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RESTRICTED AVERAGING OPERATORS IN THE

FINITE FIELD SETTING

Doowon Koh* and Seongjun Yeom**

Abstract. In this paper we study the mapping properties of the
finite field restricted averaging operators to various algebraic vari-
eties. We derive necessary conditions for the boundedness of the
generalized restricted averaging operator related to arbitrary alge-
braic varieties. It is shown that the necessary conditions are in
fact sufficient in the specific case when the Fourier transform on
varieties has enough decay estimates. Our work extends the known
optimal result on regular varieties such as paraboloids and spheres
to certain lower dimensional varieties.

1. Introduction

The restriction problem is one of central open problems in harmonic
analysis. Much attention has been given to the problem, in part be-
cause it is closely related to other important harmonic analysis problems
such as Kakeya problems and Bochner-Riesz problems. Let dσ denote
a surface measure supported on a hypersurface H ⊂ Rd. The restriction
problem for H ⊂ Rd is to determine exponents 1 ≤ p, r ≤ ∞ such that
the following restriction inequality holds:

∥f̂∥Lr(H, dσ) ≤ C∥f∥Lp(Rd)

where the constant C > 0 is independent of the test functions f : Rd → C
and f̂ is the Fourier transform of the function f which is defined by

f̂(ξ) =

∫
e−2πix·ξf(x) dx.
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In 1967, this problem was initially posed by E.M. Stein ([18]) and it
has been extensively studied (for example, see [5, 21, 1, 20, 2, 19]).
In particular, Guth ([6, 7]) has recently obtained new results on the
restriction problems. Notable point is that the celebrated Guth’s work
is based on the polynomial method which Dvir ([4]) used to give a simple
proof of the finite field Kakeya conjecture. This illustrates that the study
of analysis problems in finite fields may help us find a new idea to attack
challenging harmonic analysis problems in the Euclidean setting.

Over the last decades, harmonic analysis problems in finite fields have
been extensively developed by many researchers. In [17], Mockenhaupt
and Tao initially posed the finite field restriction problem. Their results
have been recently improved by some other people (for example, see
[8, 12, 16, 15, 11]). Averaging problem in finite fields was introduced by
Carbery, Stones, and Wright ([3]) and some sharp results on the prob-
lems were obtained in [13, 10]. In the paper [9], the first listed author
proposed the restricted averaging problem which can be considered as
a hybrid of the restriction problem and the averaging problem in finite
fields. In this paper, we shall develop the restricted averaging problems
to various algebraic varieties in the general setting. We begin by in-
troducing the problem. Let Fd

q be a d-dimensional vector space over a
finite field Fq with q elements. We always assume that the characteristic

of Fq is sufficiently large. Given an algebraic variety S ⊂ Fd
q , we shall

denote by dσs the normalized surface measure supported on the variety
S. Namely, the mass of one point in S is given by 1

|S| , where |S| denotes
the cardinality of the set S. Therefore, the total mass of S is one and
we see that if f : Fd

q → C, then∫
S
f(x) dσs(x) =

1

|S|
∑
x∈S

f(x).

In particular, when S = Fd
q , we shall write dx for dσs and we call dx the

normalized counting measure on Fd
q . Now, we consider another algebraic

variety V ⊂ Fd
q which is also endowed with the normalized surface mea-

sure dσv. In this setting, we are interested in determining 1 ≤ p, r ≤ ∞
such that the following inequality holds:

(1.1) ∥f ∗ dσs∥Lr(V,dσv) ≤ C∥f∥Lp(Fd
q ,dx)

,

where the constant C > 0 is independent of both the functions f on
Fd
q and q which is the cardinality of the underlying finite field Fq. We

shall name this problem as the generalized restricted averaging problem
related to S and V.When V = Fd

q , this problem is known as the averaging
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problem over the variety S which was initially studied in the finite field
setting by Carbery, Stones, and Wright [3]. Recently, the authors in [14]
studied the restricted averaging problem in the specific case when S = V
and |S| ∼ qd−1. They obtained optimal results on the problems in the
case when S is a regular variety such as the paraboloid, the sphere in all
dimensions d ≥ 2, and the cone in odd dimensions d ≥ 3. In addition,
when S is the cone in even dimensions d ≥ 4, the sharp results on the
problem were obtained except for two endpoints. In this paper, we will
deduce partial results on the problem in general varieties V and S. As
a direct consequence from our results, we provide certain conditions on
the varieties V and S where optimal results on the restricted averaging
problem can be obtained. Our work extends the results for hyperplanes
to some other lower dimensional varieties in finite fields.

2. Statement of main results

Given algebraic varieties S, V ⊂ Fd
q , we define an operator AS,V acting

on functions f : Fd
q → C as the restriction of the f ∗ dσs to the variety

V. In other words, we see that for x ∈ V,

AS,V f(x) = f ∗ dσs(x) =
∫
S
f(x− y)dσs(y) =

1

|S|
∑
y∈S

f(x− y).

We call the operator AS,V the restricted averaging operator. Recall that
for positive numbers A and B depending on the size of the underlying
finite field Fq, we shall write A . B if there exists a constant C > 0
independent of q = |Fq| such that A ≤ CB. We also write A & B for
B . A. In addition, A ∼ B means that A . B and A & B. We
use the notation AS,V (p → r) . 1 to indicate that the inequality (1.1)
holds. With this notation, the restricted averaging problem for S, V is
to determine 1 ≤ p, r ≤ ∞ such that AS,V (p → r) . 1. If dσs denotes

the normalized surface measure on an algebraic variety S ⊂ Fd
q , then the

inverse Fourier transform of dσs, denoted by (dσv)
∨, is defined by

(dσs)
∨(m) =

∫
S
χ(m · x) dσv(x) =

1

|S|
∑
x∈S

χ(m · x) for m ∈ Fd
q ,

where χ denotes a nontrivial additive character of Fq. In the previous
work in [14], the authors studied the restricted averaging problem to
varieties V, S ⊂ Fd

q such that S = V and S is a regular variety. Here,

we recall that an algebraic variety S ⊂ Fd
q is called a regular variety if

|S| ∼ qd−1 and |(dσs)∨(m)| . q−
(d−1)

2 for all m ∈ Fd
q \ {(0, . . . , 0)}. The
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authors in [14] proved the following optimal results on the restricted
averaging problem for regular varieties.

Theorem 2.1 ([14], Theorem 1.4 ). Let dσs be the normalized surface
measure on a regular variety S ⊂ Fd

q . Then we have AS,S(p → r) . 1 if
and only if (1/p, 1/r) lies on the convex hull of points (0, 0), (0, 1),
((d− 1)/d, 1), and ((d− 1)/d, 1/d).

Since the size of a regular variety S ⊂ Fd
q is similar to qd−1, Theorem

2.1 is only applied to (d−1)-dimensional varieties. In this paper, we shall
extend Theorem 2.1 to some lower dimensional cases. The following is
our main result in the general setting.

Theorem 2.2. Let S, V ⊂ Fd
q be algebraic varieties with |S| ∼ qs

and |V | ∼ qv for 0 ≤ s, v ≤ d − 1. Assume that there exists a positive

constant β such that |(dσs)∨(m)| . q−
β
2 for all m ∈ Fd

q \ {(0, . . . , 0)}.
Then if d− β − v < 0, we have

AS,V

(
d− 2s+ β + v

β + v − s
→ d− 2s+ β + v

d− s

)
. 1.

In particular, if |S| ∼ |V |, then the theorem below follows immedi-
ately from Theorem 2.2.

Theorem 2.3. Let S, V ⊂ Fd
q be algebraic varieties with |S| ∼ |V | ∼

qs for 0 ≤ s ≤ d − 1. In addition, assume that there exists a positive

constant β such that |(dσs)∨(m)| . q−
β
2 for all m ∈ Fd

q \ {(0, . . . , 0)}.
Then if d− β − s < 0, we have

AS,V

(
d− s+ β

β
→ d− s+ β

d− s

)
. 1.

If we take s = β in Theorem 2.3, then the following result is imme-
diately obtained.

Corollary 2.4. Let S, V ⊂ Fd
q be algebraic varieties with |S| ∼

|V | ∼ qs for d
2 < s ≤ d − 1. If |(dσs)∨(m)| . q−

s
2 for all m ∈ Fd

q \
{(0, . . . , 0)}, then

AS,V

(
d

s
→ d

d− s

)
. 1.

We shall demonstrate that Corollary 2.4 essentially yields a general-
ized result of Theorem 2.1. More precisely, we shall prove the following.
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Theorem 2.5. Let S, V ⊂ Fd
q be algebraic varieties with |S| ∼

|V | ∼ |S ∩ V | ∼ qs for some d
2 < s ≤ d − 1. In addition, assume

that |(dσs)∨(m)| . q−
s
2 for all m ∈ Fd

q \ {(0, . . . , 0)}. Then we have
AS,V (p → r) . 1 if and only if (1/p, 1/r) is contained in the convex hull
of points (0, 0), (0, 1), (s/d, 1), and (s/d, (d− s)/d).

Note that if we take s = d − 1 in Theorem 2.5, then we are able to
obtain Theorem 2.1.

The rest part of this paper will be organized to prove Theorem 2.2
and Theorem 2.5. To this end, in Section 3, we deduce the necessary
conditions for AS,V (p → r) . 1. In Section 4, we shall give the complete
proofs of both Theorem 2.2 and Theorem 2.5.

3. Necessary conditions for AS,V (p → r) . 1

Let us denote by A∗
S,V the adjoint operator of AS,V . By duality, the

restricted averaging inequality (1.1) is same as the following inequality

(3.1) ∥A∗
S,V g∥Lp′ (Fd

q ,dx)
≤ C∥g∥Lr′ (V,dσv)

,

where p′ and r′ denote the usual Hölder conjugates of p and r, respec-
tively (for example, 1/p + 1/p′ = 1). Throughout this paper, we write
E(x) for the indicator function 1E(x) on the set E ⊂ Fd

q . To deduce the
necessary conditions for the boundedness of restricted averaging opera-
tors in the general cases, we need the following lemma which gives us
the explicit form of the adjoint operator A∗

S,V .

Lemma 3.1. Let S, V ⊂ Fd
q . Then the adjoint operator A∗

S,V of AS,V

is given by

A∗
S,V g(y) =

qd

|S||V |
∑
x∈V

S(x− y) g(x),

where g : V → C and y ∈ Fd
q .

Proof. It follows from the L2 orthogonality that

< AS,V f, g >L2(V,dσv)=< f, A∗
S,V g >L2(Fd

q ,dx)
.

By the definition of the inner product, we have∫
V
AS,V f(x) g(x) dσv(x) =

∫
Fd
q

f(y) A∗
S,V g(y) dy,
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which is same as
1

|V |
∑
x∈V

AS,V f(x) g(x) =
1

qd

∑
y∈Fd

q

f(y) A∗
S,V g(y).

Since

AS,V f(x) =
1

|S|
∑
y∈S

f(x− y) =
1

|S|
∑
y∈Fd

q

f(x− y)S(y)

=
1

|S|
∑
y∈Fd

q

f(y)S(x− y),

we see that∑
y∈Fd

q

f(y)

(
1

|V ||S|
∑
x∈V

g(x) S(x− y)

)
=

1

qd

∑
y∈Fd

q

f(y) A∗
S,V g(y).

This implies that

A∗
S,V g(y) =

qd

|S||V |
∑
x∈V

S(x− y) g(x).

The proof is now completed.

The following lemma indicates the necessary conditions for the bound
AS,V (p → r) . 1.

Lemma 3.2. Let S, V ⊂ Fd
q be algebraic varieties. Let dσs and dσv de-

note the normalized surface measures on S and V , respectively. Assume
that AS,V (p → r) . 1 for 1 ≤ p, r ≤ ∞. Then we have

(3.2)
|V ∩ S|

1
r

|V |
1
r |S|

. q
− d

p and q
d
p . |S|

1
p |V |

1
r .

In addition, if we assume that S ∩ V contains an affine subspace H ⊂
S ∩ V ⊂ Fd

q , then

(3.3)
q

d
p |H|1−

1
p
+ 1

r

|S||V |
1
r

. 1.

Proof. Since AS,V (p → r) . 1, it follows that

(3.4) ∥f ∗ dσs∥Lr(V,dσv) ≤ C∥f∥Lp(Fd
q ,dx)

.

By duality, we see that

(3.5) ∥A∗
S,V g∥Lp′ (Fd

q ,dx)
≤ C∥g∥Lr′ (V,dσv)

.
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For each w ∈ Fd
q , define δw(x) = 1 for x = w and 0 otherwise. Taking

f = δ0, we see that

∥f∥Lp(Fd
q ,dx)

=

 1

qd

∑
x∈Fd

q

|δ0(x)|p
 1

p

= q
− d

p ,

and

∥f ∗ dσs∥Lr(V,dσv) =

 1

|V |
∑
y∈V

∣∣∣∣∣ 1|S|∑
x∈S

δ0(y − x)

∣∣∣∣∣
r
 1

r

=

 1

|V |
∑

y∈V ∩S

1

|S|r

 1
r

=
|V ∩ S|

1
r

|V |
1
r |S|

.

Hence, it follows from (3.4) that a necessary condition for the bound
AS,V (p → r) . 1 is given by

(3.6)
|V ∩ S|

1
r

|V |
1
r |S|

. q
− d

p .

To find another necessary condition for AS,V (p → r) . 1, we shall test
the inequality (3.5) by taking g = δa for some a ∈ V. Indeed, if g = δa
for some a ∈ V, then we have

∥g∥Lr′ (V,dσv)
=

 1

|V |
∑
y∈V

|δa(y)|r
′

 1
r′

= |V |−
1
r′ = |V |

1
r
−1.

On the other hand, we observe that for y ∈ Fd
q ,

A∗
S,V g(y) =

qd

|S||V |
∑
x∈V

S(x− y)δa(x) =
qd

|S||V |
S(a− y).

It follows from the previous observation that
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∥A∗
S,V g∥Lp′ (Fd

q ,dy)
=

 1

qd

∑
y∈Fd

q

(
qd

|S||V |
S(a− y)

)p′
 1

p′

=

 1

qd

∑
y∈Fd

q

(
qd

|S||V |
S(y)

)p′
 1

p′

=

(
|S|
qd

(
qd

|S||V |

)p′
) 1

p′

= q
− d

p′ |S|
1
p′

qd

|S||V |
=

q
d
p

|S|
1
p |V |

.

Thus, taking f = δa in the inequality (3.5), we have

q
d
p

|S|
1
p |V |

. |V |
1
r
−1.

Namely, another necessary condition for AS,V (p → r) . 1 is obtained as
follows:

q
d
p . |S|

1
p |V |

1
r .

Thus, we complete the proof of the first part (3.2) of Lemma 3.2.
To prove the inequality (3.3) in Lemma 3.2, let us assume that S ∩ V
contains an affine subspace H ⊂ S∩V ⊂ Fd

q . We shall test the inequality
(3.5) with g(x) = H(x). It follows that

(3.7) ∥g∥Lr′ (V,dσv)
= ∥H∥Lr′ (V,dσv)

=

(
|H|
|V |

) 1
r′

=

(
|H|
|V |

) r−1
r

.

Let us estimate ∥A∗
S,V g∥Lp′ (Fd

q ,dx)
for g(x) = H(x). Since H ⊂ V, we see

A∗
S,V g(x) = A∗

S,V H(x) =
qd

|S||V |
∑
y∈H

S(y − x).
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It follows that

∥A∗
S,V g∥Lp′ (Fd

q ,dx)
= ∥A∗

S,V H∥Lp′ (Fd
q ,dx)

=

 1

qd

∑
x∈Fd

q

|A∗
S,V H(x)|p′

 1
p′

=
1

q
d
p′

qd

|S||V |

∑
x∈Fd

q

∣∣∣∣∣∣
∑
y∈H

S(y − x)

∣∣∣∣∣∣
p′


1
p′

.(3.8)

Now, we claim that

(3.9)
∑
x∈Fd

q

∣∣∣∣∣∣
∑
y∈H

S(y − x)

∣∣∣∣∣∣
p′

≥ |H||H|p′ .

To prove this claim, let us assume that H+α := {h+α ∈ Fd
q : h ∈ H} is

a subspace for some α ∈ Fd
q ,. Then it is clear that (H +α) + z = H +α

for all z ∈ H + α. Since H ⊂ S, we see that

∑
x∈Fd

q

∣∣∣∣∣∣
∑
y∈H

S(y − x)

∣∣∣∣∣∣
p′

≥
∑
x∈Fd

q

∣∣∣∣∣∣
∑
y∈H

H(y − x)

∣∣∣∣∣∣
p′

=
∑
x∈Fd

q

∣∣∣∣∣∣
∑

y+α∈H+α

(H + α)(y + α− x)

∣∣∣∣∣∣
p′

≥
∑

−x∈H+α

∣∣∣∣∣∣
∑

y+α∈H+α

(H + α)(y + α− x)

∣∣∣∣∣∣
p′

=
∑

z∈H+α

∣∣∣∣∣ ∑
w∈H+α

(H + α)(w + z)

∣∣∣∣∣
p′

= |H + α||H + α|p′ = |H||H|p′ .
Combining (3.8) with (3.9), we obtain that

∥A∗
S,V g∥Lp′ (Fd

q ,dx)
= ∥A∗

S,V H∥Lp′ (Fd
q ,dx)

≥ q
d
p

|S||V |

(
|H||H|p′

) 1
p′

=
q

d
p

|S||V |
|H|

2p−1
p .
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Using this estimate and (3.7), we see that the inequality (3.5) yields

q
d
p

|S||V |
|H|

2p−1
p .

(
|H|
|V |

) r−1
r

.

Simplifying this inequality, we obtain the inequality (3.3) in Lemma 3.2,
which gives us further necessary condition for AS,V (p → r) . 1 in the
specific case when S ∩ V contains an affine subspace H.

The following corollary is direct consequences from Lemma 3.2.

Corollary 3.3. Let S, V ⊂ Fd
q be the algebraic varieties given as

in Lemma 3.2. Assume that |S| ∼ qs, |V | ∼ qv, and |S ∩ V | ∼ qc for
0 ≤ s, v, c ≤ d − 1. Then the necessary conditions for AS,V (p → r) . 1
are given by

(3.10)
d

p
− s ≤ v − c

r
and

d− s

p
≤ v

r
.

In addition, if S ∩ V contains an affine subspace H ⊂ Fd
q with |H| = qh,

then the further necessary condition for AS,V (p → r) . 1 is given by

d− h

p
+ h− s ≤ v − h

r
.

4. Proofs of the main theorems (Theorem 2.2 and Theo-
rem 2.5)

In this section, we restate our main theorems introduced in Section
2 and we complete proofs of them. First, we prove Theorem 2.2.

Theorem 2.2. Let S, V ⊂ Fd
q be algebraic varieties with |S| ∼ qs and

|V | ∼ qv for 0 ≤ s, v ≤ d − 1. Assume that there exists a positive

constant β such that |(dσs)∨(m)| . q−
β
2 for all m ∈ Fd

q \ {(0, . . . , 0)}.
Then if d− β − v < 0, then we have

AS,V

(
d− 2s+ β + v

β + v − s
→ d− 2s+ β + v

d− s

)
. 1.

Proof. Put p0 =
d−2s+β+v
β+v−s and r0 =

d−2s+β+v
d−s . Then we aim to prove

that the following inequality holds:

(4.1) ∥f ∗ dσs∥Lr0 (V,dσv) . ∥f∥Lp0 (Fd
q ,dx)

for all f : Fd
q → C.
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Define K(m) = (dσs)
∨(m) − δ0(m) for m ∈ Fd

q . Since δ̂0(x) = 1 for all

x ∈ Fd
q , we can write

f ∗ dσs = f ∗ (K̂ + δ̂0) = f ∗ K̂ + f ∗ 1.
To prove the inequality (4.1), it suffices to prove that the following two
inequalities hold:

(4.2) ∥f ∗ 1∥Lr0 (V,dσv) . ∥f∥Lp0 (Fd
q ,dx)

for all f : Fd
q → C

and

(4.3) ∥f ∗ K̂∥Lr0 (V,dσv) . ∥f∥Lp0 (Fd
q ,dx)

for all f : Fd
q → C.

Since maxx∈V |f ∗ 1(x)| ≤ ∥f∥L1(Fd
q ,dx)

, the inequality (4.2) follows by

observing that

∥f ∗ 1∥Lr0 (V,dσv) ≤ ∥f∥L1(Fd
q ,dx)

∥1∥Lr0 (V,dσv) = ∥f∥L1(Fd
q ,dx)

≤ ∥f∥Lp0 (Fd
q ,dx)

,

where the last inequality holds, because dx is the normalized counting
measure on Fd

q and p0 > 1. It remains to prove the inequality (4.3).
Since we have assumed that d− β− v < 0, it is not hard to see that the
inequality (4.3) follows immediately by interpolating the following two
inequalities:

(4.4) ∥f ∗ K̂∥L∞(V,dσv) . qd−s∥f∥L1(Fd
q ,dx)

for all f : Fd
q → C

and

(4.5) ∥f ∗ K̂∥L2(V,dσv) . q
d−β−v

2 ∥f∥L2(Fd
q ,dx)

for all f : Fd
q → C.

Hence, our task is to prove both (4.4) and (4.5). First let us prove (4.4).
For each x ∈ V, it follows that

|f ∗ K̂(x)| ≤

(
max
y∈Fd

q

|K̂(y)|

)
1

qd

∑
y∈Fd

q

|f(x− y)|

=

(
max
y∈Fd

q

|K̂(y)|

)
∥f∥L1(Fd

q ,dx)
.

By the definition of K, we see that

max
y∈Fd

q

|K̂(y)| = max
y∈Fd

q

|σs(y)− δ̂0(y)| = max
y∈Fd

q

∣∣∣∣qdS(y)|S|
− 1

∣∣∣∣ ≤ qd

|S|
∼ qd−s,

and the inequality (4.4) is obtained. In order to prove (4.5), first notice
from the definition ofK thatK(m) = (dσv)

∨(m) form ∈ Fd
q\{(0, . . . , 0)}
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and K(0, . . . , 0) = 0. From this observation and the assumption on the
upper bound of |(dσv)∨(m)| for m ̸= (0, . . . , 0), we see that

(4.6) max
m∈Fd

q

|K(m)| . q−
β
2 .

We also need the following restriction estimate.

Lemma 4.1. Let dσv be the normalized surface measure on a variety
V ⊂ (Fd

q , dx) with |V | ∼ qv for some 0 ≤ v ≤ d− 1. Then we have

∥ĝ∥L2(V,dσv) .
q

d
2

|V |
1
2

∥g∥L2(Fd
q ,dm) for all functions g : (Fd

q , dm) → C.

Proof. By duality, it is enough to show that the following extension
estimate holds:

∥(fdσv)∨∥L2(Fd
q ,dm) .

q
d
2

|V |
1
2

∥f∥L2(V,dσv) for all functions f : V → C.

Recall that we may consider the measure dσv as a function defined by

σv(x) =
qd

|V |V (x). Therefore, applying the Plancherel theorem yields that

∥(fdσv)∨∥L2(Fd
q ,dm) =

qd

|V |
∥(fV )∨∥L2(Fd

q ,dm) =
qd

|V |
∥fV ∥L2(Fd

q ,dx)

=
q

d
2

|V |
1
2

∥f∥L2(V,dσv).

The proof is completed.

Now we are ready to prove the inequality (4.5), which implies the
complete proof of Theorem 2.2. Using the property of convolution func-
tions, Lemma 4.1, and (4.6), we conclude that

∥f ∗ K̂∥L2(V,dσv) = ∥f̂∨K∥L2(V,dσv) .
q

d
2

|V |
1
2

∥f∨K∥L2(Fd
q ,dm)

. q
d
2

|V |
1
2

q−
β
2 ∥f∨∥L2(Fd

q ,dm) = q
d−β−v

2 ∥f∥L2(Fd
q ,dx)

,

where the Plancherel theorem was also used in the last line.

Now we restate and give the complete proof of Theorem 2.5.
Theorem 2.5. Let S, V ⊂ Fd

q be algebraic varieties satisfying that |S| ∼
|V | ∼ |S ∩ V | ∼ qs for d

2 < s ≤ d − 1. In addition, assume that

|(dσs)∨(m)| . q−
s
2 for all m ∈ Fd

q \{(0, . . . , 0)}. Then we have AS,V (p →



Restricted averaging operators 271

r) . 1 if and only if (1/p, 1/r) is contained in the convex hull of points
(0, 0), (0, 1), (s/d, 1), and (s/d, (d− s)/d).

Proof. (⇒) Suppose that AS,V (p → r) . 1. From our hypothese,
using Corollary 3.3 with s = v = c, we see that

d

p
≤ s and

d− s

p
≤ s

r
.

By simple computation, we conclude that (1/p, 1/r) lies on the convex
hull of points (0, 0), (0, 1), (s/d, 1), and (s/d, (d− s)/d).
(⇐) Suppose that (1/p, 1/r) is contained in the convex hull of points
(0, 0), (0, 1), (s/d, 1), and (s/d, (d − s)/d). Note that it is clearly true
that AS,V (∞ → ∞) . 1. We aim to prove that AS,V (p → r) . 1. Since
∥1∥Lk(V,σ) = 1 = ∥1∥Lk(Fd

q ,dx)
for all 1 ≤ k ≤ ∞, it follows from Hölder’s

inequality that

AS,V (p2 → r) ≤ AS,V (p1 → r) for 1 ≤ p1 ≤ p2 ≤ ∞

and

AS,V (p → r1) ≤ AS,V (p → r2) for 1 ≤ r1 ≤ r2 ≤ ∞,

which reduce our problems to critical endpoint estimates. From this
observation and the interpolation theorem, it suffices to prove that
AS,V (d/s → d/(d − s)) . 1. However, this is a direct consequence of
Corollary 2.4. Thus, the proof is complete.
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