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SYMMETRIC BI-(f,g)-DERIVATIONS IN LATTICES

Kyung Ho KiM* AND YONG HOON LEE**

ABSTRACT. In this paper, as a generalization of symmetric bi-
derivations and symmetric bi- f-derivations of a lattice, we introduce
the notion of symmetric bi-(f, g)-derivations of a lattice. Also, we
define the isotone symmetric bi-(f, g)-derivation and obtain some
interesting results about isotone. Using the notion of Fixz,(L)
and KerD, we give some characterization of symmetric bi-(f, g)-
derivations in a lattice.

1. Introduction

Lattices play an important role in many fields such as information
theory, information retrieval, information access controls and cryptanal-
ysis ([2], [6], [20]). Recently the properties of lattices were widely re-
searched ([1], [2], [5], [10], [12], [20], [22]). In the theory of rings and
near rings, the properties of derivations are an important topic to study
(3], [4], [19]). In [21], G. Szész introduced the notion of derivation on
a lattice and discussed some related properties.Y. B. Jun and X. L. Xin
[13] applied the notion of derivation in ring, near ring and lattice theory
to BCI-algebras. In [24], J. Zhan and Y. L. Liu introduced the notion of
left-right (or right-left) f-derivation of a BCI algebra and investigated
some properties.

Recently, the notion of f-derivation, symmetric bi-derivations and
permuting tri-derivations in lattices are introduced and proved some
results([8], [9] and [18]). In this paper, as a generalization of symmetric
bi-derivations and symmetric bi- f-derivations of a lattice, we introduce
the notion of symmetric bi-(f, g)-derivations of a lattice. Also, we define
the isotone symmetric bi-(f, g)-derivation and obtain some interesting
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results about isotone. Using the notion of Fliz,(L) and KerD, we give
some characterization of symmetric bi-(f, g)-derivations in a lattice.

2. Preliminaries

DEFINITION 2.1. Let L be a nonempty set endowed with operations A
and V . By a lattice (L, A, V), we mean a set L satisfying the following
conditions:

(1) zAhz=2z,zVr=mux,

(2) xAy=yAz,zVy=yVux,

B) (zAy)ANz=xzA(yAz), (xVy)Vz=zV(yV2),
(4) (zAy)Vx =z, (xVy) ANz =z, forall z,y,z € L.

DEFINITION 2.2. Let (L,A,V) be a lattice. A binary relation < is
defined by x <y if and only if t Ay =z and x Vy = y.

LEMMA 2.1. Let (L, A, V) be a lattice. Define the binary relation <
as the Definition 2.2. Then (L, <) is a poset and for any xz,y € L, z Ay
is the greatest lower bound of {x,y} and x V y is the least upper bound

of {z,y}.

DEFINITION 2.3. A lattice L is distributive if the identity (1) or (2)
holds:

(1) 2 AV 2) = (@AY V(@ A2),
(2) zV(yAz)=(zVy A(zVz).

In any lattice, the conditions (1) and (2) are equivalent.

DEFINITION 2.4. A lattice L is modular if the following identity holds:
Ifx <z thenzV(yAz)=(zVy) Az

DEFINITION 2.5. A non-empty subset I of L is called an ideal if the
following conditions hold:

(1) Ife <yand y €I, then x € [ for all x,y € L.
(2) Ifz,yelthenxVyel.

DEFINITION 2.6. Let (L,A,V) be a lattice. Let f : L — M be a
function from a lattice L to a lattice M.
(1) f is called a meet-homomorphism if f(x Ay) = f(x) A f(y) for all
x,y € L.
(2) f is called a join-homomorphism if f(x Vy) = f(x) Vv f(y) for all
x,y € L.
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(3) fiscalled a lattice-homomorphism if f is both a join-homomorphism
and a meet-homomorphism.

DEFINITION 2.7. Let L be a lattice. A mapping D(.,.): L x L — L
is said to be symmetric if D(z,y) = D(y,x) holds for all z,y € L.

DEFINITION 2.8. Let L be a lattice. A mapping d(z) = D(z,x)
is called a trace of D(.,.), where D(.,.) : L x L — L is a symmetric

mapping.

DEFINITION 2.9. Let L be a lattice and let D(.,.) : L x L — L be
a symmetric mapping. We call D a symmetric bi-derivation on L if it
satisfies the following condition

D(zNy,z) = (D(z,z) Ny) V (x A D(y, 2))
for all z,y,z € L.
Obviously, a symmetric bi-derivation D on L satisfies the relation
D(z,yAz) = (D(z,y) ANz)V (y AD(z,z))
for all z,y,z € L.

DEFINITION 2.10. Let L be a lattice and let D(.,.) : L x L — L be
a symmetric mapping. D is called a symmetric bi-f-derivation on L if
there exists a function f : L — L such that

D(x Ny,z) = (D(z,2) A f(y)) V (f(z) A D(y, 2))
for all x,y,z € L.

3. Symmetric bi-(f, g)-derivations

DEFINITION 3.1. Let L be a lattice and let D(.,.) : L x L — L be a
symmetric mapping. D is called a symmetric bi-(f,g)-derivation on L
if there exist two functions f, g : L — L such that

D(x Ny,z) = (D(x,2) A f(y) V (9(z) A D(y, 2))
for all z,y,z € L.

Obviously, a symmetric bi-(f, g)-derivation D on L satisfies the rela-
tion
D(z,y A z) = (D(z,y) A f(2)) V (9(y) A D(z, 2))
for all z,y,z € L.
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ExAMPLE 3.1. Let L = {0, 1,2} be a lattice of following Figure 1 and
define mappings D and f,g on L by

1 if (z,y) = (0,0)
1 if (z,y) = (0,1)
1 if (z,y) = (1,0)
0 if (z,y) =(0,2)
Dr,y) =40 if (z,y) = (2,0)
0 if (x,y) = (1,1)
0 if (z,y) =(2,2)
0 if (z,y9) = (1,2)
0 if (z,y) = (2,1)
and
1 ifz=0 0 ifz=0
flo)={2 ifz=1 gz)=41 ifz=1
2 ifrx=2, 1 ifx=2
2
1
0
FiGURE 1

Then it is easily checked that D is a symmetric bi-(f, g)-derivation of
a lattice L. But D is not a symmetric bi-derivation since

1=D(0A0,0) # (D(0,0) AO)V (0 A D(0,0)) = (LA0)V (0A 1) =0.

PropPOSITION 3.1. Let L be a lattice and d a trace of a symmetric
bi-(f, g)-derivation D. Then

d(z) < f(x) Vv g(x)
for all x € L.
Proof. Since z A x = x for all x € L, we have
d(z) = D(z,x) = D(x Azx,x) = (D(z,2) A f(x)) V (9(x) A D(z, x)).
Since D(x,z) A f(z) < f(z) and D(z,x) A g(x) < g(z), we get d(z) <
f(x)Vg(z). 0
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PrOPOSITION 3.2. Let L be a lattice and let D be a symmetric bi-
(f,g)-derivation on L. Then D(z,y) < f(z)V g(x) and D(z,y) < f(y)V
g(y) for all z,y € L.

Proof. Since x Az = x for all x € L, we have for all y € L,

D(x,y) = D(z Nw,y) = (D(z,y) A f(x) V (9(z) A D(z,y).
Since D(z,y)A f(x) < f(z) and D(z,y)Ag(z) < g(z), we have D(z,y) <
f(z) V g(zx). Similarly, D(z,y) < f(y) V g(y) for all z,y € L. O

COROLLARY 3.1. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L. If g(x) < f(z) for all x € L, then D(z,y) < f(x)
and D(z,y) < f(y) for all z,y € L.

ProrosiTiON 3.3. Let L be a lattice and let D be a symmetric bi-
(f,g)-derivation on L. If L has a least element 0 such that f(0) = 0 and
g(0) = 0, we have D(0,y) = 0.

Proof. For all x,y € L, we have D(z,y) < f(z) V g(x) from Proposi-
tion 3.4 Since 0 is the least element of a lattice L, we get
0< D(0,y) < f(0) v g(0) =0,
which implies D(0,y) = 0. O
PropPOSITION 3.4. Let L be a lattice and let D be a symmetric bi-

(f, g)-derivation on L where g(x) < f(x) for all x € L. Then the follow-
ing identities hold for all x,y,w € L :

(1) D(z,y) A D(w,y) < D(z Aw,y) < D(z,y) V D(w,y).
(2) D(z Aw,y) < f(z) V f(w).
Proof. (1) For all z,y,w € L, we have

D(z Aw,y) = (D(z,y) A f(w)) V (g(z) A D(w,y)),
which implies D(z,y) A f(w) < D(xz A w,y). Since D(w,y) < f(w) for
all y € L, we have D(z,y) A D(w,y) < D(z,y) A f(w). Hence we get
D(z,y) N D(w,y) < D(z A w,y). Since D(z,y) A f(w) < D(z,y) and
g(x) AN D(w,y) < D(w,y), we have D(z A w,y) < D(x,y) V D(w,y),
which implies D(z,y) A D(w,y) < D(z Aw,y) < D(z,y) V D(w,y).
2 Sice DLy S(w) < S0 ad (=)D ) < S Dl ) <
x), we get

(D(z,y) A f(w)) V (g(x) A D(y,w)) < fx) V fw).
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PRrROPOSITION 3.5. Let L be a lattice with a greatest element 1 and let
D be a symmetric bi-(f, g)-derivation on L such that f(1) = g(1) = 1.
Then the following properties hold for all x,y € L :

(1) If f(x) < D(1,y) and g(z) < D(1,y), then D(z,y) = f(z) V g(z).
(2) If g(x) > D(1,y), then D(z,y) > D(1,y).

Proof. (1) For all z,y € L, we have
D(x,y) = D(z A 1,y)
= (D(z,y) A f(1)) V (9(x) AD(L,y))
= D(z,y) V g(x).

Hence we have g(z) < D(z,y).
Similarly, since x A 1 = z, we obtain

D(z,y) = D1 A, y)
= (D(Ly) A f(2) V (9(1) A D(z,y))
= D(z,y) V f().
Thus we get f(x) < D(z,y).
From (1) and (2), we have
f(x)Vg(z) < D(z,y).

From Proposition 3.4, we have D(z,y) < f(z) V g(z). Finally, we have

f(@)Vg(z) < D(z,y) < f(z) Vg(z),

which implies D(z,y) = f(z) V g(z).
(2) For all z,y € L,

D(z,y) = D(z A 1,y)

= (D(z,y) A f(1)) V (g(z) A D(1,y))
= D(z,y) v D(1,y).

Hence we have D(z,y) > D(1,y). O

THEOREM 3.1. Let L be a distribute lattice and let D be a symmetric
bi-(f, g)-derivation on L with the trace d. Then

d(z ANy) = (d(z) A (f(y) V (g(z) Ad(y)) V ((g(z) A f(y)) A D(z,y))
for all x,y € L.
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Proof. For all z,y € L, we have
dlx Ny) =D(x ANy,x ANy)
= (D(z,z Ay) A f(y)) A
= (D@ Ay, ) A f(y)V(g(@) A
={l(D(z,z) A f(y)) V (g(z) A D
VA{g(@) AN(D(z,y) A fy)) v (
={((d(x) A f(w)) A fy) Vv (
VA{((g(@) A fy) A D(
= (d(=) A f(y) v (

(9(x) A D(y,x Ay))

(D(x Ay,y)))
(@ )] A f(y)}
g(z) A D(y,y))]}
fW) v ((g(z) A f(y) A D(z,y))}
D(z,y)) v ((g(z) A (g(z) Ad(y))))}

)
g(x) Ad(y)) v ((f(y) Ag(x)) A D(z,y)).

V
V

O]

COROLLARY 3.2. Let L be a distribute lattice and let D be a sym-
metric bi-(f, g)-derivation with the trace d. Then for all x,y € L,
(1) (g(x) A f(y)) A D(z,y) < d(z Ay).
(2) g(x) Ad(y) < d(zNy).
(3) d(x) A f(y) < d(z Ay).
(

Proof. (1), (2) and (3) are easily seen from the above theorem respec-
tively. O

COROLLARY 3.3. Let L be a distribute lattice and let D be a sym-
metric bi-(f, g)-derivation with the trace d. If 1 is the greatest element
of L, we have (g(z) A f(1)) AD(x,1) < d(x A1) =d(x) for all z € L and
g(x)Nd(1) < d(x A1) =d(x) for all x € L.

DEFINITION 3.2. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L.
(1) If x < w implies D(x,y) < D(w,y), then D is called an isotone
symmetric bi-(f, g)-derivation.
(2) If D is one-to-one, then D is called a monomorfic symmetric bi-
(f,g)-derivation.
(3) If D is onto, then D is called an epic symmetric bi-(f, g)-derivation.

THEOREM 3.2. Let L be a lattice and let D be a symmetric bi-(f, g)-
derivation on L. The following conditions are equivalent.
(1) D is an isotone symmetric bi-(f, g)-derivation.
(2) D(z,y) vV D(w,y) < D(xVw,y) for all x,y,w € L.

Proof. (1) = (2). Suppose that D is an isotone symmetric bi-(f, g)-
derivation on L. Since < 2V w and w < x V w, we obtain D(z,y) <
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D(z VvV w,y) and D(w,y) < D(zV w,y). Therefore, D(z,y) V D(w,y) <
D(zx VvV w,y).
(2) = (1). Suppose that D(z,y)V D(w,y) < D(zVw,y) and z < w.
Then we have
D(z,y) < D(z,y) vV D(w,y) < D(zVw,y)

= D(w,y).

Hence D is an isotone symmetric bi-(f, g)-derivation on L. O

Let L be a lattice and let D be a symmetric bi-(f, g)-derivation on L.
For each a € L and define a set Fixq(L) by

Fizo(L)={xz € L| D(z,a) = f(x)}.

PROPOSITION 3.6. Let L be a lattice and let D an isotone symmetric
bi-(f, g)-derivation on L. If f : L — L is a lattice homomorphism and
g(x) < f(x) for all x € L, then Fix,(L) is a sublattice of L.

Proof. Let x,y € Fiz,(L). Then D(z,a) = f(z) and D(y,a) = f(y).
Then f(z Ay) = f(z) A f(y) = D(x,a) A D(y,a) < D(x Ay,a). Hence
D(x ANy,a) = f(x ANy), that is, x Ay € Fiz,(L). Moreover, we have
f(zVy) = f@)V [(y) = D(,) V D(y,a) < D(& v y,a) by Theorem
3.2. Thus D(x V y,a) = f(z Vy), which implies x V y € Fiz,(L). O

ProproSITION 3.7. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L where g(z) < f(x) for allx € L. If f is an increas-
ing function, x <y and y € Fiz,(L) imply D(x,a) = D(z,a) V g(z).

Proof. Let x < y and y € Fiz,(L). Then we have D(z,a) < f(z) <
f(y) and g(x) < f(x) < f(y). Hence we obtain
D(z,a) = D(x Ny,a)
= (D(z,a) A f(y)) V (9(2) A D(y, a))

= (D(z,a) A f(y) V (g(x) A f(y))
= D(z,a) Vg(z).
This completes the proof. O
ProrosiTION 3.8. Let L be a distributive lattice and let D be a
symmetric bi-(f, g)-derivation of L where g(x) < f(z) for all x,y € L. If

f is a meet-homomorphism and x,y € Fixq(L), we have xt Ay € Fiz,(L)
for all x,y € L.
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Proof. Let x,y € Fize(L). Then f(x) = D(x,a) and f(y) = D(y,a).
Hence we have

= (f@) A f(y) Vv (g(@) A fy))
= (f(x) vg(@) A fly)
= f@) A f(y)
= [z Ay),
which implies x Ay € Fizq(L). O

ProrosiTiON 3.9. Let L be a lattice and let D be an isotone sym-
metric bi-(f,g)-derivation on L where g(x) < f(x) for all x € L. If
x,y € Fixg(L) and f is a increasing function, then x V y € Fix,(L).

Proof. Since z < xVy and y < x Vy, we have f(z Vy) < f(z) and
flxVy) < f(y) respectively. Hence we obtain f(zVy) < f(z)V f(y) =
D(z,a)VD(y,a) < D(zVy,a)since D is an isotone symmetric bi-(f, g)-
derivation. From Proposition 3.4 (2), we have D(z V y,a) < f(z Vy),
which implies D(z V y,a) = f(x Vy). Hence z Vy € Fiz,(L).

]

PROPOSITION 3.10. Let L be a lattice, D a symmetric bi-(f,g)-

derivation on L where f(x) < g(x) and 1 the greatest element of L.
Then the following identities hold.

(1) If g(x) < D(1,y) and f(1) =1, then D(z,y) = g(z).

(2) If g(x) > D(1,y) and f(1) =1, then D(z,y) ; D(1,y)

Y).
Proof. (1) Let g(x) < D(1,y). Then we have D(z,y) < f(z)Vg(z) =
g(z), and so

D(z,y) = D(z A 1,y)
= (D(z,y) A f(1)) V (g(z) A D(1,y)

= D(z,y) vV g(z)
= g(x).
(2) Let g(z) > D(1,y). Then we have
D(z,y) = D(z A 1,y)

= (D(z,y) A f(1)) V (g(z) A D(1,y)
= D(z,y) V D(1,y).

Hence we obtain D(1,y) < D(z,y) for all x,y € L. O
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THEOREM 3.3. Let L be a lattice with the greatest element 1 and let
D be an isotone symmetric bi-(f, g)-derivation on L. Let f(1) = g(1) =1
and either f(x) > g(x) or f(x) < g(x) for all x € L. Then

D(z,y) = (f(z) vV g(x)) AD(1,y)
for all x,y,z € L.

Proof. Suppose that D is an isotone symmetric bi-(f, g)-derivation
on L. Then D(z,y) < D(1,y) for all x,y € L. Now let g(z) < f(z) for
x € L. Then we have D(x,y) < g(z) V f(z) = f(x). From this, we get
D(z,y) < f(z) AD(1,y). Also, we obtain

D(z,y) = D((x V1) Az,y)
= [(D@V1),y) A f@)]Vgle V1) AD(,y)]
= [D(L,y) A )]V [g(1) A D(z,y)]
= [D(D(1,y) A f(2)] VLA D(z,y)]
= [D(,y) A f(2)]V D(z,y)
=D, y) A f(2).
Since f(z) V g(x) = f(z
D(,y) = (F(#) V g(x)) A D(1,p).
Now suppose that f(z) < g(x) for z € L. Similarly, we have D(z,y) <
f(z) V g(x) = g(x). From this, we have D(z,y) < g(x) A D(1,y). Also,

we obtain
D(z,y) = D(z A (zV1),y)
=[(D(z,y) A f(z V1)V [g(x) AD((z V1),y)]
= [D(z,y) A fF(1)] V [g(x) A D(1,y)]
= [D(D(z,y) A1)]V [g(x) A D(1,y)]
= D(z,y) V [g(z) A D(1,y)]
g9(x) AD(1,y).
Since f(x) V g(x) = g(x), we have
D(z,y) = (f(z) vV g(x)) A D(1,y).
This completes the proof. O

), we have

Let D be a symmetric bi-(f, g)-derivation of L and let 0 be a least
element of L. Define a set KerD by

KerD ={z € L| D(z,0) = 0}.
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ProproSITION 3.11. Let L be a lattice with a least element 0 and
let D be a symmetric bi-(f,g)-derivation on L. If x,y € KerD, then
z Ay € KerD.

Proof. Let xz,y € KerD. Then D(z,0) = D(y,0) = 0. Hence we have

D(z Ny, 0) = (D(z,0) A f(y)) V (9(z) A D(y,0))
= (0A f(z)) v (g(x) AO)
—0V0=0,
which implies x Ay € KerD. O

ProrosiTION 3.12. Let L be a lattice with a least element 0 and
let D be an isotone symmetric bi-(f, g)-derivation on L. If z < y and

y € KerD, then x € KerD.

Proof. Let y € KerD. Then D(y,0) = 0 and D(z,0) < D(y,0) =0
since D is isotone. Hence we have D(z,0) = 0, and so

D(z,0) = D(z Ay, 0) = (D(z,0) A f(y) V (9(2) A D(y,0))

= (0A f(z)) V (9(z) A0))
=0Vv0=0,
which implies x € KerD. O
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