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TWO ZAGIER-LIFTS

Soon-Yi Kang*

Abstract. Zagier lift gives a relation between weakly holomorphic
modular functions and weakly holomorphic modular forms of weight
3/2. Duke and Jenkins extended Zagier-lifts for weakly holomorphic
modular forms of negative-integral weights and recently Bringmann,
Guerzhoy and Kane extended them further to certain harmonic
weak Maass forms of negative-integral weights. New Zagier-lifts for
harmonic weak Maass forms and their relation with Bringmann-
Guerzhoy-Kane’s lifts were discussed earlier. In this paper, we give
explicit relations between the two different lifts via direct compu-
tation.

1. Introduction

Throughout, κ ∈ 1
2Z and D and d are integers with D, d ≡ 0, 1

(mod 4). We let Γ = SL2(Z) when κ is an integer and Γ = Γ0(4)
when κ ∈ Z + 1

2 . For a complex number τ = x + iy with y > 0 and
γ = ( s t

u v ) ∈ Γ, we define

j(γ, τ) :=

{ √
uτ + v, if κ ∈ Z,

(uv )ε
−1
v

√
uτ + v, if κ ∈ 1

2 + Z,
where (uv ) is the extended Legendre symbol and εv = 1 if v ≡ 1 (mod 4)
and εv = i if v ≡ 3 (mod 4). Then for any complex-valued function f
defined on the upper-half plane H, the weight κ slash operator is defined
by f |κγ(τ) := j(γ, τ)−2κf(γτ). A weakly holomorphic modular form of
weight κ is invariant under the weight κ slash operator and holomorphic
in H with possible poles at the cusps. Let M !

κ denote the vector space
of weakly holomorphic modular forms of weight κ on Γ. In case of
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κ ∈ Z + 1
2 , each form in M !

κ satisfies Kohnen’s plus space condition,
that is, its Fourier expansion is of the form

∑
a(n)qn where a(n) is non-

zero only for integers n satisfying (−1)κ−1/2n ≡ 0, 1 (mod 4). Here,
q := e(τ) := e2πiτ .

Recall that the Fourier expansion of the classical j-function is given
by

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · ∈ M !
0.

The j-function generates the field of all meromorphic modular functions
for Γ and its values at quadratic irrationalities in H are algebraic inte-
gers, known as singular moduli. More precisely, for a positive definite
quadratic form Q(x, y) = [a, b, c] = aX2+ bXY + cY 2 with discriminant
dD = b2 − 4ac < 0 and its associated CM point

τQ =
−b+

√
dD

2a
∈ H,

j(τQ) is an algebraic integer in an abelian extension of Q(
√
dD). When

Qd denotes the set of positive definite integral binary quadratic forms
with discriminant d, the group Γ acts on Qd in the usual way. For each
fundamental discriminantD > 0 with dD < 0 and a Γ-invariant function
f on H, we define the twisted trace of f by

(1.1) Trd,D(f) =
∑

Q∈Γ\QdD

χ(Q)
f(τQ)

|ΓQ|
.

Here ΓQ is the group of automorphs ofQ, τQ is the associated CM points,
and χ is an associated genus character which is defined on Γ\QdD by
([5])

χ(Q) =

{
χD(r), (a, b, c,D) = 1 and (r,D) = 1 where Q represents r,

0, (a, b, c,D) > 1,

where χD is the Kronecker symbol. We note that if both d and D are
fundamental discriminants, χd(Q) = χD(Q).

Let J = j− 744 and Trd,D(J) be the twisted trace of singular moduli
defined in (1.1). In [9], Zagier defined lifts for fundamental discriminants
D > 0 and d < 0 by

Zd(J) = qd +
∑

D>0D
−1/2Trd,D(J)q

D ∈ M !
1
2

,

ZD(J) = q−D −2δD,� −
∑

d<0D
−1/2Trd,D(J)q

|d| ∈ M !
3
2

,

(1.2)
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where δD,� = 1 if D is a square and 0 otherwise. The results for J ∈
M !

0 in (1.2) were generalized to weakly holomorphic modular forms of
negative-integral weights by Duke and Jenkins. In [3, Theorem 1], they
extended Zagier lifts for f ∈ M !

2−2ν (ν ≥ 2 an integer) and fundamental
discriminant D that

ZD(f) ∈ M !
3/2−ν , if (−1)νD > 0,

ZD(f) ∈ M !
ν+1/2, if (−1)νD < 0.

(1.3)

A weak Maass form h of weight κ is a smooth function on H which
satisfies:

(i) h|κγ = h for all γ ∈ Γ,

(ii) ∆κ(h) = λh where ∆κ = −y2
(

∂2

∂x2
+

∂2

∂y2

)
+ iκy

(
∂

∂x
+ i

∂

∂y

)
,

(iii) h has at most linear exponential growth at all cusps of Γ.

If λ = 0, then h is called harmonic and if h is holomorphic in H with pos-
sible poles at the cusps, then it becomes a weakly holomorphic modular
form. Now consider H !

κ, the space of weight κ harmonic weak Maass
forms on Γ. Again when κ ∈ 1

2 + Z, each form satisfies the plus space
condition.

Bruinier and Funke showed in [2] that the differential operator

ξκ = 2iyκ
∂

∂τ̄
is a surjective map from the space of harmonic weak Maass

forms of weight κ to the space of weakly holomorphic modular forms of
weight 2 − κ. A weight κ harmonic weak Maass form has a Fourier
expansion at infinity of the form
(1.4)

h(τ) =
∑

n≫−∞
c+h (n)q

n + c−h (0)y
1−κ +

∑
0 ̸=n≪∞

c−h (n)Γ(1− κ,−4πny)qn,

where Γ(a, x) =
∫∞
x e−tta−1 dt is the incomplete gamma function. The

differential operator ξκ maps it to

(1.5) ξκ(h) = (1− κ)c−h (0)−
∑

0 ̸=n≪∞
c−h (n)(−4πn)1−κq−n ∈ M !

2−κ.

We call
∑

n<0 c
+
h (n)q

n the principal part of the harmonic weak Maass
form h(τ).

The Zagier-lifts in (1.3) have been recently generalized in two different
ways. The lifts given by Bringmann, Guerzhoy and Kane in [1] are
defined in Hcusp

2−2ν , the subspace of H
!
2−2ν that consists of harmonic weak

Maass forms whose image under the differential operator ξκ are cusp
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forms. They contain (1.3) as special cases as they showed that for each
h ∈ Hcusp

2−2ν ,

ZD(h) ∈ H !
3/2−ν , if (−1)νD > 0,

ZD(h) ∈ M !
ν+1/2, if (−1)νD < 0.

(1.6)

Other lifts were constructed by the author with Jeon and Kim in [7].
They are defined in H !

2−2ν and extend (1.3) for discriminants not treated

in (1.3). For each h ∈ H !
2−2ν , the new lifts Z+ are defined by

Z+
D(h) ∈ H !

3/2−ν , if (−1)νD < 0,

Z+
D(h) ∈ H !

ν+1/2, if (−1)νD > 0.
(1.7)

In [7], it is simply stated that the two lifts ZD and Z+
D satisfy the

following relations: for each h ∈ H2−2ν , ξ 3
2
−ν(Z

+
D(h)) = ZD(h) or

ξ 3
2
−ν(ZD(h)) = Z+

D(h) up to constant (ν ̸= 2, 3, 4, 5, 7 in the latter)

depending on the sign of corresponding discriminant and parity of ν.
In this paper, we give explicit relations between the two lifts via direct
computation.

2. Whittaker functions

We first recall many properties of Whittaker functions, with which we
construct weak Maass-Poincaré Series as in [4, 6]. Whittaker functions
Mµ,ν(y) and Wµ,ν(y) are linearly independent solutions of the Whittaker
differential equation. If 2ν /∈ Z, they satisfy that

(2.1) Wµ,ν(y) =
Γ(−2ν)

Γ(12 − ν − µ)
Mµ,ν(y) +

Γ(2ν)

Γ(12 + ν − µ)
Mµ,−ν(y)

and in particular, Wµ,ν(y) = Wµ,−ν(y). Here Γ(z) is the gamma func-
tion.

TheWhittaker functions may have integral representations for certain
fixed values of µ and ν from which we have that if ν − µ = 1/2, then

(2.2) Mµ,ν(y) + (2µ+ 1)Wµ,ν(y) = Γ(2µ+ 2)y−µey/2,

and if ν + µ = 1/2, we have

(2.3) Wµ,ν(y) = yµe−y/2.

If 1
2 − µ ± ν is an integer, Whittaker functions can be expressed as an

incomplete gamma function Γ(a, x) =
∫∞
x e−tta−1dt. For example, if
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ν ∈ 1
2Z, then

(2.4) Wν−1/2,ν(y) = ey/2y1/2−νΓ(2ν, y).

Asymptotic behavior of the Whittaker functions for fixed µ, ν is also
well known:
(2.5)

Mµ,ν(y) ∼
Γ(1 + 2ν)

Γ(ν − µ+ 1
2)
y−µe

y
2 and Wµ,ν(y) ∼ yµe−

y
2 as y → ∞,

(2.6)

Mµ,ν(y) ∼ yν+
1
2 and Wµ,ν(y) ∼

Γ(2ν)

Γ(ν − µ+ 1
2)
y−ν+ 1

2 as y → 0.

Now we define for fixed values s ∈ C and n ∈ Z,

Mn,κ(y, s) =

{
Γ(2s)−1(4π|n|y)−

κ
2Mκ

2
sgn(n),s− 1

2
(4π|n|y), if n ̸= 0,

ys−κ/2, if n = 0.

Wn,κ(y, s)

=

{
Γ(s+ κ

2 sgn(n))
−1|n|

κ
2
−1(4πy)−

κ
2Wκ

2
sgn(n),s− 1

2
(4π|n|y), if n ̸= 0,

(4π)1−κy1−s−κ/2

(2s−1)Γ(s−κ/2)Γ(s+κ/2) , if n = 0.

The function

(2.7) φm,κ(z, s) := Mm,κ(y, s)e(mx)

is an eigenfunction of the weight κ hyperbolic Laplacian ∆κ and has
eigenvalue s(1− s) + (κ2 − 2κ)/4. That is,

(2.8) ∆κφm,κ(z, s) =
(
s− κ

2

)(
1− κ

2
− s
)
φm,κ(z, s).

Also, due to the asymptotic behavior of the Whittaker function given in
(2.6),

(2.9) φm,κ(z, s) = O(yRe(s)−κ/2) as y → 0.

We are interested in its values at s = κ/2 and s = 1− κ/2, for which
∆κφm,κ(z, s) = 0. It follows from the properties of Whittaker functions
stated above that

Wn,κ(y, 1− κ/2)

= e−2πny


nκ−1, if n > 0,
|n|κ−1Γ(1− κ)−1Γ(1− κ,−4πny), if n < 0,
(4π)1−κ

Γ(2−κ) , if n = 0.

(2.10)
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If we assume κ ≤ 1/2, then we find that

Mn,κ(y, 1− κ/2)

= e−2πny

 (−1)κ
[
Γ(1− κ)−1Γ(1− κ,−4πny)− 1

]
, if n > 0,

1− Γ(1− κ)−1Γ(1− κ,−4πny), if n < 0,
y1−κ, if n = 0.

(2.11)

Also, we have

(2.12) Wn,κ(y, κ/2) = e−2πny

{
Γ(κ)−1nκ−1, if n > 0,
0, if n ≤ 0.

and

(2.13) Mn,κ(y, κ/2) = e−2πny

{
Γ(κ)−1, if n ̸= 0,
1, if n = 0.

More detailed proofs of (2.10) through (2.13) and references on Whit-
taker functions are given in [6, Section 2].

3. Weak Maass-Poincaré series

If ϕ : R+ → C is a smooth function satisfying ϕ(y) = Oε(y
1+ε) for

any ε > 0 and Γ∞ is the subgroup of translations of Γ, then the general
Poincaré series

Gm(τ, ϕ) =
∑

γ∈Γ∞\Γ

(ϕ|κγ)(τ)(3.1)

=
∑

γ∈Γ∞\Γ

e(mRe(γτ))ϕ(Im(γτ)), (m ∈ Z)

is a smooth Γ-invariant function on H. Let

(3.2) ϕm,s(y) =

{
2π|m|

1
2 y

1
2 Is− 1

2
(2π|m|y), m ̸= 0,

ys, m = 0,

with Iα the usual I-Bessel function. Then the Niebur Poincaré series

(3.3) Gm(τ, s) := Gm(τ, ϕm,s)

is defined for Re (s) > 1 and satisfies

(3.4) ∆0Gm(τ, s) = (s− s2)Gm(τ, s).

Remark 3.1. The Niebur Poincaré series denoted by Fm(s; τ) in [3]

and [1] are slightly different with (3.3). Their ϕm,s(y) in (3.2) has |m|s−
1
2

factor instead of |m|
1
2 . Thus Fm(s; τ) = |m|s−1Gm(τ, s).
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As eachGm(τ, s) whenm ̸= 0 has an analytic continuation to Re (s) >
1/2, we obtain an infinite family of weight 0 harmonic weak Maass forms
{Gm(τ, 1)|m ∈ Z}.

If φ := φm,κ(τ, s) is the function defined in (2.7), then the Poincaré
series

(3.5) Fm,k(τ, s) :=
∑

γ∈Γ∞\Γ

(φ|κγ)(τ)

is Γ-invariant and it follows from (2.9) that Fm,κ(τ, s) converges abso-
lutely and uniformly on compacta for Re(s) > 1. Moreover, Fm,κ(τ, s)
is an eigenfunction of the Laplacian ∆κ satisfying

(3.6) ∆κFm,κ(τ, s) =
(
s− κ

2

)(
1− κ

2
− s
)
Fm,κ(τ, s).

Note that

(3.7) Fm,0(τ, s) = Γ(s)−1Gm(τ, s)

and the Laplace operator ∆κ can be expressed in terms of the differential
operator ξκ

(3.8) ∆κ = −ξ2−κ ◦ ξκ.

The Fourier coefficients of Fm,κ(τ, s) can be written in terms of Bessel
functions and the generalized Kloosterman sum. If m,n, c are integers
with c positive, then the Kloosterman sum is given by
(3.9)

Ka(m,n; c) :=

{ ∑
v(c)∗ e

(
mv̄+nv

c

)
, if a ∈ Z,∑

v(c)∗
(
c
v

)
ε2av e

(
mv̄+nv

c

)
with 4|c, if a ∈ 1

2 + Z,

where the sum runs through the primitive residue classes modulo c and
vv̄ ≡ 1 (mod c). It satisfies the symmetry property

(3.10) K 3
2
(m,n; c) = −iK 1

2
(−m,−n; c).

AsK2a+1/2(m,n; c) = K1/2(m,n; c) andK2a+3/2(m,n; c) = K3/2(m,n; c)
for any integers a, it is often convenient to write

(3.11) K+(m,n; 4c) = (1− i)

(
1 +

(
4

c

))
K1/2(m,n; 4c)
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and use it for Kloosterman sums of any half-integral weights. Let
cm,κ(n, s) be given by

cm,κ(n, s) = (2πi−κ)
∑
c>0

Kκ(m,n, c)

c

×



|mn|
1−κ
2 J2s−1

(
4π
√

|mn|
c

)
, mn > 0,

|mn|
1−κ
2 I2s−1

(
4π
√

|mn|
c

)
, mn < 0,

2κ−1πs+κ
2
−1|m+ n|s−

κ
2 (c)1−2s, mn = 0,m+ n ̸= 0,

22κ−2πκ−1Γ(2s)(2c)1−2s, m = n = 0,

(3.12)

where Jα and Iα are the usual Bessel functions.

Proposition 3.2. [6, Corollary 3.3] If κ > 2 and m is an integer,
then the Fourier expansion of the Poincaré series Fm,k(τ, κ/2) is given
by

Fm,κ(τ, κ/2) =
δm
Γ(κ)

qm +
∑

0<n∈Z

cm,κ(n, κ/2)

Γ(κ)
nκ−1qn

∈


Sκ, if m > 0,
M !

κ, if m < 0,
Mκ, if m = 0,

where δm = Γ(κ) if m = 0 and δm = 1 otherwise. The coefficients
cm,κ(n, s) are defined in (3.12).

Proposition 3.3. [6, Corollary 3.4] If κ < 0 andm is an integer, then
the Poincaré series Fm,κ(τ, 1−κ/2) ∈ Hκ if m ≤ 0 and Fm,κ(τ, 1−κ/2) ∈
H !

κ if m > 0. Its Fourier expansion is given by

Fm,κ(τ, 1− κ/2) = mm,κ(y)q
m +

(4π)1−κ

(1− κ)Γ(1− κ)
cm,κ(0, 1− κ/2)

+
∑
n>0

cm,κ(n, 1− κ/2)nκ−1qn

+
∑
n<0

cm,κ(n, 1− κ/2)|n|κ−1Γ(1− κ,−4πny)

Γ(1− κ)
qn,
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where

mm,κ(y) :=


y1−κ, if m = 0,

1− Γ(1−κ,−4πmy)
Γ(1−κ) , if m < 0,

(−1)κ−1
[
1− Γ(1−κ,−4πmy)

Γ(1−κ)

]
, if m > 0,

and the coefficients cm,κ(n, s) are defined in (3.12).

When κ = ν + 1/2, following [8, p. 250], we employ Kohnen’s pro-
jection operator pr+κ to construct a weight κ Maass-Poincaré series that
satisfies the plus space condition, whose Fourier coefficients are sup-
ported on (−1)νn ≡ 0, 1 (mod 4). For each m satisfying (−1)νm ≡ 0, 1
(mod 4) and Re(s) > 1, we define the Poincaré series F+

m,κ(τ, s) by

(3.13) F+
m,κ(τ, s) = pr+κ (Fm,κ(τ, s)).

The function F+
m,κ(τ, s) has weight κ for Γ and satisfies

(3.14) ∆κF
+
m,κ(τ, s) =

(
s− κ

2

)(
1− κ

2
− s
)
F+
m,κ(τ, s)

as Fm,κ(τ, s) does.

Proposition 3.4. [6, Theorem 4.4] Let κ = ν + 1/2 with ν ∈ Z.
Then for any m ∈ Z and s ∈ C satisfying (−1)νm ≡ 0, 1 (mod 4) and
Re (s) > 1, the weight κ Maass-Poincaré series satisfying the plus space
condition F+

m,κ(τ, s) has the Fourier expansion
(3.15)

F+
m,κ(τ, s) = Mm,κ(y, s)e(mx) +

∑
(−1)νn≡0,1(4)

bm,κ(n, s)Wn,κ(y, s)e(nx),

where the coefficients bm,κ(n, s) are given by

bm,κ(n, s) =2πi−κ
∑
c>0

(
1 +

(
4

c

))
Kκ(m,n; 4c)

4c

×



|mn|
1−κ
2 J2s−1

(
π
√

|mn|
c

)
, mn > 0,

|mn|
1−κ
2 I2s−1

(
π
√

|mn|
c

)
, mn < 0,

2κ−1πs+κ
2
−1|m+ n|s−

κ
2 (4c)1−2s, mn = 0,m+ n ̸= 0,

22κ−2πκ−1Γ(2s)(8c)1−2s, m = n = 0.
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Hence it follows from (2.11) and (2.10) that for m > 0 and κ < 0

F+
m,κ(τ, 1−

κ

2
) = (−1)κ−1qm +

∑
(−1)νn≡0,1(4)

n>0

bm,κ(n, 1−
κ

2
)nκ−1qn

+ (−1)κ
Γ(1− κ,−4πmy)

Γ(1− κ)
qm

+
∑

(−1)νn≡0,1(4)
n<0

bm,κ(n, 1−
κ

2
)|n|κ−1Γ(1− κ,−4πny)

Γ(1− κ)
qn.

(3.16)

Also, we observe from (3.10) and (3.15) that for any integer k

(3.17) bm, 3
2
−k(−n, s) = −b−m, 1

2
+k(n, s)|mn|−

1
2
+k.

4. Definitions of two Zagier lifts

We define Zagier lift Z+
D as follows: Throughout, we let ν ∈ N>1. If

D is a fundamental discriminant satisfying (−1)νD > 0, then

Z+
D(F−m,2−2ν(τ, ν))(4.1)

=

 F+
0,ν+ 1

2

(τ, ν2 + 1
4), if m = 0,∑

n|m
(
D
n

)
(m/n)νF+

m2

n2 |D|,ν+ 1
2

(τ, ν2 + 1
4), if m ̸= 0.

If D is a fundamental discriminant satisfying (−1)νD < 0, then

Z+
D(F−m,2−2ν(τ, ν))(4.2)

=

{
F+
0,3/2−ν(τ,

ν
2 + 1

4), if m = 0,∑
n|m

(
D
n

)
(m/n)1−νF+

m2

n2 |D|, 3
2
−ν

(τ, ν2 + 1
4), if m ̸= 0.

In [7], Z+
D (for (−1)νD > 0) is defined differently for ν = 2, 3, 4, 5, 7. But

in this paper, we deal with the uniformly defined lift as given in (4.1).
As Poincaré series Fm,2−2ν(τ, ν), (m ∈ Z) span H !

2−2ν for integer ν > 1,

the Zagier lift Z+
D ((−1)νD > 0) gives a function

Z+
D : H !

2−2ν → M !
ν+ 1

2

by Proposition 3.2. The lift Z+
D ((−1)νD < 0)defines a function

Z+
D : H !

2−2ν → H !
3
2
−ν

.
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In order to define the Zagier lifts in [1], we first define the twisted
traces of harmonic weak Maass forms. Recall from (1.1) that for each
fundamental discriminantD > 0 with dD < 0 and a Γ-invariant function
f on H, we define the twisted trace of f by

(4.3) Trd,D(f) =
∑

Q∈Γ\QdD

χ(Q)
f(τQ)

|ΓQ|
.

The Maass raising operator is defined by

(4.4) Rκ = 2i
∂

∂τ
+

κ

y

and Rκ maps a weight κ weak Maass form with eigenvalue λ to a weight
κ + 2 weak Maass form with eigenvalue λ + κ under ∆κ. Hence if we
let Rn

k := Rk+2(n−1) ◦ · · · ◦ Rk+2 ◦ Rk, then for h ∈ H !
2−2ν with ν ≥ 1,

Rν−1
2−2ν(h) is Γ-invariant.
Now for (−1)νd > 0 and (−1)νD < 0, define the modified twisted

traces of h ∈ Hcusp
2−2ν by

(4.5) T̂rd,D(h) := (−1)⌊
ν+1
2

⌋(4π)1−ν |d|
ν−1
2 |D|

−ν
2 Trd,D(R

ν−1
2−2ν(h))

and define

T̂rD,d(h) := −T̂rd,D(h).

Suppose h ∈ Hcusp
2−2ν has the principal part

∑
m<0 c

+
h (m)qm. When

(−1)νD < 0, the Dth Zagier lift of h is defined by

ZD(h)(τ) =
∑
m>0

c+h (−m)
∑
n|m

χD(n)(m/n)νq−
m2

n2 |D|

+
∑

δ:δD<0

T̂rδ,D(h)q
|δ| ∈ M !

ν+ 1
2

.
(4.6)

Remark 4.1. In [3, p.576] and [1, eq.(3.4)], they have m2ν−1 instead
of mν . This difference occurs due to the different definitions of Niebur
Poincaré series as mention in Remark 3.1.

On the other hand, for each pair δ, d with (−1)νδ > 0 and (−1)νd > 0,
the (δ, d)th twisted trace of a cusp form f with weight 2ν is defined in
[1] by
(4.7)

Trδ,d(f) :=
(−1)ν2ν−2

3
√
π

∑
Q∈Γ\Qdδ

(dδ)
1−ν
2 χ(Q)

∫
ΓQ\SQ

f(τ)

Q(τ, 1)1−ν
dτ,
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where the geodesic SQ is defined to be the oriented semi-circle a|τ |2 +
bReτ + c = 0, directed counter-clockwise if a > 0 and clockwise if a < 0.

For h ∈ Hcusp
2−2ν , we may define the modified (δ, d)th twisted trace of

h by

(4.8) T̂rδ,d(h) := (−1)⌊1−
ν
2
⌋(4π)1−ν |d|

ν−1
2 |δ|−

ν
2Trδ,d(ξ2−2ν(h)).

In [1, Theorem 1.1], it is shown that for positive discriminants d and δ,∑
Q∈Γ\Qdδ

(dδ)
1−ν
2 χ(Q)

∫
ΓQ\SQ

ξ2−2ν(h(τ))

Q(τ, 1)1−ν
dτ

= Cν

∑
Q∈Γ\Qdδ

(dδ)
1
2χ(Q)

∫
ΓQ\SQ

Rν−1
2−2ν(h(τ))

Q(τ, 1)
dτ,

(4.9)

where

Cν = −
3Γ(ν+1

2 )

2ν−1Γ(ν − 1
2)Γ(

ν
2 )

.

If h has the principal part
∑

m<0 c
+
h (m)qm and constant coefficient c+h (0),

then the Dth Zagier lift of h when (−1)νD > 0 is defined by

ZD(h)(τ) =
∑
m>0

c+h (−m)
∑
n|m

χD(n)n
ν−1q−

m2

n2 |D|

+
1

2
L(1− ν, χD)c

+
h (0) +

∑
δ:Dδ<0

T̂rδ,D(h)q
|δ|

+
∑

δ:Dδ>0

T̂rδ,D(h)Γ(ν − 1

2
; 4π|δ|y)q−|δ|.

(4.10)

For later use, we define one more notation. For m ∈ Z and two
discriminants d,D with a non-square dD, we define traces for the Niebur
Poincaré series G−m(τ, s) by

T̃rd,D(G−m(τ, s)) :=

(4.11)

{
Trd,D(G−m(τ, s)), if dD < 0,

21−sΓ(s/2)−2Γ(s)π
√
dDTr∗d,D(G−m(τ, s)), if d > 0 and D > 0,

where for a weight 0 function f and positive discriminants d and D,

(4.12) Tr∗d,D(f) :=
1

2π

∑
Q∈Γ\QdD

χ(Q)

∫
ΓQ\SQ

f(τ)

Q(τ, 1)
dτ.
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Suppose that d and D are fundamental discriminants with a non-
square dD and Re(s) > 1. In case m ̸= 0, it is known from [3, p.583]
and [1, Eq.(6.7)] when dD < 0 and [4, proof of Proposition 5] and [1,
Eq.(6.7)] when d,D > 0 that

T̃rd,D(G−m(τ, s)) = π
√
2m 4
√

|dD|
∑

n|m
χD(n)

n1/2

∑
c≡0 (4)

K+
(
d,m

2D
n2 ;c

)
c

×

 Is− 1
2

(
4π
c |

m
n |
√

|Dd|
)
, dD < 0,

Js− 1
2

(
4π
c |

m
n |
√
Dd
)
, dD > 0.

(4.13)

5. Main results

In this section, we find explicit relations between the two lifts ZD and
Z+
D. As ZD is defined only on a harmonic weak Maass form h ∈ Hcusp

2−2ν

and F−m,2−2ν with positive integers m form a basis for Hcusp
2−2ν , it suffices

to compare the values of the lifts on F−m,2−2ν(τ, ν) for positive integers
m.

It follows from Proposition 3.3 that

F−m,2−2ν(τ, ν) = q−m +
(4π)−1+2ν

(−1 + 2ν)!
c−m,2−2ν(0, ν)

+
∑
n>0

c−m,2−2ν(n, ν)n
1−2νqn − Γ(−1 + 2ν, 4πmy)

Γ(−1 + 2ν)
q−m

+
∑
n<0

c−m,2−2ν(n, ν)|n|1−2ν Γ(−1 + 2ν,−4πny)

Γ(−1 + 2ν)
qn.

(5.1)

Applying (1.5) to (5.1), we obtain from (3.12) and (3.10) that

ξ2−2ν(F−m,2−2ν(τ, ν))

=
(4πm)−1+2ν

(−2 + 2ν)!

(
qm −

∑
n>0

c−m,2−2ν(−n, ν)|mn|1−2νqn

)
= (4πm)−1+2ν(2ν − 1)Fm,2ν(τ, ν) ∈ S2ν .

(5.2)

We also observe from [1, Eq.(4.9)] that

Rκ(Fm,κ(τ, s)) = (s+
κ

2
)Fm,κ+2(τ, s),
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which implies with (3.7) that

R−2 ◦R−4 ◦ · · · ◦R2−2ν (F−m,2−2ν(τ, ν))(5.3)

= (ν − 1)!F−m,0(τ, ν) = G−m(τ, ν).

Theorem 5.1. Let D be a fundamental discriminant satisfying
(−1)νD < 0. For positive integers m and odd integer ν ≥ 2, it holds

ξ 3
2
−ν(Z

+
D(F−m,2−2ν(τ, ν))) = −(−4π|D|)−

1
2
+ν

Γ(−1
2 + ν)

ZD(F−m,2−2ν(τ, ν)).

Proof. Note that D > 0. We first compute ZD(F−m,2−2ν(τ, ν)). By
(4.6), (4.5) and (5.3), we have that

ZD(F−m,2−2ν(τ, ν)) =
∑
n|m

χD(n)(m/n)νq−
m2

n2 |D|

+
∑
δ<0

(−1)⌊
ν+1
2

⌋(4π)1−ν |δ|
ν−1
2 |D|−

ν
2Trδ,D(G−m(τ, ν))q|δ| ∈ M !

ν+ 1
2

.

(5.4)

Hence by (4.13),

ZD(F−m,2−2ν(τ, ν))

=
∑
n|m

χD(n)(
m

n
)νq−

m2

n2 |D| +
∑
n|m

χD(n)
∑

δ:δD<0

(−1)⌊
ν+1
2

⌋(4π)1−ν(
√
2π)

× (
m

n
)
1
2 | δ
D
|
ν
2
− 1

4

∑
c≡0 (4)

K+
(
δ, m

2D
n2 ; c

)
c

Iν− 1
2

(
πm
√

|Dδ|
cn

)
q|δ|.

(5.5)

On the other hand, recall from (4.2) that

Z+
D(F−m,2−2ν(τ, ν)) =

∑
n|m

(
D

n

)
(m/n)1−νF+

m2

n2 |D|, 3
2
−ν

(
τ,

ν

2
+

1

4

)
∈ H !

3
2
−ν

.
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Applying (1.5) to (3.16) with m replaced by m2

n2 |D| and κ replaced by
3
2 − ν, we obtain

ξ 3
2
−ν(Z

+
D(F−m,2−2ν(τ, ν)))

(5.6)

= −(−4π|D|)−
1
2
+ν

Γ(ν − 1
2)

∑
n|m

(
D

n

)
(
m

n
)νq−

m2

n2 |D| − (4π)−
1
2
+ν

Γ(ν − 1
2)

∑
n|m

(
D

n

)
(
m

n
)1−ν

×
∑

(−1)1−νδ≡0,1(4)
δ<0

bm2

n2 |D|, 3
2
−ν

(δ,
ν

2
+

1

4
)q−δ ∈ M !

1
2
+ν

.

Hence − Γ(− 1
2
+ν)

(−4π|D|)−
1
2+ν

ξ 3
2
−ν(Z

+
D(F−m,2−2ν(τ, ν))) and ZD(F−m,2−2ν(τ, ν))

both are Z̃D(F−m,2−2ν(τ, ν)) defined in [1, Eq.(3.9)]:

Z̃D(F−m,2−2ν(τ, ν)) =
∑
n|m

(
D

n

)
(
m

n
)νq−

m2

n2 |D| +O(q).

As claimed in [1], there is a unique form of such. So the theorem holds
when ν is odd. Note that when ν is even, D < 0 and δ > 0, but this
case does not occur in (5.6).

Theorem 5.2. Let D be a fundamental discriminant satisfying
(−1)νD > 0. For positive integers m and even integer ν ≥ 2, it holds
(5.7)

ξ 3
2
−ν(ZD(F−m,2−2ν(τ, ν))) = −(ν − 1

2
)
√
4πDν− 1

2Z+
D(F−m,2−2ν(τ, ν)).

Proof. For a fundamental discriminant D with (−1)νD > 0 (in fact
D > 0, because ν is even), we have from (4.1), (3.15), (2.12), (2.13),
(4.11) and (4.13) that
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Z+
D(F−m,2−2ν(τ, ν)) =

∑
n|m

(
D

n

)
(m/n)νF+

m2

n2 D,ν+ 1
2

(τ,
ν

2
+

1

4
)

=
1

Γ(ν + 1
2)

∑
n|m

(
D

n

)
(
m

n
)ν

×

q
m2

n2 D +
∑

(−1)νδ≡0,1(4)
δ>0

bm2

n2 D, 1
2
+ν

(δ,
ν

2
+

1

4
)δν−

1
2 qδ


=

1

Γ(ν + 1
2)

∑
n|m

(
D

n

)
(
m

n
)νq

m2

n2 D

+
∑

(−1)νδ≡0,1(4)
δ>0

(−1)
ν
2D− ν

2 δ
ν
2
− 1

2

Γ(ν + 1
2)

T̃rδ,D(G−m(τ, ν))qδ ∈ S 1
2
+ν ,

(5.8)

where the last equality holds by [7, Theorem 4.1].

On the other hand, we obtain from (5.1) and (4.10) that

ZD(F−m,2−2ν(τ, ν)) =
∑
n|m

χD(n)n
ν−1q−

m2

n2 |D|

+
1

2
L(1− ν, χD)

(4π)−1+2ν

(−1 + 2ν)!
c−m,2−2ν(0, ν)

+
∑

δ:Dδ<0

T̂rδ,D(F−m,2−2ν(τ, ν))q
|δ|

+
∑

δ:Dδ>0

T̂rδ,D(F−m,2−2ν(τ, ν))Γ(ν − 1

2
; 4π|δ|y)q−|δ| ∈ Hcusp

3
2
−ν

.

(5.9)

Hence by (1.5), we have that

ξ 3
2
−ν(ZD(F−m,2−2ν(τ, ν)))

= −
∑

δ:Dδ>0
δ>0

T̂rδ,D(F−m,2−2ν(τ, ν))(4πδ)
ν− 1

2 qδ.(5.10)
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Applying (4.8), (4.7), (4.9), (5.3), (4.12), and (4.11) in turn below, we
find that

T̂rδ,D(F−m,2−2ν(τ, ν))

= (−1)1−
ν
2 (4π)1−νD

ν−1
2 δ−

ν
2Trδ,D(ξ2−2ν(F−m,2−2ν(τ, ν)))

=
(−1)

ν
2 (4π)1−ν2ν−1Γ(ν2 + 1

2)Γ(
ν
2 )√

πΓ(ν − 1
2)Γ(ν)

D
ν
2
− 1

2 δ−
ν
2 T̃rδ,D(G−m(τ, ν))

=
(−1)

ν
2 (4π)1−ν

Γ(ν − 1
2)

D
ν
2
− 1

2 δ−
ν
2 T̃rδ,D(G−m(τ, ν)).

(5.11)

It then follows from (5.10) and (5.11) that

ξ 3
2
−ν(ZD(F−m,2−2ν(τ, ν)))

= −
∑

(−1)νδ≡0,1(4)
δ>0

(−1)
ν
2

√
4π

Γ(ν − 1
2)

D
ν
2
− 1

2 δ
ν
2
− 1

2 T̃rδ,D(G−m(τ, ν))qδ ∈ S 1
2
+ν .

(5.12)

Finally, the theorem follows from (5.8) and (5.12).
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