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FUZZY ALMOST ¢-CUBIC FUNCTIONAL EQATIONS

CuancIL Kiv*

ABSTRACT. In this paper, we approximate a fuzzy almost cubic
function by a cubic function in a fuzzy sense. Indeed, we investigate
solutions of the following cubic functional equation

3f(kx +y) +3f(kx —y) — kf(z + 2y) — 2kf(z — y)
— 3k(2k* — 1) f(z) + 6k f(y) = 0.

and prove the generalized Hyers-Ulam stability for it in fuzzy Ba-
nach spaces.

1. Introduction and preliminaries

In 1940, Ulam proposed the following stability problem (cf. [24]):

“Let 1 be a group and G5 a metric group with the metric d. Given a
constant § > 0, does there exists a constant ¢ > 0 such that if a mapping
f+ Gy — Gaq satisfies d(f(zy), f(z)f(y)) < c for all z,y € Gy, then
there exists a unique homomorphism h : Gi — G2 with d(f(z), h(z)) <
O forallz € G177
In the next year, Hyers [11] gave a partial solution of Ulam’s problem
for the case of approximate additive mappings. Subsequently, his result
was generalized by Aoki [1] for additive mappings, and by Rassias [22]
for linear mappings, to consider the stability problem with unbounded
Cauchy differences. During the last decades, the stability problems of
functional equations have been extensively investigated by a number of
mathematicians ([5], [6], [7], [10], [20]).

Recently, the stability problems in the fuzzy spaces has been exten-
sively studied ([13], [18], [19]). The concept of fuzzy norm on a linear
space was introduced by Katsaras [15] in 1984. Later, Cheng and Morde-
son [4] gave a new definition of a fuzzy norm in such a manner that the
corresponding fuzzy metric is of Kramosil and Michalek type [14]. In
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2008, for the first time, Mirmostafaee and Moslehian ([18], [19]) used
the definition of a fuzzy norm in [2] to obtain a fuzzy version of stability
for the Cauchy functional equation

(1.1) fl@+y)=fz)+ fy)
and the quadratic functional equation
(1.2) flety)+ fl@—y) =2f(2)+2f(y)

We call a solution of (1.1) an additive mapping and a solution of (1.2)
is called a quadratic mapping. In 2001, Rassias [23] introduced the fol-
lowing cubic functional equation

(1.3) flz+2y) =3f(x+y) +3f(z) — flx—y) —6f(y) =0
and every solution of the cubic functional equation is called a cubic

mapping
In this paper, we consider the following functional equation

3f(kx +y) +3f(kx —y) — kf(x + 2y) — 2kf(x —y)
— 3k(2k* — 1) f(x) + 6kf(y) =0

for some fixed non-zero rational number k& and show the generalized
Hyers-Ulam stability of (1.4) in a fuzzy sense.

(1.4)

DEeFINITION 1.1. Let X be a real vector space. A function N : X x
R — [0,1] is called a fuzzy norm on X if for all z,y € X and all
s,t € R,
(N1) N(z, t) =0 for t <0;
) x =0if and only if N(z, ¢) =1 for all £ > 0;
) N(cz, t)= N(a:,ﬁ) if ¢ # 0;
) N(z+y, s+t)>min{N(x,s), N(y,t)};
) N(z,-) is a nondecreasing function of R and lim;_,o, N(z,t) = 1;
N6) for any = # 0, N(z,-) is continuous on R.
In this case, the pair (X, N) is called a fuzzy normed space.

Let (X,N) be a fuzzy normed space. A sequence {z,} in X is
said to be convergent in (X, N) if there exists an « € X such that
limy, o0 N(zy, —x,t) = 1 for all ¢ > 0. In this case, z is called the limit of
the sequence {xy,} in (X, N) and one denotes it by N — limy,,_,o z, = .
A sequence {z,} in X is said to be Cauchy if for any € > 0, there
is an m € N such that for any n > m and any positive integer p,
N(zpyp — Tn,t) > 1 —€eforall t > 0.

It is well known that every convergent sequence in a fuzzy normed
space is Cauchy. A fuzzy normed space is said to be complete if each
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Cauchy sequence in it is convergent and the a complete fuzzy normed
space is called a fuzzy Banach space.

2. Solutions and the stability of (1.4)

In this section, we investigate solutions of (1.4) and prove the gener-
alized Hyers-Ulam stability of (1.4) in fuzzy Banach spaces.
We start with the following theorem.

THEOREM 2.1. Let X and Y be normed spaces and f : X — Y a
mapping with f(0) = 0. Suppose that f satisfies (1.4) and k # 0. Then
f is a cubic mapping.

Proof. Suppose that f satisfies (1.4). If k = 1, then f satisfies (1.3)
and so f is a cubic mapping. Suppose that k # 1.
Setting y = 0 in (1.4), we have

(2.1) fkx) = k> f ()
for all z € X and setting x = 0 and y = x in (1.4), we have
(2.2) 3f(x) +3f(—x) = kf(2x) + 2k f(—x) — 6k f(x)
for all x € X. Replacing x by —z in (2.2), we have
(2.3) 3f(x)+3f(—x) = kf(—2z) + 2k f(x) — 6k f(—x)
for all x € X. Since k # 0, by (2.2) and (2.3), we have
(2.4) f(2z) = f(—22) = 8[f(x) — f(—x)]
for all x € X. Relpacing y by ky in (1.4), by (2.1), we have
25) 3K f(x +y) + fla —y)]
— f(z+2ky) — 2f (x — ky) — 3(2k* — 1) f () + 6k°f(y) =0

for all x,y € X and letting y = —y in (2.5), we have
3K2[f (x +y) + flz —y)]

— f(x = 2ky) — 2f (x + ky) — 3(2k* — 1) f () + 6k°f(—y) =0
for all z,y € X. By (2.5) and (2.6), we have
(2.7)
[f (z+2ky) — f(x—2ky)] —2[f (w+ky) — f (x—ky)] 6> [f (y) — f (=) = 0
for all z,y € X. Letting y = %y in (2.7), we have
(2.8) [f(z+2y)— f(z—2y)] =2[f (z+y) — fz—y)]=6[f(y) = f(—y)] = 0
for all z,y € X.

(2.6)
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Let fo(x) = M Then f, satisfies (2.8). By (2.4), we have
(2'9) f0(2y) = 8fo(y)
for all y € X. Letting x = 2z in (2.8), by (2.9), we have

(2'10) 4[fo($ + y) - fo(m - y)] - fo(Z’L‘ + y) - fo(2x - Z/) + 6fo(y)
for all z,y € X. Interchanging x and y in (2.10), we have
(2'11) 4[fo(x + y) + fo(x - y)] = fo(x + 2y) + fo(x - 2y) + 6fo(x)
for all z,y € X. By (2.8) and (2.11), we have

fo(x + 2y) - 3fo($ =+ y) + 3fo(x> - fo(x - y) - 6fo<y) =0

for all z,y € X and hence fj is a cubic mapping.
Let fe(z) = W Then f, satisfies (2.8) and so we have

(2’12) fe(x + 2y) - fe(:c - 2y) - Z[fe(x + Z/) - fe('r - y)] =0
for all z,y € X. Letting y = = in (2.12), we have

fe(Bx) = 2fe(2$) + fe(l‘)
for all x € X and letting y = 2z in (2.12), we have

fe(dz) = 2f.(3x) — 2fc(x)
for all x € X. Hence we have f.(4x) = 4f.(2z) for all z € X and so

fe(2$) = 4fe(x)7 fe(?’x) = 9fe(x)7 fe(4x) = 16fe($)
for all z € X. By induction on n, we have
fe(nz) = n®fo(z)

for all x € X and all n € N and hence
(2'13) fe(Tx) = T2fe($)

for all x € X and all rational number r. Since k is a non-zero rational

number, by (2.1) and (2.13), we have
kae(x) = kae(fv)-

Since k # 0,1, fe(z) = 0 for all z € X. Hence f = fo+ fe = fois a

cubic mapping.

Let (X, N) be a fuzzy normed space and (Y, N’) a fuzzy Banach
space. For any mapping f : X — Y, we define the difference operator

Df: X2 —Y by
Df(x,y) = 3f(kx +y) +3f(kx —y) — kf(x +2y) — 2kf(z —y)
— 3k(2k* — 1) f(x) + 6k f(y)
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for all x,y € X and some non-zero real number k.
For a given real number ¢ with ¢ > 0, the mapping f is said to be a
fuzzy q-almost cubic mapping if

(2.14) N'(Df(z,y), t+5) > min{N(z, #9),N(y, s7)}
for all x,y € X and all positive real numbers t, s.
THEOREM 2.2. Let q be a positive real number withwith |k[347! > 1

and f: X — Y a fuzzy g-almost cubic mapping with f(0) = 0. Then
there exists a unique cubic mapping F' : X — Y such that

39(|k[* — |K[P)9te
e

(2.15) N'(F(z) — f(z),t) > N(m,

for all x € X and all t > 0, where p = é.

Proof. Letting y = 0 and s = ¢ in (2.14), we get
(2.16) N'(f(ha) K f (), 2) = N, 1)

for all x € X and all £ > 0 and replacing = by k"z in (2.16), we get
q

t t
! n+1 _ 1.3 n ) > v
N' (k1) = K f (k). 5 ) = N (@, ‘k’n)
for all x € X, all n € N, and all ¢ > 0. Hence we have
1, ,n1
N’(f(k”“x) — K f(k"), 5]k qt3> > N(z,t)
for all x € X, all n € N, and all ¢ > 0 and so we get
/ f(knJrlx) f(knx) 1 n(p—3)—3.p
_ - >
N ( k3(n+1) L3n ’3’k| t ) = N(l’,t)
for all x € X, all n € N, and all t > 0. For n > m > 0, we have
(2.17)

N,(f(k‘n.%) _ f(k‘m.%')’ Zn: 1‘k|z'(p—3)—3 tp)

k3n k.3m Rl 3
(= ([ fE ) ~ 1 i(p—3)—3 4p
:N< Z [ k3 300 ]’ Z §‘k| t)
i=m+1 i=m+1
> min {N’(f(:;f) - f}i’;;_llf),;kﬂp—?’)—?’ ) | m+1<i<nf
> N(z,t)

for all x € X and all positive integer n.
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Let x € X, ¢ > 0 and € > 0. By (N5), there is a t( such that
N(x,t()) > 1—e¢

for all z € X. Since [k[3~1 > 1, |k[P~2 < 1 and so 302 |k|"P=3)3 ¢} is
convergent. Hence there is a positive integer ng such that for any n € N

with n > ng, Z?:m—&-l %|k|i(p_3)_3 tg < c and so for n > m > 0, we have

k?m k3m

w1

Erx)  f(EMr) = 1 3
> N’ f( _ S 1.15(p—3)—3 4p
2N (T~ T 2 g )

ZN(:L’,tQ)Zl—e

and thus {f(:;x)} is a Cauchy sequence in (Y, N'). Since (Y,N’) is a

fuzzy Banach space, there is an F'(x) in Y such that

Fo) = N — lim L5°0)

n—oo k30

Clearly, F': X — Y is a mapping. Letting m = 0 in (2.17), we get

N/(f(]g;x) . f(x),; é’k‘i(P—?’)_?’ tp) > N(z,t)

for all x € X and all positive integer n and so we have

e ¥ (R ) 2 e )

forallz € X, n €N, and t > 0.

Now, we will show that F satisfies (1.4). Let z,y € X. By (N4), we
have
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3F(k" (kz + 1) H
7

e ,
(ot gy SO ) )
N’(kF(x +oy) B (knk§n+ ). ;)
N’(QkF(x— ) 2RI kzgf_ ;)
N’(Bk(2k2—1)F(x) 3k(2k2 )f (k"z) )

(o B0, 1) (P2 1)

for all z,y € X and all positive integer n. The first six terms on the

right-hand of the above inequality tend to 1 as n — oo and by (2.14),
we have

N/(IW’;> > N<$’ |k‘(3q_1)n(ﬁ>q>

for all z,y € X, all positive integer n and all ¢+ > 0. Since |k[39~1 > 1,
Hence N'(DF(x,y),t) = 0 for all z,y € X and all ¢ > 0. By (N2),
DF(z,y) =0 for all z,y € X and by Theorem 2.1, F'is a cubic mapping.

Now, we will show that (2.15) holds. Let x € X and ¢ > 0. By (2.18),
for large enough n, we get

N'(F(x) ~ f(),1)
2 min (N (r(e) - 520 5) v (510 - 5. )
td
(> §|k|i<p—3>—3)q)

39(|k|6 — |k|p+3)qtq>
24| k|

> N(z,

> N(z,

for all x € X and all n € N and so we have (2.15).
To prove the uniqueness of F, let F; : X — Y be another cubic
mapping satisfying (2.15). Then we have
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N'(F(z) — Fi(z),t) = N'(F(k"z) — Fy(k"), |k[>"?)

t t
. ! n,.\ _ n 3n’ ! n,\ n 3n Y
Zmln{N (F(k ) — f(k"z), || 2),N (f(k ) — Fy (k"z), |k| 2)}
Ea () U Kt
i )
for all 2,y € X, all positive integer n and all 0 < s < t. Since |k[3971 > 1,

> N (.

q(|k|6 — |k|PH3)e|k|nBa—1)—1q
g (s, S PPy
n—o00 44
and so N'(F(z) — Fi(z),t) =1 for all t > 0. Hence F = F}. O

THEOREM 2.3. Let q be a positive real number withwith |k[37~ < 1
and f: X — Y a fuzzy g-almost cubic mapping with f(0) = 0. Then
there exists a unique cubic mapping F' : X — Y such that

39(k[P — [k[*)7t1
20 [ a1 )

(2.19) N'(F(x) - f(x),) = N,

for all x € X and all t > 0.
Proof. Letting y = ¥ in (2.16), we get

(2.20) N (£@) 15 (3), %) > N(z, [k|t9)

for all z € X and all ¢ > 0 and replacing = by ;7 in (2.20), we get

! z 3 € t n+1
N'(# () = 1 (e ) 5) 2 ¥ (o 1)
for all z € X, all n € N, and all ¢ > 0. Hence we have
1130 T\ _ 13(n+1) x 1 n(B—p)—pp\ >
N5 () = K008 () gkl 70) 2 N
for all x € X, all n € N, and all t > 0. For n > m > 0, we have
(2.21)

N’(k3”f(;—n) - k3mf(kim) zn: é|k\i<3—p>—p )

1=m-+

> min{N’ (k3f<k£> _ k3(i‘1)f<%), %|k\i<3—P)—P tp) ‘ m+1<i< n}
> N(z,t)

for all x € X and all positive integer n.
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Let x € X, ¢ > 0 and € > 0. By (N5), there is a t( such that
N(Jf,to) > 1—e¢

for all x € X. Since |k[>77' < 1, |[k|>P < 1 and so 3.2, [k["B=P)=P b is
convergent. Hence there is a positive integer ng such that for any n € N
with n > ng, D0, 4 %\kP(?’_p)_p th < ¢ and so for n > m > 0, we have

V(s () = (5e) )

() -0, 35 S ) 2 v

1=m-+

>1—c¢€

and thus {k?’”f(k%)} is a Cauchy sequence in (Y, N’). Since (Y, N') is

a fuzzy Banach space, there is an F'(z) in Y such that

The rest of the proof is similar to Theorem 2.2. O

Using Theorem 2.2- 2.3, we have the following corollary :

COROLLARY 2.4. Let q be a positive real number with q # % and
f X — Y a fuzzy q-almost cubic mapping. Then there exists a
unique cubic mapping F : X — Y such that
39(|k[2—|k[P)? ; _
N (2, 29 ), it kPt > 1

39(|k|P—|k|3)7 . -
N x,%tq , df kPPl <1

N'(F(z) = f(x),t) >

for all x € X and allt > 0.

We can use Theorem 2.2-2.3 to get a classical result in the framework
of normed spaces. For example, it is well known that for any nmormed
space (X,|| -1|), the mapping Nx : X x R — [0, 1], defined by

0, uft <=
L if t ==

Nx(z,t) = {

a fuzzy norm on X. In [17], [18] and [19], some examples are provided
for the fuzzy morm Nx. Here using the fuzzy norm Nx, we have the
following corollary.
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COROLLARY 2.5. Let X and Y be normed spaces. Let f: X — Y
be a mapping such that f(0) = 0 and

(2.22) 1D f (@, )| < Nl ll” + [ly[”

for a fixed positive number p such that p # 3. Then there exists a unique
cubic mapping F : X — Y such that the inequality

_20kP e 1 13g—1
IF(z) — fz)] < {3<||k||f;—k{r4|p+a>llw!\ L affRPe > 1
s e P, i kP <1
holds for all x € X.
Proof. By the definition of Ny, we have

0, ifs+t<|Df(z,y)l
L, if s+t >|[Df(z,y)l.
for all z,y € X and all s,# € R. Now, we claim that

NY(Df(iU,y),S + t) > min{Nx(ﬂ?,Sq),Nx(y,tq)}
for all z,y € X and s,t > 0, where ¢ = %. If Ny(Df(x,y),s+1t) =1,
then it is trivial. Suppose that Ny (Df(x,y),s +t) = 0. Then s+t <
IDf @yl 1€ s > [[z]}P and ¢ > ||y, then, by (2.22),

IDf (@)l < llzl” + [[yll” < s+,

which is a contradiction. Hence either s < ||z||P or t < |[|y||P , that
is, either Nx(z,s?) = 0 or Nx(y,t?) = 0 and thus f is a fuzzy ¢-
almost cubic mapping. By Theorem 2.2 and Theorem 2.3, we have the
results. O

Ny(Df(z,y),s +1) = {
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