1

)
holds (if B = 0, this has to be intended in a limit sense). Then M is
compact and has a finite fundamental group.

For complete Finsler manifolds without conjugate points and with
integral Ricci curvature, the author [6] asserted that the integral of the
Ricci curvature on the unit tangent bundle is nonpositive. By the same
argument, and with the use of a new criterion (Lemma 4.1) for conjugate
points, we also have the distribution of conjugate points along geodesics.

Theorem 1.5. Let M be a complete n-dimensional Finsler manifold
with a finite volume and Ricci curvature bounded above. Then∫

SM
Ric(v) dµ ≤ π(n− 1)1/2

√
sup

{
0,Ric

}∫
SM

Ψ(v) dµ.

In the above theorem, SM is the unit tangent bundle with the induced
Liouville measure dµ and Ψ : SM → [0,∞] is defined by

Ψ(v)

= lim inf
l→∞

1

l

{
the number of points conjugate to γv(0) along γv|[0,l]

}
.

Our proof is obtained by modifying some points in the proof from [4]
and by checking that some facts proved in [8] for Riemannian manifolds
hold also for Finsler manifolds. In the first section, we shall briefly
review the Morse index theorem following [4]. In the second section, we
shall study the existence of conjugate points using oscillation theory of
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linear differential equation [8]. In the last section, we shall discuss the
distribution of conjugate points by use of Morse index and Birkhoff’s
ergodic theorem.

2. Preliminaries

In this section, we shall recall some well-known facts about Finsler
geometry. See [4] for more details. Let M be an n-dimensional smooth
manifold and TM denote its tangent bundle. A Finsler structure on
a manifold M is a map F : TM → [0,∞) which has the following
properties;

• F is smooth on TM \ {0};
• F (t · v) = t · F (v) for all t ∈ R+, v ∈ TxM ;
• for each v ∈ TxM \ {0}, the following quadratic gv is an inner
product in TxM,

gv(u,w) :=
1

2

∂2

∂s∂t

[
F 2(v + su+ tw)

]∣∣∣
s=t=0

.

A manifold M endowed with a Finsler structure will be called a Finsler
manifold.

For a fixed v ∈ TxM, let γv be the geodesic from x with γ′v(0) = v.

Along γv, we have a family of inner products gt = gγ
′
v(t) in Tγv(t)M.

Define the Riemann curvature Rt : Tγv(t)M → Tγv(t)M by

Rt
(
u(t)

)
:= Rγ′

v(t)
(
u(t)

)
:= R

(
U(t), V (t)

)
V (t),

where U(t) =
(
γ̂v(t);u(t)

)
and V (t) =

(
γ̂v(t); γv(t)

)
∈ π∗TM. Then the

Ricci curvature is defined by

Ric(v) :=

n∑
i=1

gv
(
Rv(ei), ei

)
, v ∈ TxM,

where {ei}ni=1 is a gv-orthonormal basis for TxM.
A vector field J = J(t) along γv is called a Jacobi field if it satisfies

DtDtJ(t) +Rt(J(t)) = 0.

The exponential map expx : TxM → M is defined as usual, that is,
expx(v) = γv(1). A vector field Ju along γv with Ju(0) = 0 and
DtJu(0) = u is a Jacobi field if and only if Ju(t) = d expx |tvtu. We can
see that expx is singular at rv ∈ TxM if and only if there is u ∈ TxM\{0},
such that the Jacobi field Ju satisfies Ju(l) = 0. In this case we call γv(l)
a conjugate point with respect to x. To study the conjugate points along
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geodesics, we introduce the notion of index form. Let γ(t) : [0, l] → M
be a geodesic. For vector fields U = U(t) and V = V (t) along γ(t),
define

(2.1) Iγ(U, V ) :=

∫ l

0

{
gt
(
DtU(t), DtV (t)

)
− gt

(
Rt(U(t)), V (t)

)}
dt.

Iγ(U, V ) is called the index form along γ. There exists a conjugate points
γ(l) to γ(0) along γ(t), 0 < t ≤ l, precisely when there exists a vector
filed V along γ, where V is not the zero field, for which Iγ(V, V ) ≤ 0. If
the only conjugate point to γ(0) along γ is γ(l), then the vector field V
for which Iγ(V, V ) ≤ 0 are precisely the Jacobi fields vanishing at 0 and
l. We first need the following lemma.

Lemma 2.2. Let γ : [0, l] → M be a geodesic. For any piecewise C∞

vector field V (t) ̸= 0 along γ(t) with V (0) = 0 = V (l), we have

Iγ(V, V ) ≥ 0

and the equality holds if and only if V is Jacobi field along γ.

The technique we shall use for establishing compactness criteria is
provided by the following lemma.

Lemma 2.3. [1] Suppose there is a point p such that every geodesic
γ issuing from p (in other words γ(0) = p) contains a point conjugate
to p along γ. Then M is compact.

For a geodesic γ, the dimension of a maximal subspace of vector fields
for which Iγ is negative define is called the index of γ and denoted by
indγ . The celebrated Morse index theorem establishes a direct relation-
ship between the index of a geodesic and the total number of conjugate
points along this geodesic counted with multiplicities.

Theorem 2.4 (Morse index theorem). Let γ(t) : [0, l] → M be a
geodesic on a Finsler manifold of dimension n and γ(t1), · · · , γ(tk) (0 <
t1, · · · , tk < l) the conjugate points of γ(0) along γ|(0,l), which appear
isolated. Let η(tj) (j = 1, · · · , k) be the multiplicity of γ(tj). Then

k∑
j=1

indγ|[tj−1,tj ]
−k · (n− 1) ≤ indγ|[0,l] =

k∑
j=1

η(tj)

≤
k∑

j=1

indγ|[tj−1,tj ]
+k · (n− 1).
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Let Z0 denote the subset of SM consisting of vectors v which the
geodesic γv gives rise to no conjugate point of γv(0), and Z the set of v
for which Ψ(v) = 0. Then we have Z0  Z and Z invariant with respect
to the geodesic flow. However, by Theorem 2.4 (Morse index theorem),
we have

µ(Z0) = µ(Z).

3. Ricci curvature and conjugate points

In this section we prove Theorem 1.1 and 1.2. We consider the trace
of the Riccati equation for self-adjoint. Since trace and derivative com-
mute, we get

(3.1) f ′′(t) + Ric
(
γ′(t)

)
· f(t) = 0.

The associated nonlinear Riccati first order ordinary differential equa-
tion has been a useful tool in oscillation theory and related comparison
theory for the second order linear Jacobi equation. The core of the proof
lies in the the relationship between the index form for geodesics and the
corresponding the Jacobi equation. See [6] for similar exploitation of
this relationship. We need the following lemma to prove theorems.

Lemma 3.2. Suppose there is a point p such that each geodesic γ
issuing from p the differential equation (3.1) has infinitely many zeros.
Then M is compact.

Proof. The proof we give combines some standard Mores index tech-
niques (Lemma 2.2) together with Lemma 2.3. Thus, it suffices to es-
tablish the existence of a point conjugate to p along each geodesic γ.

Since by assumption (3.1) has infinitely many zeros there exists a
nontrivial solution ϕ : [0,∞) → R to (3.1) such that ϕ(t1) = ϕ(t2) = 0
with 0 ≤ t1 < t2. Define the function f : [0, t2] → R as follows:

f(x) =

{
0, if 0 ≤ t ≤ t1;

ϕ(t), if t1 ≤ t ≤ t2.

We proceed by contraction. Let {Ei(t)}n−1
i=1 is a gt-orthonormal vector

fields along γ|[0,t2] orthogonal to γ′(t). For each i = 1, · · · , n− 1, define
Xi(t) = f(t) · Ei(t). Then a straightforward computation shows
(3.3)

gt
(
DtDtXi +Rt

(
Xi, γ

′(t)
)
γ′(t), Vi

)
=

(
f ′′ + gt

(
Rt(Ei(t), Ei(t))

)
f
)
f
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on each of two subintervals [0, t1] and [t1, t2] on which f is smooth. Thus
substitution of (3.3) into (2.1) gives

Iγ(Xi, Xi) = −
∫ t2

0

(
f ′′ + gt

(
Rt(Ei(t), Ei(t))

)
f
)
f dt,

where we have used that fact that Xi(t) vanishes as t = t1. Then we
have upon summation

n−1∑
i=1

Iγ(Xi, Xi) = −(n− 1)

∫ t2

0

(
f ′′ +Ric

(
γ′(t)

)
f
)
f dt

= −(n− 1)

∫ t2

t1

(
ϕ′′ +Ric

(
γ′(t)

)
ϕ
)
ϕdt = 0

since ϕ is a solution to (3.1). Therefore, for some i, Iγ(Xi, Xi) ≤ 0. By
Lemma 2.2, we must have Iγ(Xi, Xi) > 0 unless there is some point
conjugate to x along γ[0,t2].

Next, we shall study the compactness of Finsler manifolds, that is,
results on the existence of conjugate points along geodesics which do not
provide information about the location of conjugate points. We shall
use the following results in the oscillation theory of linear differential
equations.

Theorem 3.4. [9] Let γ : [0,∞) → M be a geodesic. If for some
k < 1, ∫ ∞

0
tk · Ric

(
γ′(t)

)
dt = ∞,

then every solution of (3.1) has infinitely many zeros.

The oscillation theory of linear differential equations (Theorem 3.4)
in conjunction with Lemma 3.2 yields Theorem 1.1 of the generalization
of Ambrose theorem [1].

Proof of Theorem 1.1. The same procedure can also be applied to the

universal covering M̃ → M, showing that M̃ is compact and thus that
π1(M) is finite.

Remark 3.5. In [7], Kupeli studied the differential equations (3.1)
with the Ricci curvature is a nonnegative, and proved if

∫∞
t Ric

(
γ′(t)

)
dt

exists and lim inft→∞ t ·
∫∞
t ·Ric

(
γ′(t)

)
dt > 1/4, then every solution of

(3.1) has infinitely many zeros and hence M is compact.

We are now in a position to prove Theorem 1.2.



Conjugate points in Finsler geometry 375

Proof of Theorem 1.2 . By Lemma 3.2, it is enough to prove that a
solution of (3.1) has a first zero. Suppose by contradiction that f > 0
on [0,∞). Hence the function h(t) = f ′(t)/f(t) satisfies the differential
equation

h′(t) + h2(t) ≤ Ric
(
γ′(t)

)
≤ B2.

We compare h with the general solution hC of h′C + h2C = B2 given by

hC(t) = B
e2Bt + C

e2Bt − C
,C ≥ 1, t > 0.

Then we have

(3.6) h(t) ≤ h1(t) = B cosh(Bt) = B
e2Bt + 1

e2Bt − 1
, for all t > 0.

Now, consider the case k ̸= 1, and choose any 0 < a < b. Integration by
parts and using the estimate on h we deduce∫ b

a
tk·Ric

(
γ′(t)

)
dt

=

∫ b

a
tk ·

(
− h′(t)− h2(t)

)
dt

=

∫ b

a

{
−

(
tkh(t)

)′ − tk
(
h(t)− k

2t

)2
+

k2

4
tk−2

}
dt

≤ −bkh(b) + akh(a) +
k2

4(1− k)

(
ak−1 − bk−1

)
≤

(
bkB + akh1(a)

)
+

k2

4(1− k)

(
ak−1 − bk−1

)
,

contradicting assumption (1.4), as desired. The case k = 1 is analogous,
and B = 0 follows by taking the limit as B → 0.

Remark 3.7. With a slight improvement of the above technique, one
can give an upper bound for the diameter of M. Suppose diamM > 2D.
Then there exist a geodeic γ with γ(0) = p such that γ is minimizing at
least on (0, D). In analogy (3.6), this fact and Riccati inequality for h
to satisfy

−B
e2B(D−t) + 1

e2B(D−t) − 1
≤ h(t) ≤ B

e2Bt + 1

e2Bt − 1
.

This estimate leads one to obtain integral condition on Ric
(
γ′(t)

)
, in the

spirt of (1.4). For instance one can prove that diamM ≤ 2D provided
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that ∫ D

0
t2 · Ric

(
γ′(t)

)
dt > D.

4. Distribution of conjugate points

In this section we discuss the density of conjugate points along geodesics
and show Theorem 1.5. A new criterion for existence of conjugate points
is obtained by use of Morse theory.

Lemma 4.1. Let γ : [0, l] → M be a geodesic on a Finsler manifold
of dimension n. If∫ l

0
Ric

(
γ′(t)

)
dt ≥ π(n− 1)1/2

√
max
t∈[0,l]

{
0,Ric

(
γ′(t)

)}
,

and Ric(γ′(t)
)
is not identically zero, then γ(0) has a conjugate point

γ(r) along γ for some r in (0, l].

Proof. Suppose that∫ l

0
Ric

(
γ′(t)

)
dt ≥ π(n− 1)1/2

√
max
t∈[0,l]

{
0,Ric

(
γ′(t)

)}
and Ric

(
γ′(t)

)
is not identically zero.

To show that γ(0) has a conjugate point along γ, it suffices to find a
vector field W : [0, l] → TM along γ, which is not identically zero and
for which Iγ(W,W ) ≤ 0. Define h : [0, l] → R by

h(t) =


sin

(
πt
2β

)
, if 0 ≤ t ≤ β;

1, if β ≤ t ≤ l − β;

sin
(π(l−t)

2β

)
, otherwise.

Let E(t) be a parallel unit vector field along γ(t) that is gt-orthogonal
to γ′(t), and let V (t) = h(t) · E(t). Then

Iγ(V, V ) =

∫ l

0

{
gt
(
DtV (t), DtV (t)

)
− gt

(
Rt(V (t)), V (t)

)}
dt

=

∫ β

0
h′(t)2 + (1− h(t)2)gt

(
Rt(E(t)), E(t)

)
dt

+

∫ l

l−β
h′(t)2 + (1− h(t)2)gt

(
Rt(E(t)), E(t)

)
dt
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−
∫ l

0
gt
(
Rt(E(t)), E(t)

)
dt.

Let E1(t), · · · , En−1(t) be mutually gt-orthonormal parallel vector
field along γ that is gt-orthogonal to γ′(t). Let Vi(t) = h(t) · Ei(t) for
i = 1, · · · , n− 1. Then we have

n−1∑
i=1

Iγ(Vi, Vi) =

∫ β

0
(n− 1)h′(t)2 + (1− h(t)2)Ric

(
γ′(t)

)
dt

+

∫ l

l−β
(n− 1)h′(t)2 + (1− h(t)2)Ric

(
γ′(t)

)
dt

−
∫ l

0
Ric

(
γ′(t)

)
dt

≤
∫ β

0
(n− 1)h′(t)2 + (1− h(t)2)β dt

+

∫ l

l−β
(n− 1)h′(t)2 + (1− h(t)2)β dt

− xπ(n− 1)1/2
√

max
t∈[0,l]

Ric
(
γ′(t)

)
= 0,

and hence by Lemma 3.2, γ(0) has a conjugate points along γ.

An immediate consequence of Lemma 4.1 is the following supplement
to a result of the author [6].

Corollary 4.2. Let γ : [0,∞) → M be a geodesic on a Finsler
manifold of diemesion n, which gives rise to no conjugate point of γ(0).
Then

lim sup
l→∞

∫ l

0
Ric

(
γ′(t)

)
dt ≥ π(n− 1)1/2

√
max
t∈[0,l]

{
0,Ric

(
γ′(t)

)}
.

The author showed that with the same hypotheses

lim
l→∞

∫ l

0
Ric

(
γ′(t)

)
dt ̸= ∞.

Lemma 4.1, with the help of Birkhoff’s ergodic and Morse index the-
orem, gives Theorem 1.5.

Proof of Theorem 1.5 . Let φt : SM → SM be the geodesic flow.
Then the geodesic flow preserves induced Liouville measure dµ. Recall
that Z0 = {v ∈ SM : the geodesic γv have no conjugate points of
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γv(0)} and Z = {v ∈ SM : Ψ(v) = 0}. Then Z is invariant for φt and
µ(Z0) = µ(Z). Letting α = supv∈SM Ric(v) we have that α is positive.
Using the author’s criterion [6] for no conjugate points,∫

Z0

Ric(v) dµ =

∫
Z
Ric(v) dµ ≤ 0,

it suffices to prove∫
SM−Z0

Ric(v) dµ ≤ π
√

α(n− 1)

∫
SM

Ψ(v) dµ.

By Lemma 4.1, if γ(t) has exactly N
(
γ′(0), l

)
conjugate points along

γ|[0,l], then ∫ l

0
Ric

(
γ′(t)

)
dt ≤

(
N(γ′(0), l

)
+ 1)π

√
α(n− 1)

so that

(4.3)
1

l

∫ l

0
Ric

(
γ′(t)

)
dt ≤ π

√
α(n− 1) ·

N
(
γ′(0), l

)
+ 1

l
.

By Birkhoff’s ergodic theorem and (4.3), we have∫
SM−Z0

Ric(v) dµ =

∫
SM−Z

Ric(v) dµ

≤
∫
SM−Z

{
lim
l→∞

1

l

∫ l

0
Ric

(
φt(v)

)
dt
}
dµ

=

∫
SM−Z

{
lim inf
l→∞

1

l

∫ l

0
Ric

(
γ′v(t)

)
dt
}
dµ

≤
∫
SM−Z

{
lim inf
l→∞

π
√

α(n− 1) · N(v, l) + 1

l

}
dµ

= π
√

α(n− 1)

∫
SM−Z

lim inf
l→∞

N(v, l) + 1

l
dµ.

Since the right hand side of the above last line is

π
√

α(n− 1)

∫
SM

Ψ(v) dµ.

we have done.
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