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STABILITY OF AN ADDITIVE FUNCTIONAL

INEQUALITY IN BANACH SPACES

Sang-Cho Chung*

Abstract. In this paper, we prove the generalized Hyers-Ulam
stability of the additive functional inequality

∥f(x1+x2)+f(x2+x3)+· · ·+f(xn+x1)∥ ≤ ∥tf(x1+x2+· · ·+xn)∥
in Banach spaces where a positive integer n ≥ 3 and a real number
t such that 2 ≤ t < n.

1. Introduction and preliminaries

In 1940, S.M. Ulam [5] suggested the stability problem of functional
equations concerning the stability of group homomorphisms as follows:
Let (G, ◦) be a group and let (H, ⋆, d) be a metric group with the metric
d(·, ·). Given ε > 0, does there exist a δ = δ(ε) > 0 such that if a map-
ping f : G → H satisfies the inequality d

(
f(x◦y), f(x)⋆f(y)

)
< δ for all

x, y ∈ G, then a homomorphism F : G → H exits with d
(
f(x), F (x)

)
< ε

for all x ∈ G?
In the next year, D.H. Hyers [2] gave a first (partial) affirmative

answer to the question of Ulam for Banach spaces as follows: If δ > 0
and if f : E → F is a mapping between Banach spaces E and F satisfying∥∥f(x+ y)− f(x)− f(y)

∥∥ ≤ δ

for all x, y ∈ E, then there is a unique additive mapping A : E → F such
that

∥∥f(x)−A(x)
∥∥ ≤ δ for all x, y ∈ E.

Thereafter, we call that type the Hyers-Ulam stability.
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2. Hyers-Ulam stability in Banach spaces

Throughout this paper, let X be a normed linear space and Y a
Banach space. In 2007, C. Park, Y. S. Cho and M.-H. Han [4] proved
the generalized Hyers-Ulam stability of the additive functional inequality∥∥f(x) + f(y) + f(z)

∥∥ ≤
∥∥f(x+ y + z)

∥∥
in Banach spaces. In 2013, S.-C Chung [1] prove the generalized Hyers-
Ulam stability of the additive functional inequality

∥f(2x1) + f(2x2) + · · ·+ f(2xn)∥ ≤ ∥tf(x1 + x2 + · · ·+ xn)∥

in Banach spaces where a positive integer n ≥ 3 and a real number t
such that 2 ≤ t < n.

In this paper, we prove the generalized Hyers-Ulam stability of the
additive functional inequality

∥f(x1 + x2) + f(x2 + x3) + · · ·+ f(xn + x1)∥ ≤ ∥tf(x1 + x2 + · · ·+ xn)∥

in Banach spaces.

Lemma 2.1. Let f : X → Y be a mapping. For an odd integer n and
a real number t suppose that 3 ≤ n and 2 ≤ t < n. Then it is additive
if and only if it satisfies

(2.1) ∥f(x1+x2)+f(x2+x3)+· · ·+f(xn+x1)∥ ≤ ∥tf(x1+x2+· · ·+xn)∥

for all x1, x2, · · · , xn ∈ X .

Proof. If f is additive, then clearly∥∥f(x1 + x2) + f(x2 + x3) + · · ·+ f(xn + x1)∥
= ∥2f(x1 + x2 + · · ·+ xn)∥
≤ ∥tf(x1 + x2 + · · ·+ xn)∥

for all xi ∈ X .
Conversely assume that f satisfies (2.1). Letting xi = 0(1 ≤ i ≤ n)

in (2.1), we have
∥∥nf(0)∥∥ ≤

∥∥tf(0)∥∥ and so f(0) = 0 by the hypothesis.

Putting x1 = x, x2 = −x, xi = 0(3 ≤ i ≤ n) in (2.1), we get
∥∥f(−x) +

f(x)
∥∥ ≤

∥∥tf(0)∥∥ = 0 and so f(−x) = −f(x) for all x ∈ X . Setting

x1 = x, xi = (−1)iy(2 ≤ i ≤ n− 1), xn = −x− y in (2.1), we have∥∥f(x+ y) + f(−x) + f(−y)
∥∥ ≤

∥∥tf(0)∥∥ = 0

for all x, y ∈ X . Thus we obtain f(x + y) = f(x) + f(y) for all x, y ∈
X .
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Theorem 2.2. Let f : X → Y be a mapping with f(0) = 0. For an
odd integer n and a real number t suppose that 3 ≤ n and 2 ≤ t < n. If
there is a function φ : X n → [0,∞) satisfying

∥f(x1 + x2) + f(x2 + x3) + · · ·+ f(xn + x1)∥
≤ ∥tf(x1 + x2 + · · ·+ xn)∥+ φ

(
x1, x2, · · · , xn

)(2.2)

and
(2.3)

φ̃(x1, x2, · · · , xn) :=
∞∑
j=0

1

2j
φ
(
(−2)jx1, (−2)jx2, · · · , (−2)jxn

)
< ∞

for all x1, x2, · · · , xn ∈ X , then there exists a unique additive mapping
A : X → Y such that for all x ∈ X

(2.4)
∥∥f(x)−A(x)

∥∥ ≤ 1

2
φ̃(−x, x2, · · · , xn−1, 2x)

where xi = (−1)i−1x(2 ≤ i ≤ n− 1).

Proof. Putting x1 = (−2)l(−x), xi = (−2)l(−1)i−1x(2 ≤ i ≤ l −
1), xn = (−2)l+1(−x), respectively, and dividing by 2l+1 in (2.2), since
f(0) = 0, we get∥∥∥∥f

(
(−2)l+1x

)
(−2)l+1

−
f
(
(−2)lx

)
(−2)l

∥∥∥∥
≤ 1

2l+1
φ
(
(−2)l(−x), (−2)l(−x), (−2)lx, · · · , (−2)l(−x), (−2)l+1(−x)

)
for all x ∈ X and all nonnegative integers l. From the above inequality,
we have

∥∥∥∥f
(
(−2)lx

)
(−2)l

−
f
(
(−2)mx

)
(−2)m

∥∥∥∥ ≤
l−1∑
j=m

∥∥∥∥f
(
(−2)j+1x

)
(−2)j+1

−
f
(
(−2)jx

)
(−2)j

∥∥∥∥
(2.5)

≤
l−1∑
j=m

1

2j+1
φ
(
(−2)j(−x), (−2)j(−x), (−2)jx, · · · , (−2)j(−x), (−2)j+1(−x)

)
for all x ∈ X and all nonnegative integers m, l with m < l. By the

condition (2.3), the sequence
{

f((−2)lx)
(−2)l

}
is a Cauchy sequence for all

x ∈ X . Since Y is complete, the sequence
{

f((−2)lx)
(−2)l

}
converges for

all x ∈ X . So one can define a mapping A : X → Y by A(x) :=
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liml→∞
f
(
(−2)lx

)
(−2)l

for all x ∈ X . Taking m = 0 and letting n tend to ∞
in (2.5), we have the inequality (2.4).

Replacing xi(1 ≤ i ≤ n) by (−2)lxi, respectively, and dividing by 2l

in (2.2), we obtain∥∥∥∥f
(
(−2)l(x1 + x2)

)
(−2)l

+
f
(
(−2)l(x2 + x3)

)
(−2)l

+ · · ·+
f
(
(−2)l(xn + x1)

)
(−2)l

∥∥∥∥
≤

∥∥∥∥ tf
(
(−2)l(x1 + x2 + · · ·+ xn)

)
(−2)l

∥∥∥∥+
1

2l
φ
(
(−2)lx1, (−2)lx2, · · · , (−2)lxn

)
for all xi ∈ X and all nonnegative integers l. Since (2.3) gives that

lim
l→∞

1

2l
φ
(
(−2)lx1, (−2)lx2, · · · , (−2)lxn

)
= 0

for all xi ∈ X , letting l tend to ∞ in the above inequality, we have∥∥A(x1+x2)+A(x2+x3)+ · · ·+A(xn+x1)
∥∥ ≤

∥∥tA(x1+x2+ · · ·+xn)
∥∥.

So by Lemma 2.1 A is an additive mapping.
Let A′ : X → Y be another additive mapping satisfying (2.4). Since

both A and A′ are additive, we have∥∥A(x)−A′(x)
∥∥ =

1

2l
∥∥A((−2)lx

)
−A′((−2)lx

)∥∥
≤ 1

2l
(∥∥A((−2)lx

)
− f

(
(−2)lx

)∥∥+
∥∥f((−2)lx

)
−A′((−2)lx

)∥∥)
≤ 1

2l
φ̃
(
(−2)l(−x), (−2)l(−x), (−2)lx, · · · , (−2)l(−x), (−2)l+1(−x)

)
=

∞∑
j=l

1

2j
φ
(
(−2)l(−x), (−2)l(−x), (−2)lx, · · · , (−2)l(−x), (−2)l+1(−x)

)
which goes to zero as l → ∞ for all x ∈ X by (2.3). Therefore, A is a
unique additive mapping satisfying (2.4), as desired.

Theorem 2.3. Let f : X → Y be a mapping with f(0) = 0. If there
is a function φ : X n → [0,∞) satisfying (2.2) and

(2.6) φ̃(x1, x2, · · · , xn) :=
∞∑
j=1

2jφ

(
x1

(−2)j
,

x2
(−2)j

, · · · , xn
(−2)j

)
< ∞

for all xi ∈ X , then there exists a unique additive mapping A : X → Y
such that

(2.7)
∥∥f(x)−A(x)

∥∥ ≤ 1

2
φ̃(−x, x2, · · · , xn−1, 2x)
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where xi = (−1)i−1x(2 ≤ i ≤ n− 1).

Proof. Putting x1 = −x
(−2)l

, xi = (−1)i −x
(−2)l

(2 ≤ i ≤ n − 1), xn =
−x

(−2)l−1 , respectively, and multiplying by 2l−1 in (2.2), since f(0) = 0,

we have ∥∥∥∥(−2)lf

(
x

(−2)l

)
− (−2)l−1f

(
x

(−2)l−1

)∥∥∥∥
≤ 2l−1φ

(
−x

(−2)l
,

−x

(−2)l
,

x

(−2)l
, · · · , −x

(−2)l
,

−x

(−2)l−1

)
for all x ∈ X and all l ∈ N. From the above inequality, we get∥∥∥∥(−2)lf

(
x

(−2)l

)
− (−2)mf

(
x

(−2)m

)∥∥∥∥(2.8)

≤
l∑

j=m+1

∥∥∥∥(−2)jf

(
x

(−2)j

)
− (−2)j−1f

(
x

(−2)j−1

)∥∥∥∥
≤

l∑
j=m+1

2j−1φ

(
−x

(−2)j
,

−x

(−2)j
,

x

(−2)j
, · · · , −x

(−2)j
,

−x

(−2)j−1

)

for all x ∈ X and all nonnegative integers m, l with m < l. From (2.6),

the sequence
{
(−2)lf

(
x

(−2)l

)}
is a Cauchy sequence for all x ∈ X . Since

Y is complete, the sequence
{
(−2)lf

(
x

(−2)l

)}
converges for all x ∈ X . So

one can define a mapping A : X → Y by A(x) := liml→∞(−2)lf

(
x

(−2)l

)
for all x ∈ X . To prove that A satisfies (2.7), putting m = 0 and letting
n → ∞ in (2.8), we have

∥f(x)−A(x)∥ ≤
∞∑
j=1

2j−1φ

(
−x

(−2)j
,

−x

(−2)j
,

x

(−2)j
, · · · , −x

(−2)j
,

−x

(−2)j−1

)
=

1

2
φ̃(−x,−x, x, . . . ,−x, 2x)

for all x ∈ X .

Replacing xi(1 ≤ i ≤ n) by xi

(−2)l
, respectively, and multiplying by 2l

in (2.2), we obtain
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∥∥∥∥(−2)lf

(
x1 + x2
(−2)l

)
+ (−2)lf

(
x2 + x3
(−2)l

)
+ · · ·+ (−2)lf

(
xn + x1
(−2)l

)∥∥∥∥
≤

∥∥∥∥t(−2)lf

(
x1 + x2 + · · ·+ xn

(−2)l

)∥∥∥∥+ 2lφ

(
x1

(−2)l
,

x2
(−2)l

, · · · , xn
(−2)l

)
for all xi ∈ X and all nonnegative integers l. From (2.6) we have the
following

lim
l→∞

2lφ

(
x1

(−2)l
,

x2
(−2)l

, · · · , xn
(−2)l

)
= 0

for all xi ∈ X , if we let l → ∞ in the above inequality, then we have∥∥A(x1+x2)+A(x2+x3)+ · · ·+A(xn+x1)
∥∥ ≤

∥∥tA(x1+x2+ · · ·+xn)
∥∥.

for all xi ∈ X . By Lemma 2.1, the mapping A is additive. The rest of
the proof is similar to the corresponding part of the proof of Theorem
2.2.
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