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A REMARK ON A STABILITY IN MULTI-VALUED

DYNAMICS

Hahng-Yun Chu*, Jong-suh Park**, and Seung Ki Yoo***

Abstract. In this article, we consider the Hyers-Ulam stability in
multi-valued dynamics. We prove the Hyers-Ulam stability for a
cubic set-valued functional equation on multi-valued dynamics by
using several methods.

1. Introduction

The stability problems of functional equations originated from a ques-
tion of Ulam [13] concerning the stability of group homomorphisms. D.
H. Hyers [4] gave a partial answer to the question of S. M. Ulam for Ba-
nach spaces. The Hyer’s theorem was generalized by Aoki [1] for additive
mappings. Th. M. Rassias [12] proved the stability of a linear mapping
by using a Cauchy difference. The stability for set-valued functional
equations has been investigated by a number of authors[2, 3, 7, 8, 11].

It is obvious that the cubic monomial f(x) = ax3(a ∈ R) satisfies the
functional equation

(1.1) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x).

Every solution of (1.1) is called a cubic mapping. Jun and Kim [5] proved
the generalized Hyers-Ulam Rassias stability problem for equation (1.1).
Jun et al. [6] studied the cubic functional equation

f(ax+ y) + f(ax− y) = af(x+ y) + af(x− y) + 2a(a2 − 1)f(x).

Najati and Moradlou[10] considered general solution and investigate the
generalized Hyers-Ulam-Rassias stability problem for an Euler-Lagrange
type cubic functional equation 2mf(x + my) + 2f(mx − y) = (m3 +
m)[f(x+ y) + f(x− y)] + 2(m4 − 1)f(y) with m ̸= 0,±1.
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Let Y be a Banach space. We propose several notations for subfam-
ilies of P(Y ). Let CB(Y ) be the set of all closed bounded subsets of Y
and CC(Y ) the set of all closed convex subsets of Y . Let CBC(Y ) be
the set of all closed bounded convex subsets of Y . For elements A,B of
CC(Y ), we denote A⊕B := A+B. If A is convex, then we obtain that
(α+ β)A = αA+ βA for all α, β ∈ R+.

In this article, we first define a cubic set-valued functional equation
of type (EL),
(1.2)
2kf(x+ky)⊕2f(kx−y) = (k3+k)f(x+y)⊕(k3+k)f(x−y)⊕2(k4−1)f(y)

where k ≥ 2 is an integer. Then we prove the Hyers-Ulam stability
problem for the set-valued functional equation.

2. Stability for a set-valued functional equation

In this section, we deal with the Hyers-Ulam stability for the cubic
set-valued functional equation(1.2) by using direct method and the fixed
point technique. For A,A′ ∈ CB(Y ), the Hausdorff distance dH(A,A′)
between A and A′ is defined by

dH(A,A′) := inf{α ≥ 0| A ⊆ A′ + αBY , A
′ ⊆ A+ αBY },

where BY is the closed unit ball in Y . The following remark is so useful
to compute set-valued equations.

Remark 2.1. Let A,A′, B,B′, C ∈ CBC(Y ) and α > 0. Then we
have that

(1) dH(A⊕A′, B ⊕B′) ≤ dH(A,B) + dH(A′, B′);
(2) dH(αA,αB) = α dH(A,B);
(3) dH(A,B) = dH(A⊕ C, B ⊕ C).

LetX be a real vector space. We define the cubic set-valued functional
equation of type (EL).

Definition 2.2. Let f : X → CBC(Y ) be a mapping and x, y ∈ X.
The cubic set-valued functional equation of type (EL) is defined by

f(2x+ y)⊕ f(2x− y) = 2f(x+ y)⊕ 2f(x− y)⊕ 12f(x).

Every solution of the cubic set-valued functional equation is said to be
a cubic set-valued mapping of type (EL).

In the following theorem, we prove the Hyers-Ulam stability of the
cubic set-valued functional equation of type (EL).
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Theorem 2.3. Let k ≥ 2 be an integer and let ϕ : X2 → [0,∞) be a
function with satisfying the property that for every x, y ∈ X,

∞∑
i=0

1

k3i
ϕ(kix, 0) < ∞, lim

n→∞

1

k3n
ϕ(knx, kny) = 0.(2.1)

Suppose that f : X −→ (CBC(Y ), dH) is a set-valued mapping with
f(0) = {0} and

dH
(
2kf(x+ ky)⊕ 2f(kx− y), (k3 + k)f(x+ y)⊕ (k3 + k)f(x− y)

⊕2(k4 − 1)f(y)
)
≤ ϕ(x, y)(2.2)

for all x, y ∈ X. Then there exists a unique cubic set-valued mapping of
type (EL) T : X → (CBC(Y ), dH) such that

(2.3) dH
(
f(x), T (x)

)
≤ 1

2k3

∞∑
i=0

1

k3i
ϕ(kix, 0)

for all x ∈ X.

Proof. Put y = 0 in (2.2). Thus we have

(2.4) dH
(
2kf(x)⊕ 2f(kx), 2(k3 + k)f(x)⊕ 2(k4 − 1)f(0)

)
≤ ϕ(x, 0)

for all x ∈ X. By remark2.1, we get

(2.5) dH
(
2f(kx), 2k3f(x)

)
≤ ϕ(x, 0)

for all x ∈ X. Divide by 2k3 in (2.5). We get

(2.6) dH
( 1

k3
f(kx), f(x)

)
≤ 1

2k3
ϕ(x, 0)

for all x ∈ X. Replace x by kx and multiply by 1
k3

in (2.6), so we obtain

(2.7) dH
( 1

k6
f(k2x),

1

k3
f(kx)

)
≤ 1

2k6
ϕ(kx, 0)

for all x ∈ X. From (2.6) and (2.7), we have

(2.8) dH
(
f(x),

1

k6
f(k2x)

)
≤ 1

2k3
ϕ(x, 0) +

1

2k6
ϕ(kx, 0)

for all x ∈ X. Using the induction on n, we get
(2.9)

dH
(
f(x),

1

k3n
f(knx)

)
≤ 1

2k3

n−1∑
i=0

1

k3i
ϕ(kix, 0) ≤ 1

2k3

∞∑
i=0

1

k3i
ϕ(kix, 0)
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for all x ∈ X. Divide by k3m in (2.9) and let x by kmx. Thus we obtain

dH
( 1

k3m
f(kmx),

1

k3(n+m)
f(kn+mx)

)
=

1

k3m
dH

(
f(kmx),

1

k3n
f(kn+mx)

)
≤ 1

k3m

∞∑
i=0

1

2k3i
ϕ(km+ix, 0)(2.10)

for all x ∈ X. The right-hand side of the inequality (2.10) tends to
zero as m → ∞. Hence the sequence { 1

k3n
f(knx)} is a Cauchy sequence

in CBC(Y ). From the completeness of CBC(Y ), we define a mapping
T : X → (CBC(Y ), dH) as

T (x) := lim
n→∞

1

k3n
f(knx)

for all x ∈ X. By setting n → ∞ in (2.9), we have the inequality (2.3).
Replacing x by knx and y by kny and dividing by k3n in (2.2), we get

1

k3n
dH

(
2kf(kn(x+ ky) ⊕ 2f(kn(kx− y),

(k3 + k)[f(kn(x+ y) ⊕ f(kn(kx− y)]⊕ 2(k4 − 1)f(kny)
)

≤ 1

k3n
ϕ(knx, kny)(2.11)

for all x, y ∈ X. Taking the limit as n → ∞, we obtain that T satisfies
equation (1.2) for all x, y ∈ X.

To prove uniqueness of the mapping T , let T ′ : X → (CBC(Y ), dH)
be another cubic set-valued mapping of type (EL) satisfying (1.2). Then
we have T ′(knx) = k3nT ′(x) for all x ∈ X and n ∈ N.

dH
(
T (x) , T ′(x)

)
=

1

k3n
dH

(
T (knx), T ′(knx)

)
≤ 1

k3n
(
dH

(
T (knx), f(knx)

)
+ dH

(
f(knx), T ′(knx)

))
(2.12)

≤ lim
n→∞

1

k3n

∞∑
i=0

ϕ(ki+nx, 0)

= 0

for all x ∈ X. Thus we get T (x) = T ′(x) for all x ∈ X which completes
this proof.



A remark on a stability in multi-valued dynamics 145

Remark 2.4. Let ϕ : X2 → [0,∞) be a function with satisfying the
property

∞∑
i=0

k3iϕ(
1

ki
x, 0) < ∞, lim

n→∞
k3nϕ(

1

kn
x,

1

kn
y) = 0 for all x, y ∈ X.

Suppose that f : X −→ (CBC(Y ), dH) is a set-valued mapping with
f(0) = {0} and

dH
(
2kf(x+ ky)⊕ 2f(kx− y), (k3 + k)f(x+ y)⊕ (k3 + k)f(x− y)

⊕2(k4 − 1)f(y)
)
≤ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique cubic set-valued mapping of
type (EL) T : X → (CBC(Y ), dH) such that for each x ∈ X,

dH
(
f(x), T (x)

)
≤ 1

2k3

∞∑
i=1

k3iϕ(
1

ki
x, 0).

Corollary 2.5. Let ϵ ≥ 0, 0 < p < 3 be real numbers. Let f : X →
(CBC(Y ), dH) be a set-valued mapping with satisfying the property
dH

(
2kf(x+ky)⊕2f(kx−y), (k3+k)f(x+y)⊕(k3+k)f(x−y)⊕2(k4−

1)f(y)
)
≤ ϵ(∥x∥p + ∥y∥p) for all x, y ∈ X. Then there exists a unique

cubic set-valued mapping of type (EL)

T : X → (CBC(Y ), dH)

that satisfies (1.2) and dH
(
f(x), T (x)

)
≤ ϵ

2(k3−kp)
∥x∥p for all x ∈ X.

Proof. The result directly follows theorem 2.3 by setting

ϕ(x, y) := ϵ(∥x∥p + ∥y∥p)

for all x, y ∈ X.

Remark 2.6. In the corollary 2.5, we have results by setting p > 3.
That is, we obtain a unique cubic set-valued mapping of type (EL) T
given by

T : X → (CBC(Y ), dH)

that satisfies (1.2) and dH
(
f(x), T (x)

)
≤ ϵ

2(kp−k3)
∥x∥p for all x ∈ X.

Next we investigate the Hyers-Ulam stability of the cubic set-valued
functional equation of type (EL) using the alternative fixed point.
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Lemma 2.7. [9] Let (X, d) be a complete generalized metric space
and let J : X → X be a strictly contractive mapping with Lipschitz
constant L < 1. Then for each element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <

∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y.

Theorem 2.8. Let f : X → (CBC(Y ), dH) be a mapping with
f(0) = {0} such that

dH
(
2kf(x+ ky)⊕ 2f(kx− y), (k3 + k)f(x+ y)⊕ (k3 + k)f(x− y)

⊕2(k4 − 1)f(y)
)
≤ ϕ(x, y)(2.13)

for all x, y ∈ X. Suppose that a function ϕ : X2 → [0,∞] satisfies

(2.14) ϕ(kx, ky) ≤ k3Lϕ(x, y)

for all x, y ∈ X. Then there exists a unique cubic set-valued mapping of
type (EL) T : X → (CBC(Y ), dH) such that

(2.15) dH
(
f(x), T (x)

)
≤ 1

2k3(1− L)
ϕ(x, 0)

for all x ∈ X.

Proof. Setting y = 0 in (2.13) we have

dH
(
2kf(x)⊕ 2f(kx), (k3 + k)f(x)⊕ (k3 + k)f(x)⊕ 2(k4 − 1)f(0)

)
≤ ϕ(x, 0)

for all x ∈ X. By the remark 2.1 , we get

(2.16) dH
( 1

k3
f(kx), f(x)

)
≤ 1

2k3
ϕ(x, 0)

for all x ∈ X. Let S be the set of all mapping g : X → CBC(Y ) with
g(0) = {0}. We define a generalized metric on S given by

d(g1(x), g2(x)) := inf{M ∈ [0,∞)|dH(g1(x), g2(x) ≤ Mϕ(x, 0), x ∈ X},
and also define a mapping J : S → S by

(Jg)(x) :=
1

k3
g(kx)
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for every g ∈ S and x ∈ X. Let M be an arbitrary nonnegative constant
with d(g1(x), g2(x)) ≤ M . Then we have dH(g1(x), g2(x)) ≤ Mϕ(x, 0)
for all x ∈ X. Thus we have

dH
(
(Jg1)(x), (Jg2)(x)

)
=

1

k3
dH

(
g1(kx), g2(kx)

)
≤ 1

k3
Mϕ(kx, 0)

≤ MLϕ(x, 0)

for all x ∈ X. By the definition of the generaizedl metric, we get that
for each g1, g2 ∈ S,

d(Jg1, Jg2) ≤ Ld(g1, g2).

So J is a strictly contractive mapping with the Lipschitz contant L.
Using (2.16), we easily obtain that d(Jf, f) ≤ 1

2k3
. By lemma 2.7, there

exists a unique fixed point T of J given by

T : X → (CBC(Y ), dH) such that Jnf → 0 as n → ∞.

Thus we have T (x) = limn→∞(Jnf)(x) = limn→∞
1

k3n
f(knx) for all

x ∈ X. By lemma 2.7, we also have

d(f, T ) ≤ 1

1− L
d(Jf, f) ≤ 1

2k3(1− L)
.

It follows from (2.13) and (2.14) that

dH
(
2kT (x+ ky) ⊕ 2T (kx− y), (k3 + k)T (x+ y)⊕ (k3 + k)T (x− y)

⊕ 2(k4 − 1)T (y)
)
≤ lim

n→∞

1

2k3n
ϕ(knx, kny) = 0

for all x, y ∈ X. Therefore T : X → (CBC(Y ), dH) is a unique cubic
set-valued mapping of type (EL).

Remark 2.9. Let 0 < p < 3 and θ ≥ 0 be real numbers. Let
f : X → (CBC(Y ), dH) with f(0) = {0} be a mapping satisfying

dH
(
2kf(x+ ky) ⊕ 2f(kx− y), (k3 + k)f(x+ y)⊕ (k3 + k)f(x− y)

⊕ 2(k4 − 1)f(y)
)
≤ θ(∥x∥p + ∥y∥p)

for all x, y ∈ X. Then there exists a unique cubic set-valued map-
ping of type (EL) T : X → (CBC(Y ), dH) such that dH(f(x), T (x)) ≤

θ
2(k3−kp)

∥x∥p for all x ∈ X. Using a similar method, we get the same

result for the case p > 3.
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