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SHADOWING PROPERTY ON MULTI-VALUED

DYNAMICAL SYSTEMS

Hahng-Yun Chu*, Se-Hyun Ku**, and Jong-Suh Park***

Abstract. In this article, we study various notions on multi-valued
dynamical systems. We first investigate important tools to express
the systems, and prove that the notion of chain recurrence is equiv-
alent to the notion of nonwandering set on compact metric spaces.

1. Introduction

The study for generalization of the theory of original dynamical sys-
tems to the theory of multi-valued dynamical systems interests with ad-
vent of control theory. In recent decades, such dynamical systems were
investigated in several papers and to know more about the systems, see
[1, 2, 3, 5, 6].

In this article, we mainly focus on the concepts of recurrence and
shadowing property on multi-valued dynamical systems. Now we first
introduce the precise definitions which are used in the statements of our
results.

Let X be a compact metric space with a metric d and f be a mapping
from the space X into its power set 2X . A compact-valued mapping f
on X is a set-valued mapping on X with the property that f(x) is a
compact subset of X for all x ∈ X. As a sense of relation, the transpose
of f is the relation {(y, x) ∈ X×X| (x, y) ∈ f} and denoted by f t. Note
that (f t)t = f . If f is a map on X, for a subset S of X, we easily have
that f t(S) = f−1(S) where f−1(S) is the preimage of S under f .
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For an element x of X, a set-valued mapping f is upper semicontin-
uous at x if for every ε > 0, there exists δ > 0 such that d(x, x1) <
δ implies f(x1) ⊆ B(f(x), ε). Here, B(f(x), ε) is an open ε-ball of
the compact set f(x). A set-valued mapping f is lower semicontinu-
ous at x if for every ε > 0, there exists δ > 0 such that d(x, x1) <
δ implies f(x) ⊆ B(f(x1), ε), where B(f(x1), ε) is also an open ε-ball of
f(x1). We define that a set-valued mapping f is continuous at x if f is
both upper semicontinuous at x and lower semicontinuous at x. Note
that a compact-valued continuous mapping has a closed graph on the
product space X ×X.

2. Shadowing in multi-valued dynamics

Let f be a compact-valued continuous mapping on a compact space
X and ε a continuous function from X to R+ = (0,∞). Then we can
define the functions m(ε, f) and M(ε, f) from X to R+ given by

m(ε, f)(x) := min ε(f(x)) and M(ε, f)(x) := max ε(f(x))

for all x ∈ X. We denote

P(X) := {ε : X −→ (0,∞) | ε is continuous }.

Note that m(ε, f) ∈ P(X) and M(ε, f) ∈ P(X). See [3].

Lemma 2.1. Let f be a compact-valued continuous mapping on a
compact metric space X. Then fn is also a compact-valued continuous
mapping on X for all n ∈ N.

Proof. Using Corollary 2.1 in [3], it is directly obtained.

Let F(X) be the set of all nonempty closed subsets in (X, d). For
(A,B) ∈ F(X)×F(X), we define

h(A,B) := sup{d(x,B)|x ∈ A}

and

D(A,B) := max{h(A,B), h(B,A)}.
The number h(A,B) is called the Hausdorff semidistance of A from B
and the number D(A,B) is called the Hausdorff distance between A and
B in F(X). The following two lemmas play so important role to prove
our main theorems.
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Lemma 2.2. Let f be a compact-valued continuous mapping on a
compact metric space X. For every ε ∈ P(X), there is an element δ
in P(X) such that d(x, y) < δ(x) implies 2

3ε(x) < ε(y) < 2ε(x) and
D(f(x), f(y)) < m(ε, f)(x).

Proof. Combining Lemma 2.6 and Lemma 2.9 in [2], we easily prove
it.

Lemma 2.3. Let f and f t be compact-valued continuous mappings
on a compact metric space X. Then for every ε ∈ P(X), there exists
η ∈ P(X) such that M(η, f)(x) ≤ m(ε, f)(x) for all x ∈ X.

Proof. See Lemma 2.10 in [2].

From now on, we assume that f is a compact-valued continuous map-
ping on a compact space X.

Let ε ∈ P(X). Ψ = (x0, · · · , xn) is an ε-chain for f provided that its
length n is at least 1 and that d(xi, f(xi−1)) < m(ε, f)(xi−1) for every
i with 1 ≤ i ≤ n. A point x is chain recurrent provided that for every
ε ∈ P(X), there exists an ε-chain from x to x. We denote that CR(f) is
the set of all chain recurrent points. A point x is nonwandering for f if
for every neighborhood U of x and positive integer T , there is a positive
integer n with n > T such that fn(U) ∩ U ̸= ∅. We denote the set of
all nonwandering points for f in X by Ω(f). A point x is periodic for f
with period n if x ∈ fn(x) and x ∈ fm(x) implies m ≥ n. We denote
the set of all periodic points in X by Per(f).

Remark 2.4. For a set-valued mapping f from a topological space,
it is clear that Per(f) ⊆ Ω(f).

For δ ∈ P(X), a sequence {xi}i∈Z in X is called a δ-pseudo orbit if

d(f(xi), xi+1) < m(δ, f)(xi)

for all i in Z. For an ε ∈ P(X), {xn : n ∈ Z} is said to be ε-traced by x if
d(fn(x), xn) < m(ε, fn)(x) for all n ∈ Z. A compact-valued continuous
mapping f has shadowing property if for every ε ∈ P(X), there exists
δ ∈ P(X) such that any δ-pseudo orbit for f can be ε-traced by some
point of X.

Theorem 2.5. Let f be a compact-valued continuous mapping on a
compact metric space. If f satisfies shadowing property, then CR(f) ⊆
Ω(f).
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Proof. Let x ∈ CR(f). Let U be a neighborhood of x and T be
a positive integer. We can choose a positive real number ε such that
B(x, ε) ⊆ U . So ε ∈ P(X ) as a constant mapping. Since f has shad-
owing property, there exists δ in P(X ) such that every δ-pseudo orbit
for f can be ε-traced by some point of X. Since x ∈ CR(f), there is a
δ-chain {x = x0, x1, · · · , xm = x} for f . For j ∈ Z, we define

xj
′ = xi

where j = i (mod m), i = 0, 1, 2, ....,m− 1. Then {x′j}i∈Z is a δ-pseudo
orbit for f . Since f has shadowing property, there is an element z of X
such that

d(f j(z), xj
′) < m(δ, f j)(z) = δ

for all j ∈ Z. Note that z ∈ B(x, δ). Thus we get that for every positive
integer n,

d(fmn(z), x) = d(fmn(z), xmn
′) < δ.

Then we obtain that

∅ ̸= fmn(z) ∩B(x, δ) ⊆ fmn(B(x, δ)) ∩B(x, δ).

Hence we can choose a positive integer n0 with mn0 > T such that
fmn0(U) ∩ U ̸= ∅. Then we have x ∈ Ω(f) which completes this proof.

Theorem 2.6. Let f and f t be compact-valued continuous mappings
on a compact metric space. Then Ω(f) ⊆ CR(f).

Proof. Let x ∈ Ω(f) and ε ∈ P(X). By Lemma 2.3, there is an
element η of P(X) such that

M(η, f)(x) ≤ 2

3
m(ε, f)(x)

for all x ∈ X. Using Lemma 2.2, we can pick an element δ of P(X) such
that d(x, y) < δ(x) implies

D(f(x), f(y)) < m(ε, f)(x)

and
2

3
η(x) < η(y).

Without loss of generality, we can assume that δ < η. From the fact
that x ∈ Ω(f), there is a positive integer n such that

fn(B(x, δ(x))) ∩B(x, δ(x)) ̸= ∅.

So we can pick an element z of fn(B(x, δ(x))) ∩ (B(x, δ(x)).
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Now we construct an ε-chain from x to itself. From the choice of z,
we can pick up elements x0, x1, · · · , xn−1 of X such that

(1) x0 ∈ B(x, δ(x)),
(2) xi ∈ f(xi−1) for i = 1, 2, 3, · · · , n− 1,
(3) z ∈ f(xn−1).

Since d(x, x0) < δ(x), we get that

d(f(x), x1) < D(f(x), f(x0)) < m(ε, f)(x).

And it is also clear that d(f(xi−1), xi) = 0 < m(ε, f)(xi−1). From (3),
d(f(xn−1), x) ≤ d(z, x). Thus we have that

d(f(xn−1), x) ≤ d(z, x) < δ(x)

< η(x) <
3

2
η(z)

<
3

2
M(η, f)(xn−1)

< m(ε, f)(xn−1).

So we conclude that {x, x1, ....xn−1, x} is an ε-chain from x to x.
Hence x ∈ CR(f) which completes the proof.

Remark 2.7. Let f and f t be compact-valued continuous mappings
on a compact metric space X. Then Per(f) ⊆ Ω(f) ⊆ CR(f).

Using Theorem 2.5 and Theorem 2.6, we directly obtain the following
Corollary.

Corollary 2.8. Let f and f t be compact-valued continuous map-
pings on a compact metric space. If f has shadowing property, then
Ω(f) = CR(f).
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