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A NOTE ON MULTIPLIERS OF AC-ALGEBRAS

YonGg HooN LEE*

ABSTRACT. In this paper, we introduce the notion of multiplier
of AC-algebra and consider the properties of multipliers in AC-
algebras. Also, we characterized the fixed set Fixzq(X) by multipli-
ers. Moreover, we prove that M (X), the collection of all multipliers
of AC-algebras, form a semigroup under certain binary operation.

1. Introduction

In [2], a partial multiplier on a commutative semigroup (4,-) has
been introduced as a function F' from a nonvoid subset Dr of A into
A such that F(z) -y = x - F(y) for all z,y € Dp. In this paper, we
introduce the notion of multiplier of AC-algebra and consider the prop-
erties of multipliers in AC-algebras. Also, we characterized the fixed set
Fizy(X) by multipliers. Moreover, we prove that M (X), the collection
of all multipliers of AC-algebras, form a semigroup under certain binary
operation.

2. Preliminaries

An algebra (X, %,0) with a binary operation * is called an AC-algebra
if it satisfies the following axioms for all x,y € X,
(Al) zx (y*2) = (z*xy)* 2,
(A2) zxy=yxux,
(A3) xxy =0 if and only if z =y,
In an AC-algebra X, the following properties hold for all x,y, z € X,
(Ad) (xxy)xz=(z*x2)x*y,
(A5) (zx (zxy))*xy =0,
(A6) 0 (zxy) = (0xx)*(0xy),
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(AT) (2% 2)* (y*2)) * (£ 5) =0,
(A8) ((z4)* (z42)) % (2 5) =0,
(A9) z*xy=0if and only if (x % 2) x (yx2) =0,
(A10) zxy =0if and only if (zx ) x (2 xy) =0,
(All) x *y =z if and only if y = 0,
(A12) 2 =y *(y xx),
(AL3) (2 (xxy)) * (xxy) =y * (y*x),
(Al4) xx2x =0,
(A15) %0 = x.
A non-empty subset A of X is called a subalgebra of X if z xy € A for
all z,y € A.

Let X be a AC-algebra. We define the binary operation “<” as the
following,
r<y&srxy=0
for all z,y € X.
DEFINITION 2.1. A non-empty subset I of X is called an ideal of X
if
(i) 0 € I,
(ii) zxy € I and y € I imply x € [ for all z,y € I.
LEMMA 2.2. Let (X, *,0) be an AC-algebra. Then the following holds
true.
(i) The left cancellation laws holds, i.e., z x x = z x y implies x = y.
(ii) The right cancellation laws holds, i.e., x * z = y x z implies © = y.
Proof. (i) Let zxx = zx*y for all z,y,z € X. Then z = z % (z xx) =

zx(zxy) =y.
(ii) Let z %z = y* z for all z,y,z € X. Then x = z* (z xx) =
zx(xxz)=zx(yxz)=zx%(2xy)=y. O

For an AC-algebra, we denote x Ay =y * (y * x) for all z,y € X.

3. Multipliers of AC-algebras

In what follows, let X denote a AC-algebra unless otherwise specified.

DEeFINITION 3.1. Let X be a AC-algebra. By a multiplier of X, we
mean a self map f of X satisfying the identity

flexy) = flz)*y
for all z,y € X.
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EXAMPLE 3.2. Let X :={0,1,2,3} be a set in which “«” is defined
by

+[0 1 2 3
0|0 1 2 3
1/1 0 3 2 .
212 3 0 1
313 2 10
It is easy to check that (X, ) is an AC-algebra. Defineamap f : X — X
by
3 ifx=0
2 ifr=1
TO=91 ira_s
0 ifx=3.

Then it is easy to check that f is a multiplier of an AC-algebra X.

EXAMPLE 3.3. Let Z be the set of all integers and “ —” be a minus
operation on Z. Then (Z,—,0) is a AC-algebra. Let f(z) =z — 1 for all
x € 7Z. Then

fae-y)=@-y-1=@@-1)-y=f(z)-y
for all x,y € 7Z, and so f is a multiplier of X.

DEFINITION 3.4. A self map f of an AC-algebra X is said to be
regular if f(0) = 0.
PRrROPOSITION 3.5. Let f be a multiplier of X. Then
(i) f(0) = f(x) xx for all x € X.
(i) fis1— 1.
Proof. (i) Let € X. Then x * 2 = 0. Hence we have
f0) = flzxz) = fz) *x
for all x € X.
(ii) Let =,y € X be such that f(z) = f(y). Then by (i), we have
f(0) = f(z) * = and f(0) = f(y) *y. Thus
fle)xx = [fy) xy
which implies f(z)*x = f(x) * y. By Lemma 2.1, we have z = y. O

THEOREM 3.6. Let f be a multiplier of X. Then f(x) = x if and only
if f is regular.
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Proof. Let f is regular. Then we have

f0) = flzxz) = f(z) xz =0,

which implies f(z) = x from (A3). Conversely, let f(z) = z for all
x € X. Then it is clear that f(0) = 0, which f is regular. O

THEOREM 3.7. Let X be a AC-algebra. If f is a regular multiplier
of X, then f(x) <z for all x,y € X.

Proof. Let f be a regular multiplier of X. Then we have f(0) =
flxxx)= f(x)xz=0,ie., f(z) <z O

ProproSITION 3.8. Let X be a AC-algebra and let f be a multiplier
of X. If f(x) xx =0 for all x € X, then f is regular.

Proof. Let f(x)*x =0 and let f be a multiplier of X. Then f(0) =
flxxx) = f(x) * x = 0, which implies that f is a regular multiplier of
X. O

ProrosITION 3.9. Let f be a multiplier of X. Then the following
holds true.

(i) If there is an element x € X such that f(x) = x, then f is the
identity.

(ii) If there is an element = € X such that f(y)xxz =0 orx* f(y) =0
for all y € X, then f(y) =z, i.e., f is constant.

Proof. (i) Let f(x) = x for some x € X. Then f(z)*x =0 by (A3).
Hence f(0) = 0 from Proposition 3.5 (i), i.e., f is regular. This implies
that f is an identity map by Theorem 3.6.

(ii) It follows directly from (A3). O

PRrROPOSITION 3.10. Let X be an AC-algebra. Then every idempotent
multiplier of X is an endomorphism on X.

Proof. Let f be an idempotent multiplier of X. Then f?(z) = f(z)
for all z,y € X. Let x,y € X. Then

flaxy) = fPaxy) = f(fzxy))
= f(f(x) xy) = f(y* f(x))
= f(y) x f(x) = f(z) * f(y),

which implies that f is an endomorphism on X. O

ProprosiTION 3.11. Let X be a AC-algebra and f be a multiplier of
X. Then f(x* f(z)) =0 for all z € X.
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Proof. Let x € X. Then we have

f(z* f(z)) = f(z) * f(z) = 0.
This completes the proof. O

ProrosiTION 3.12. Let X be an AC-algebra and let f be a regular
multiplier. Then f: X — X is an identity map if it satisfies f(z) xy =
xx* f(y) for all z,y € X

Proof. Since f is regular, we have f(0) = 0. Let = f(y) = f(z) xy
for all z,y € X. Then f(x) = f(z%0) = f(x)*0 =z % f(0) =2 %0 = z.
Thus f is an identity map. O

DEFINITION 3.13. Let f be a multiplier of X. An ideal I of X is said
to be f-invariant if f(I) C I.

THEOREM 3.14. Let f be a multiplier of X. Then f is regular if and
only if every ideal of X is f-invariant.

Proof. Let f be a regular multiplier of X. Then by Theorem 3.6,
f(z) =z for all z € X. Now y € f(I) where I is an ideal of X. Then
y = f(z) for some x € I. Thus yxz = f(x)xxz = x+xx =0 € I,
which implies y € I and f(I) C I. This implies that I is f-invariant.
Conversely, let every ideal of X be f-invariant. Then f({0}) C {0}.
Hence f(0) = 0, which implies that f is regular. O

Let f be a multiplier of X. Define a set Fizy(X) by
Fiog(X) = {z € X | f(z) = a}
for all x € X.
ProprosITION 3.15. Let f be a multiplier of X. Define
fof(@) = F(/(@))
for all x € X. If v € Fixy(X), then we have f o f(x) =« for all x € X.
Proof. Let x € Fizy(X). Then we have
fof(x)=f(f(x) = fz) =
This completes the proof. O

PrROPOSITION 3.16. Let X be an AC-algebra and let f be a multiplier
on X. Ify € Fizy(X), we have x Ay € Fizy(X) for all x € X.
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Proof. Let f be a multiplier of X and let y € Fiz;(X). Then we get
for all z € X,

flany) = fly=(y=z)) = f(y) = (y =)
=yx*(y*xx)=xAy.
This completes the proof. O

THEOREM 3.17. Let f and g be two idempotent multipliers of X such
that f o g = go f. Then the following conditions are equivalent.
(i) f=g
(i) f(X) = g(X).
(ili) Fizxp(X) = Fizg(X).

Proof. (i) = (ii): It is obvious.

(ii) = (iii): Let f(X) = g(X) and = € Fizyf(X). Then x = f(x)
f(X) = g(X). Hence xz = g(y) for some y € X. Now g(x) = g(g9(v))
g*(y) = g(y) = . Thus x € Fizy(X). Therefore, Fizs(X) C Fizrg(X
Similarly, we can obtain Fizy(X) C Fizy(X). Thus Fiz(X) = Fizy(X).

(ili) = (i): Let Fizp(X) = Fizg(X) and € X. Since f(x)
Fizy(X) = Fizyg(X), we have g(f(z)) = f(x). Also, we obtain g(x)
Fizy(X) = Fixzs(X). Hence we get f(g(x)) = g(z). Thus we have

f(@) = g(f(x)) = (9o f)x) = (f o g)(x) = fg(x)) = g(x).

Therefore, f and g are equal in the sense of mappings. O

S
)

~—

S
S

Let X be an AC-algebra. Then, for each ¢ € X, we define a map
fa: X = X by

falx) =z %a
for all z € X.

THEOREM 3.18. For each a € X, the map f, is a multiplier of X.

Proof. Suppose that f, is a map defined by f,(z) = x * a for each
x € X. Then for any z,y € X, we have by (A4),

falxxy)=(zxy)*xa=(rxxa)xy
= fa(z) xy
Hence f, is a multiplier of X. This completes the proof. O
We call the multiplier f, of Theorem 3.14 as simple multiplier.

PROPOSITION 3.19. Let X be an AC-algebra. Then fy(x) = x for all
x € X, i.e., fo is the identity map of X.
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Proof. Let x € X. Then
fo(zx) =2%0=ux.
Hence fj is the identity map of X. O

PRrROPOSITION 3.20. For p € X, the mapping Bp(a) = (a*p) *p is a
multiplier of X.

Proof. Let p € X. Then we have
Bplaxb) = ((axb)*p)*p
= ((axp)*b)xp
= ((axp)*xp)*xb
= Bp(a) *b
for all a,b € X. This completes the proof. O
Let X be a AC-algebra. Define f, o f, by

fao fb('r) = fa(fb(w) = fa(x * b) = (33‘ * b) *a
for all z,y € X.

THEOREM 3.21. The composition of two simple multipliers of an AC-
algebra is a commutative and associative binary operation.

Proof. If f,, fp and f. are multipliers of an AC-algebra, then for all
z,y,2 € X,

fao fo(x)=(zxb)xa=z*x(bxa)=zx*(axb)
=(zxa)xb=(fyo fa)(z)
and
(fao fo) o fe(x) = (fao fo)(mxc) = ((x*c)xb) xa = ((xxc)xb) xa
= fa((z x ) % b) = fao (fy o fe) ().
This completes the proof. O

THEOREM 3.22. Let X be an AC-algebra and a,b € X. If f,o fy(x) =
fo(x) for all x € X, then f,(x) = fi(x).

Proof. Let X be an AC-algebra and a,b € X. Then
fao fo(z) =(zxb)xa=zx*(bxa)= fo(z) =2

for all z € X. From (A11), we have b * a = 0. Hence by (A2) and (A3),
we have a = b, which implies f,(x) = f for all z € X. O]

ProprosiTION 3.23. Let X be an AC-algebra and let fy, fo be two
multipliers of X. Then f; o fy is also a multiplier of X.
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Proof. Let f1, fo be multipliers of X and x,y € X. Then
fro fa(x xy) = fi((f2(z xy)) = fi(f2(x) *y)
= fi(f2(z)) xy = f10 fa(x) * y.
This completes the proof. O

Let X1 and X5 be two AC-algebras. Then X x X5 is also a AC-algebra
with respect to the point-wise operation given by

(a,b) * (c,d) = (a*c,b*d)
for all a,c € X7 and b,d € Xs.
PRrROPOSITION 3.24. Let X1 and Xo be two AC-algebras with a zero
element respectively. Define a map f : X1 x Xo — X1 x Xo by f(z,y) =

(0,y) for all (z,y) € X1 x Xo. If0xx = 0 for all z € X, then f is a
multiplier of X1 x X9 with respect to the point-wise operation.

Proof. Let (xz1,y1), (x2,y2) € X1 X X5. The we have
(@1, y1) * (22, 92)) = f(@1 % 22,91 * y2)
= (0,1 * y2)
= (0% z2,y1 * y2)
= (0,91) * (%2,92)
= f(@1,91) * (22, y2).
Therefore f is a multiplier of the direct product X7 x Xo. O

DEFINITION 3.25. Let X be an AC-algebra and let fi, fo be two maps
of X. Define the binary operation A as

(fi AN f2)(@) = fi(z) A fa(x)
for all z € X.

PRrOPOSITION 3.26. Let X be an AC-algebra and let fy, fo be two
multipliers of X. Then fi A fy is a multiplier of X.

Proof. Let X be an AC-algebra and let fi, fo be two multipliers of
X. Then by (A12) we have

(fiNfo)(xxy) = fi(z xy) A fa(z * y)
= (fi(z) xy) A (fao(2) * y)

= (fa(z) xy) * [(f2(2) * y) = (f1(2) * )]

= fi(x) *y.
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On the other hand, we get from (A12),
(fi A f2)(x) vy = (fu(z) A fal2)) *y
= (fa(x) * (fa(2) * f1(2))) *y
= fi(z) xy.
Hence we have (f1 A fa2)(zxy) = (f1 A f2)(x) x y. O

THEOREM 3.27. If X is an AC-algebra, (M (X), A) forms a semigroup
where M (X') denotes the set of all multipliers of X.

Proof. Let fi1, fa, f3 € M(X). Then
(i N fo) N fo)(@=y) = (fr A f2)(x*y) A fs(z*y)
= fa(zxy) * (fa(zxy) * (f1 A fo)(z *y))
= (fiN fo)(zxy)
= fi(zxy) A fo(z *xy).
Also, we have
(SiA(fa A fo))(@=y) = (fil@xy)) A (f2 A f3)(z*y)
= fil@ xy) A ((falz xy) A fs(z *y))
= fil@ xy) A fo(z xy).
This shows that (f1 A fa2) A fs = fi A (fa A f3). Thus M(X) forms a

semigroup. O

DEFINITION 3.28. A AC-algebra X is said to be positive implicative
if
(xxy)xz=(xx2)*x(y*xz) forall x,y,z € X.
Let M (X) denotes the collection of all multipliers on X. Obviously,

0:X — X defined by 0(x) =0 for all z € X and 1: X — X defined by
1(z) =z for all x € X are in M (X). Hence M (X) is non-empty.

DEFINITION 3.29. A AC-algebra X is said to be positive implicative
if
(xxy)xz=(xx2)*x(y*xz2) forall x,y,z € X.
DEFINITION 3.30. Let X be a AC-algebra and let M (X) be the col-
lection of all multipliers on X. We define a binary operation “«” on M(X)
by
(f*xg)(z) = f(x)*xg(x) forallz € X and f,g € M(X).

THEOREM 3.31. Let X be a positive implicative AC-algebra. Then
(M(X),*,0) is a positive implicative AC-algebra of X.
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Proof. (i) Let X be a AC-algebra and let f,g € M(X). Then

(9% f)(@xy) = (g(zxy) * (f(z *y))
= (9(x) xy) * (f(z) *y)
= (g(z) * f(x)) xy = ((g* f))(x) *y
which implies g * f € M(X).
(i) Let f,g € M(X). Then (f * g)(z) = f(z) * g(x) = g(x) * f(x) =
(g f)(z) for all x € X. Hencef*g—g*fforallfgGM(X)
(iii) Let f,g,h € M(X). Then (f x (g * h))(x) = (f(z) * (9(x) *
h(z))) = (f(z) * g(x)) *x h(x) = ((f * g) * h)(z) for all x € X. Hence
fr(gxh)=(f*g)*h.

(iv) Let f*xg =0 for all f,g € M(X). Then f(x) * g(x) = 0. Hence
f(x) = g(x), which implies f = g. Conversely, let f = g for all f,g €
M(X). Then f(x) % g(x) = 0, which implies (f * ¢g)(z) = 0(z). Hence

f+xg=0.
(v) Let f,g,h € M(X

((f xg)*h)(z) =

Then

)-

((f xg) () h(z) = (f(2) *
(f (@) * h(z)) * (g(x) * h(x))
((f xh)(2)) * ((g % h)(x))
= ((f xh) x (g h))(x)

for all x € X. This implies (f xg)xh = (fxg) * (f *h) € M(X). O

g(x)) * h(z)

THEOREM 3.32. Let X be a positive implicative AC-algebra and let
f1 and fo be two idempotent multipliers on X. If fi o fo = fo o fi, then
f1* fo is an idempotent multiplier on X.

Proof. We know that f1 % fo is a multiplier on X from Theorem 3.31.
Now

((fr= f2) o ((fr x f2)(z ))

Thus (f1* fa) o (f1* f2) = f1* fo, which implies fi * fo is idempotent. [
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Let f be a multiplier of a AC-algebra X. Define a Kerf by
Kerf={xe X | f(x) =0}
for all x € X.

THEOREM 3.33. If f is a multiplier of X and let f be an endomor-
phism on X, then f is idempotent, i.e., f%(z) = f(z) for all x € K.

Proof. Since f is a multiplier on X, we get

f@)* f2(x) = f(f(2) = f(2) = f(1) = 1.

Hence f(x) < f?(x). Also since f is an endomorphism on X, we have

FAa) = f(a) = f(f(2) x2) = f(2) * f(2) =1,
which implies f?(x) < f(x). Therefore f2(z) = f(f(z)) = f(x). O
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