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PRINCIPAL COFIBRATIONS AND GENERALIZED

CO-H-SPACES

Yeon Soo Yoon*

Abstract. For a map p : X → A, there are concepts of co-Hp-
spaces, co-T p-spaces, which are generalized ones of co-H-spaces
[17,18]. For a principal cofibration ir : X → Cr induced by r :
X ′ → X from ι : X ′ → cX ′, we obtain some sufficient conditions to
having extensions co-H p̄-structures and co-T p̄-structures on Cr of
co-Hp-structures and co-T p-structures on X respectively. We can
also obtain some results about co-Hp-spaces and co-T p-spaces in
homology decompositions for spaces, which are generalizations of
Golasinski and Klein’s result about co-H-spaces.

1. Introduction

A map f : X → B is cocyclic [13] if there is a map θ : X → X ∨ B
such that jθ ∼ (1× f)∆, where j : X ∨B → X ×B is the inclusion and
∆ : X → X ×X is the diagonal. It is clear that a space X is a co-H-
space if and only if the identity map 1X of X is cocyclic. We called a
space X as a co-Hp-space for a map p : X → A [17] if there is a cocyclic
map p : X → A, that is, there is a co-Hp-structure θ : X → X ∨ A
such that jθ ∼ (1× p)∆, where j : X ∨A → X ×A is the inclusion and
∆ : X → X ×X is the diagonal. It is clear that if X is a co-H-space,
then for any map p : X → A, X is a co-Hp-space. In Example 2.4,
there is a space Qp which is a co-Hδ-space, but not a co-H-space. Let
τ be the adjoint functor from the group [ΣX,Y ] to the group [X,ΩY ].
The symbols e and e′ denote τ−1(1ΩX)and τ(1ΣX) respectively. In [1],
Aguade introduced a T -space as a space X having the property that the

evaluation fibration ΩX → XS1 → X is fibre homotopically trivial. It is
well known [1] that a space X is a T -space if and only if the evaluating
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map e : ΣΩX → X is cyclic. As a dual space of T -space, we introduced
[14] that a space X is a co-T -space if e′ : X → ΩΣX is cocyclic. A space
X is called [5] a G′-space if Gn(X) = Hn(X) for all n. It is clear that
any co-H-space is a co-T -space, and any co-T -space is a G′-space. It is
known [14] that RP 2 is a G′-space, but not a co-T -space. We called a
space X as a co-T p-space for a map p : X → A [18] if e′ : X → ΩΣX
is p-cocyclic, that is, there is a co-T p-structure θ : X → ΩΣX ∨ A such
that jθ ∼ (e′ × p)∆, where j : ΩΣX ∨ A → ΩΣX × A is the inclusion
and ∆ : X → X ×X is the diagonal map. It is shown [18] that X is a
co-T -space if and only if for any space A and any map p : X → A, X
is a co-T p-space for a map p : X → A. We called a space X as a G′

p-
space for a map p : X → A [19] if e′ : X → ΩΣX is weakly p-cocyclic,
that is, e∗(Hn(ΩΣX)) ⊂ Gn(X, p,A) for all n. For a map p : X → A,
there are concepts of co-Hp-spaces, co-T p-spaces and G′

p-spaces which
are generalized ones of co-H-spaces. In general, any co-H-space is a
co-Hp-space, any co-Hp-space is a co-T p-space and any co-T p-space is a
G′

p-space. In [19], we already studied about some properties of G′
p-spaces

for maps and their homology decompositions.

In this paper, we study about relationships between co-Hp-spaces,
co-T p-spaces and their homology decompositions respectively. For a
principal cofibration ir : X → Cr induced by r : X ′ → X from ιX′ :
X ′ → cX ′, we obtain some sufficient conditions to having extendings
co-H p̄-structures and co-T p̄-structures on Cr of Hp-structures and T p-
structures on X respectively. Let X and A be rational spaces and
p : X → A a map, and {Xn, qn, in} and {An, q

′
n, i

′
n} homology decom-

positions for X and A respectively. Then we can obtain that X is a
co-Hp-space for a map p : X → A if and only if for each n, Xn is a
co-Hpn-space and the all pair of k′ invariants (k′n(A), k

′
n(X)) : p̃∗ → pn

are co-Hpn-primitive. Thus we have, as a corollary, that Golasinski
and Klein’s result about co-H-spaces. We can also obtain that X is a
co-T p-space for a map p : X → A if and only if for each n, Xn is a
co-T pn-space and the all pair of k′ invariants (k′n(A), k

′
n(X)) : p̃∗ → pn

are co-T pn-primitive.

2. Dual Gottlieb sets for maps and generalized co-H-spaces

Let p : X → A be a map. A based map f : X → B is called p-cocyclic
[10] if there is a map θ : X → A ∨B such that the following diagram is
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homotopy commutative;

X
θ−−−−→ A ∨B

∆

y j

y
X ×X

(p×f)−−−−→ A×B,

where j : A ∨ B → A × B is the inclusion and ∆ : X → X ×X is the
diagonal map. We call such a map θ a coassociated map of a p-cocyclic
map f .

In the case p = 1X : X → X, f : X → B is called cocyclic
[13]. Clearly any cocyclic map is a p-cocyclic map and also f : X →
B is p-cocyclic iff p : X → A is f -cocyclic. The dual Gottlieb set
DG(X, p,A;B) for a map p : X → A [16] is the set of all homotopy
classes of p-cocyclic maps from X to B. In the case p = 1X : X → X,
we called such a set DG(X, 1, X;B) the dual Gottlieb set [13] denoted
DG(X;B), that is, the dual Gottlieb set is exactly same with the dual
Gottlieb set for the identity map. We denote DG(X, p,A;K(π, n)) by
Gn(X, p,A;π) andDG(X, p,A;K(Z, n)) byGn(X, p,A),DG(X;K(Z, n))
byGn(X). Haslam [5] introduced and studied the coevaluation subgroups
Gn(X;π) of Hn(X;π). Gn(X;π) is defined to be the set of all homotopy
classes of cocyclic maps from X to K(π, n). A space X is called [5] a
G′-space if Gn(X) = Hn(X) for all n.

In general, DG(X;B) ⊂ DG(X, p,A;B) ⊂ [X,B] for any map p :
X → B and any space B. It is known [16] that for any n, Gn(Sn ×
Sn;Z) ̸= Gn(Sn × Sn, p1, S

n;Z) ̸= Hn(Sn × Sn;Z).
The next proposition is an immediate consequence from the defini-

tion.

Proposition 2.1. [17]
(1) For any maps g : X → A, h : A → B and any space C,DG(X, g,A;C) ⊂
DG(X,hg,B;C).
(2) DG(X,B) = DG(X, 1X , X;B) ⊂ DG(X, g,A;B) ⊂ DG(X, ∗, A;B) =
[X,B] for any spaces X,A and B.
(3) DG(X,B) = ∩{DG(X, g,A;B)|g : X → A is a map and A is a
space}.
(4) If h : A → B is a homotopy equivalence, then DG(X, g,A;C) =
DG(X,hg,B; c).
(5) For any map k : Y → X, k∗(DG(X, g,A;B)) ⊂ DG(Y, gk,A;B).
(6) For any map k : Y → X, k∗(DG(X;B)) ⊂ DG(Y, k,X;B).
(7) For any map s : B → C, s∗(DG(X, g,A;B)) ⊂ DG(X, g,A;C).
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Proposition 2.2.
(1) [9] X is a co-H-space ⇐⇒ DG(X,B) = [X,B] for any space B.
(2) [14] X is a co-T -space ⇐⇒ DG(X,ΩC) = [X,ΩC] for any space C.
(3) [5] X is a G′-space ⇐⇒ Gn(X) = Hn(X) for all n.

It is clear that any co-H-space is a co-T -space and any co-T -space is a
G′-space. It is known [14] that RP 2 is a G′-space, but not a co-H-space
and co-T -space.

Proposition 2.3. Let p : X → A be a map. Then
(1) [17] X is a co-Hp-space ⇐⇒ DG(X, p,A;B) = [X,B] for any space
B.
(2) [18]X is a co-T p-space⇐⇒DG(X, p,A; ΩC) = [X,ΩC] for any space
C.
(3) [19] X is a G′

p-space ⇐⇒ Gn(X, p,A) = Hn(X) for all n.

Thus we know that any co-H-space is a co-Hp-space, any co-Hp-
space is a co-T p-space and any co-T p-space is a G′

p-space for any map
p : X → A.

The following example says that there is a space which is a co-Hp-
space, but not a co-H-space.

Example 2.4. For any odd prime p, let [f ] be the generator of p-
primary summand of π4p−3(S

2) which is isomorphic Z/pZ. Then it is
known [7] that for Qp = S2 ∪f e4p−2, cat Qp = 2. It is also well known
fact that a space X is a co-H-space if and only if cat X ≤ 1. Thus
we know that Qp is not a co-H-space. It is also known [6, Proposition

15.8] that for a cofibration sequence S4p−3 f→ S2 i→ Qp
δ→ S4p−2→· · · ,

δ : Qp → S4p−2 is a cocyclic map. Moreover, it is known [16] that
p : X → A is a cocyclic map if and only if DG(X, p,A;B) = [X,B] for
any space B. Thus we know that Qp is a co-Hδ-space.

3. Principal cofibrations and generalized co-H-spaces

Given maps p : X → A, p′ : X ′ → A′, let (s, r) : p′ → p be a map
from p′ to p, that is, the following diagram is commutative;

X ′ p′−−−−→ A′

r

y s

y
X

p−−−−→ A.
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It is a well known fact that Y
ι→ cY → ΣY is a cofibration, where

ι(y) = [y, 1]. Let ir : X → Cr be the cofibration induced by r : X ′ → X
from ιX′ : X ′ → cX ′. Let is : A → Cs be the cofibration induced by
s : A′ → A from ιA′ : A′ → cA′. Then there is a map p̄ : Ct → Cs such
that the following diagram is commutative

X
p−−−−→ A

ir

y is

y
Cr

p̄−−−−→ Cs,

where Cr = cX ′ ⨿X/[x′, 1] ∼ r(x′), and Cs = cA′ ⨿A/[a′, 1] ∼ s(a′), p̄ :
Cr → Cs is given by p̄([x′, t]) = [p′(x′), t] if [x′, t] ∈ cX ′ and p̄(x) = p(x)
if x ∈ X, ir(x) = x, is(a) = a.

Definition 3.1. Let X be a co-Hp-space for a map p : X → A.
A map (s, r) : p′ → p is called a co-Hp-primitive if there is a map
θ : X → A∨X such that jθ ∼ (p×1)∆ and (is∨ir)θr ∼ ∗ : X ′ → Cs∨Cr,
where j : A ∨X → A×X is the inclusion.

Definition 3.2. Let X be a co-T p-space for a map p : X → A.
A map (s, r) : p′ → p is called a co-T p-primitive if there is a map
θ : X → A ∨ ΩΣX such that jθ ∼ (p × e′)∆ and (is ∨ ΩΣir)θr ∼ ∗ :
X ′ → Cs ∨ ΩΣCr, where j : A ∨ ΩΣX → A× ΩΣX is the inclusion.

Definition 3.3. [19] Let X be a G′
p-space for a map p : X → A. A

map (s, r) : p′ → p is called a G′
p-primitive if for each map g : ΩΣX →

K(Z,m), m arbitrary, there is a map G : X → A ∨K(Z,m) such that
jG ∼ (p × g ◦ e′X)∆ and (is ∨ 1)Gr ∼ ∗ : X ′ → Cs ∨ K(Z,m), where
j : A ∨K(Z,m) → A×K(Z,m) is the inclusion and e′X : X → ΩΣX is
the adjoint functor image, τ(1ΣX), of 1ΣX .

Proposition 3.4.
(1) If X is a co-Hp-space for a map p : X → A and (s, r) : p′ → p is a
co-Hp-primitive, then (s, r) : p′ → p is a co-T p-primitive.
(2) If X is a co-T p-space for a map p : X → A and (s, r) : p′ → p is a
co-T p-primitive, then (s, r) : p′ → p is a G′

p-primitive.

Proof.
(1) Since (s, r) : p′ → p is a co-Hp-primitive, there is a map θ : X →
A ∨ X such that jθ ∼ (p × 1)∆ and (is ∨ ir)θr ∼ ∗ : X ′ → Cs ∨ Cr,
where j : A ∨ X → A × X is the inclusion. Let θ′ = (1 ∨ e′)θ : X →
A ∨ ΩΣX. Then j′θ′ ∼ (1 × e′)jθ ∼ (1 × e′)(p × 1)∆ = (p × e′)∆,
where j′ : A ∨ ΩΣX → A × ΩΣX is the inclusion. Moreover, since
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(is ∨ ΩΣir)(1 ∨ e′X) ∼ (1 ∨ e′Cr
)(is ∨ ir) : A ∨X → Cs ∨ ΩΣCr, we have

that (is ∨ ΩΣir)θ
′r ∼ (is ∨ ΩΣir)(1 ∨ e′X)θr ∼ (1 ∨ e′Cr

)(is ∨ ir)θr ∼
(1 ∨ e′Cr

)∗ ∼ ∗. Thus (s, r) : p′ → p is a co-T p-primitive.

(2) Since (s, r) : p′ → p is a co-T p-primitive, there is a map θ : X → A ∨
ΩΣX such that jθ ∼ (p×e′)∆ and (is∨ΩΣir)θr ∼ ∗ : X ′ → Cs∨ΩΣCr,
where j : A ∨ ΩΣX → A × ΩΣX is the inclusion. For any m, each
g : ΩΣX → K(Z,m), let θ′ = (1 ∨ g)θ : X → A ∨ K(Z,m). Then
j′θ′ ∼ (1×g)jθ ∼ (1×g)(p×e′)∆ = (p×ge′)∆, where j′ : A∨K(Z,m) →
A ×K(Z,m) is the inclusion. Moreover, since (1 ∨ ΩΣg)(is ∨ ΩΣir) ∼
(is ∨ 1)(1∨ g) : A∨ΩΣX → Cs ∨ΩΣK(Z,m), we have that (is ∨ 1)θ′r =
(is ∨ 1)(1 ∨ g)θr ∼ (1 ∨ ΩΣg)(is ∨ ΩΣir)θr ∼ (1 ∨ ΩΣg)∗ ∼ ∗. Thus
(s, r) : p′ → p is a G′

p-primitive.

Lemma 3.5.
(1) A map f : X → B can be extended to a map h : Cr → B with
hir = f if and only if fr ∼ ∗.
(2) [15] Given maps gt : Cr → Bt(t = 1, 2) and g : Cr → B1 ∨ B2

satisfying ptjgir ∼ gtir(t = 1, 2), then there is a map h : Cr → B1 ∨ B2

such that gir = hir and ptjh ∼ gt(t = 1, 2), where j : B1∨B2 → B1×B2

is the inclusion and pt : B1 ×B2 → Bt, t = 1, 2 are projections.

Theorem 3.6.
(1) If X is a co-Hp-space for a map p : X → A and (s, r) : p′ → p is
co-Hp-primitive, then Cr is a co-H p̄-space for a map p̄ : Cr → Cs.
(2) If X is a co-T p-space for a map p : X → A and (s, r) : p′ → p is
co-T p-primitive, then Cr is a co-T p̄-space for a map p̄ : Cr → Cs.

Proof.
(1) Since (s, r) : p′ → p is a co-Hp-primitive, there is a map θ : X → A∨X
such that jθ ∼ (p × 1)∆ and (is ∨ ir)θr ∼ ∗ : X ′ → Cs ∨ Cr, where
j : A ∨ X → A × X is the inclusion. From Lemma 3.5(1), there is an
extending θ′ : Cr → Cs ∨ Cr of (is ∨ ir) ◦ θ : X → Cs ∨ Cr, that is,
θ′ ◦ ir = (is ∨ ir) ◦ θ. Then we have that p1j

′θ′ir = p1j
′(is ∨ ir)θ =

p1(is × ir)jθ ∼ p1(is × ir)(p × 1)∆ = is ◦ p ∼ p̄ ◦ ir and p2j
′θ′ir =

p2j
′(is ∨ ir)θ = p2(is × ir)jθ ∼ p2(is × ir)(p× 1)∆ ∼ ir ∼ 1Cr ◦ ir. Thus

we have, from Lemma 3.5(2), that there is a map θ̄ : Cr → Cs ∨Cr such
that θ̄ir = θ′ir = (is ∨ ir)θ and p1j

′θ̄ ∼ p̄ and p2j
′θ̄ ∼ 1Cr . Thus we

know that 1 : Cr → Cr is p̄-cocyclic and Cr is a co-H p̄-space for a map
p̄ : Cr → Cs. This proves the theorem.
(2) Since (s, r) : p′ → p is a co-T p-primitive, there is a map θ : X →
A ∨ ΩΣX such that jθ ∼ (p × e′)∆ and (is ∨ ΩΣir)θr ∼ ∗ : X ′ →
Cs∨ΩΣCr, where j : A∨ΩΣX → A×ΩΣX is the inclusion. From Lemma
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3.5(1), there is an extending θ′ : Cr → Cs ∨ ΩΣCr of (is ∨ ΩΣir) ◦ θ :
X → Cs ∨ ΩΣCr, that is, θ′ ◦ ir = (is ∨ ΩΣir) ◦ θ. Then we have that
p1j

′θ′ir = p1j
′(is∨ΩΣir)θ = p1(is×ΩΣir)jθ ∼ p1(is×ΩΣir)(p×e′)∆ =

is ◦ p ∼ p̄ ◦ ir and p2j
′θ′ir = p2j

′(is ∨ ΩΣir)θ = p2(is × ΩΣir)jθ ∼
p2(is × ΩΣir)(p × e′)∆ ∼ ΩΣire

′
X ∼ e′Cr

◦ ir. Thus we have, from

Lemma 3.5(2), that there is a map θ̄ : Cr → Cs ∨ ΩΣCr such that
θ̄ir = θ′ir = (is ∨ΩΣir)θ and p1j

′θ̄ ∼ p̄ and p2j
′θ̄ ∼ e′Cr

. Thus we know

that e′Cr
: Cr → ΩΣCr is p̄-cocyclic and Cr is a co-T p̄-space for a map

p̄ : Cr → Cs. This proves the theorem.

In 1959, Eckmann and Hilton [2] introduced a dual concept of Post-
nikov system as follows; A homology decomposition of X consists of
a sequence of spaces and maps {Xn, qn, in} satisfying (1) qn : Xn →
X induces an isomorphism (qn)∗ : Hi(Xn) → Hi(X) for i ≤ n and
Hi(Xn) = 0 for i > n, (2) in : Xn → Xn+1 is a cofibration with cofiber
M(Hn+1(X), n)( a Moore space of type (Hn+1(X), n)), (3) qn ∼ qn+1◦in.
It is known by [6] that if X be a 1-connected space having the ho-
motopy type of CW complex, then there is a homology decomposition
{Xn, qn, in} of X such that in : Xn → Xn+1 is the principal cofibra-
tion induced from ι : M(Hn+1(X), n) → cM(Hn+1(X), n) by a map
κ′n : M(Hn+1(X), n) → Xn which is called the dual Postnikov invariants.
A space X is called a rational space [11] if X is a 1-connected space hav-
ing homotopy type of a CW -complex such that for each n > 0, Hn(X,Z)
is a finite dimensional vector space over Q. It is well known [11] that if
X and A are rational spaces and p : X → A is a based map, then there
exist homology decompositions {Xn, qn, in} and {An, q

′
n, i

′
n} for X and

A respectively and induced maps {pn : Xn → An} satisfying
(1) for each n, the following diagram is homotopy commutative

M(Hn+1(X), n)
p̃∗−−−−→ M(Hn+1(A), n)

k′n(X)

y k′n(A)

y
Xn

pn−−−−→ An

, that is, (k′n(A), k
′
n(X)) : p̃# → pn is a map,

(2) pn+1 : Xn+1 → An+1 given by pn+1 = p̄n satisfying commute
diagram

Xn
pn−−−−→ An

in(=ιk′n(X))

y i′n(=ιk′n(A))

y
Xn+1

pn+1−−−−→ An+1,
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(3) for each n, the following diagram is homotopy commutative

Xn
pn−−−−→ An

qn

y q′n

y
X

p−−−−→ A.

Theorem 3.7. Let X and A be rational spaces and p : X → A a
map, and {Xn, qn, in} and {An, q

′
n, i

′
n} homology decompositions for X

and A respectively.
(1) If X is a co-Hp-space for a map p : X → A, then each Xn is a co-
Hpn-space and the all pair of k′ invariants (k′n(A), k′n(X)) : p̃∗ → pn are
co-Hpn-primitive.
(2) If Xn−1 is a co-Hpn−1-space and the pair of k′-invariants
(k′n−1(A), k

′
n−1(X)) : p̃∗ → pn−1 is co-Hpn−1-primitive, then Xn is a

co-Hpn-space.

Proof. (1) Since X is a co-Hp-space for a map p : X → A, there is
a map θ : X → A∨X such that jθ ∼ (p×1)∆, where j : A∨X →
A×X is the inclusion. Then {An∨Xn, q

′
n∨qn, i

′
n∨ in} is a homol-

ogy decomposition for A ∨X. Then we have, by Toomer’s result
[12,Theorem 4], that there are families of maps pn : Xn → An and
θn : Xn → An ∨ Xn such that i′npn = pn+1in and q′npn ∼ pqn,
and (i′n ∨ in)θn = θn+1in and (q′n ∨ qn)θn ∼ θqn for n = 2, 3, · · ·
respectively, and k′n(A)p̃∗ ∼ pnk

′
n(X) : M(Hn+1(X), n) → An and

(k′n(A)∨ k′n(X)θ̃∗ ∼ θnk
′
n(X) : M(Hn+1(X), n) → An ∨Xn, where

k′n(A) : M(Hn+1(A), n) → An, k′n(X) : M(Hn+1(X), n) → Xn

are k′-invariants of A and X respectively, p̃∗ : M(Hn+1(X), n) →
M(Hn+1(A), n) and θ̃∗ : M(Hn+1(X), n) → M(Hn+1(A∨X), n) ≈
M(Hn+1(A) ⊕ Hn+1(X), n) ≈ M(Hn+1(A), n) ∨ M(Hn+1(X), n)
are the induced maps by p : X → A and θ : X → A ∨ X re-
spectively. It is known [12] that the homology decomposition of a
rational space is well defined up to homotopy type. Thus we know
that if f ∼ g : X → A, then fn ∼ gn : Xn → An. Since p1jθ ∼ p
and p2jθ ∼ 1, we know that p1jnθn ∼ pn and p2jnθn ∼ 1. Thus
for each n, there exists a co-Hp-structure θn : Xn → An∨Xn such
that jnθn ∼ (pn × 1)∆, where jn : An ∨ Xn → An × Xn is the
inclusion and pn : Xn → An is an induced map from p : X → A,
and Xn is a co-Hpn-space. Moreover, since there is an extension
θn+1 : Xn+1 → An+1 ∨Xn+1 of θn such that θn+1in = (i′n ∨ in)θn,
we know, from Lemma , that (i′n∨ in)θnk

′
n(X) ∼ ∗ and all the pair

of k′ invariants (k′n(A), k
′
n(X)) : p̃∗ → pn are co-Hpn-primitive.
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(2) It follows from Theorem 3.6 (1).

Observe that X and A are homotopy types of the direct limits lim−→Xn

and lim−→An respectively. Moreover, since each Xn a co-Hpn-space and

all pair of k′ invariants (k′n(A), k
′
n(X)) : p̃∗ → pn are co-Hpn-primitive,

we see that X admit a co-Hp-structure. Thus we have the following
corollary.

Corollary 3.8. Let X and A be rational spaces and p : X → A
a map, and {Xn, qn, in} and {An, q

′
n, i

′
n} homology decompositions for

X and A respectively. Then X is a co-Hp-space for a map p : X → A
if and only if for each n, Xn is a co-Hpn-space and the all pair of k′

invariants (k′n(A), k′n(X)) : p̃∗ → pn are co-Hpn-primitive.

Taking p = 1Xn , p′ = 1M(Hn+1(X),n), r = s = k′n(X), we can ob-
tain, from the fact that in : Xn → Xn+1 is a co-H-map if and only if
(k′n(X), k′n(X)) : 1 → 1Xn is co-H-primitive and the above corollary, the
following corollary given by Golasinski and Klein [3] for rational spaces.

Corollary 3.9. [3] Let X be a rational space and {Xn, qn, in} a
homology decomposition for X. Then X is n co-H-space if and only if
for each Xn there exists such a co-H-structure that in : Xn → Xn+1 is
a co-H-map.

Theorem 3.10. Let X and A be rational spaces and p : X → A a
map, and {Xn, qn, in} and {An, q

′
n, i

′
n} homology decompositions for X

and A respectively.
(1) If X is a co-T p-space for a map p : X → A, then each Xn is a co-
T pn-space and the all pair of k′ invariants (k′n(A), k

′
n(X)) : p̃∗ → pn are

co-T pn-primitive.
(2) If Xn−1 is a co-T pn−1-space and the pair of k′-invariants
(k′n−1(A), k

′
n−1(X)) : p̃∗ → pn−1 is co-T pn−1-primitive, then Xn is a

co-T pn-space.

Proof. (1) Since X is a co-T p-space for a map p : X → A, there
is a map θ : X → A ∨ ΩΣX such that jθ ∼ (p × e′)∆, where
j : A∨ΩΣX → A×ΩΣX is the inclusion. Then {An∨ΩΣXn, q

′
n∨

ΩΣqn, i
′
n ∨ ΩΣin} is a homology decomposition for A ∨ ΩΣX.

Then we have, by Toomer’s result [15,Theorem 4], that there are
families of maps pn : Xn → An and θn : Xn → An ∨ ΩΣXn

such that i′npn = pn+1in and q′npn ∼ pqn, and (i′n ∨ ΩΣin)θn =
θn+1in and (q′n ∨ ΩΣqn)θn ∼ θqn for n = 2, 3, · · · respectively,
and k′n(A)p̃∗ ∼ pnk

′
n(X) : M(Hn+1(X), n) → An and (k′n(A) ∨



138 Yeon Soo Yoon

k′n(ΩΣX)θ̃∗ ∼ θnk
′
n(X) : M(Hn+1(X), n) → An ∨ ΩΣXn, where

k′n(A) : M(Hn+1(A), n) → An, k′n(X) : M(Hn+1(X), n) → Xn

are k′-invariants of A and X respectively, p̃∗ : M(Hn+1(X), n) →
M(Hn+1(A), n) and θ̃∗ : M(Hn+1(X), n) → M(Hn+1(A∨ΩΣX), n) ≈
M(Hn+1(A)⊕Hn+1(ΩΣX), n) ≈ M(Hn+1(A), n)∨M(Hn+1(ΩΣX), n)
are the induced maps by p : X → A and θ : X → A ∨ ΩΣX
respectively. It is known [12] that the homology decomposition
of a rational space is well defined up to homotopy type. Thus
we know that if f ∼ g : X → A, then fn ∼ gn : Xn → An.
Since p1jθ ∼ p and p2jθ ∼ e′, we know that p1jnθn ∼ pn and
p2jnθn ∼ e′Xn

. Thus for each n, there exists a co-T p-structure
θn : Xn → An ∨ ΩΣXn such that jnθn ∼ (pn × e′Xn

)∆, where
jn : An∨ΩΣXn → An×ΩΣXn is the inclusion and pn : Xn → An is
an induced map from p : X → A, and Xn is a co-T pn-space. More-
over, since there is an extension θn+1 : Xn+1 → An+1 ∨ ΩΣXn+1

of θn such that θn+1in = (i′n ∨ ΩΣin)θn, we know, from Lemma
, that (i′n ∨ ΩΣin)θnk

′
n(X) ∼ ∗ and all the pair of k′ invariants

(k′n(A), k
′
n(X)) : p̃∗ → pn are co-T pn-primitive.

(2) It follows from Theorem 3.6(2).

Observe that X and A are homotopy types of the direct limits lim−→Xn

and lim−→An respectively. Moreover, since each Xn a co-T pn-space and

all pair of k′ invariants (k′n(A), k
′
n(X)) : p̃∗ → pn are co-T pn-primitive,

we see that X admit a co-T p-structure. Thus we have the following
corollary.

Corollary 3.11. Let X and A be rational spaces and p : X → A a
map, and {Xn, qn, in} and {An, q

′
n, i

′
n} homology decompositions for X

and A respectively. Then X is a co-T p-space for a map p : X → A if and
only if for each n, Xn is a co-T pn-space and the all pair of k′ invariants
(k′n(A), k

′
n(X)) : p̃∗ → pn are co-T pn-primitive.
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