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TEICHMULLER SPACES OF NONORIENTABLE
3-DIMENSIONAL FLAT MANIFOLDS

EuN Sook KANG* AND JU Young Kim**

ABSTRACT. The various deformation spaces associated with maximal

geometric structures on closed oriented 3-manifolds was studied in [2],

leaving out the geometry of R3. In this paper, we study the Weil
spaces and Teichmiiller spaces of non-orientable 3-dimensional flat
Riemannian manifolds. In particular, we find the Teichmiiller spaces
are homeomorphic to the Euclidean spaces R* or R? depending on the

holonomy group Zsg or Zg x Zsg respectively.

1. Introduction

The group of affine motions on the Euclidean space R™ is Aff(n) =
R™ x GL(n, R).
The group law is
h(a> A) . (b> B) = (a + Ab> AB)>
and it acts on R™ by
(a,A) - x=Ax+a
for (a, A), (b, B) € Aff(n) and x € R™. Let Isom(R") denote the group
of isometries of R". So
Isom(R") = R" x O(n) C Aff(n),
where O(n) is the n-dimensional orthogonal group. A subgroup = of

Isom(R™) is said to be crystallographic if m is compact and discrete.

If a crystallographic group 7 is torsion free, we say m is a Bieberbach
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subgroup of Isom(R™). If 7 is a Bieberbach subgroup of Isom(R™),
then the quotient space R"/7 is a Riemannian manifold of sectional
curvature Kk = 0. Conversely, a flat closed Riemannian manifold of
dimension n is necessarily a quotient of R™ by a Bieberbach subgroup
of Isom(R") [4].

The following Bieberbach’s second theorem says that if two flat Rie-
mannian manifolds are homotopy equivalent, then they are affinely dif-

feomorphic (see [3]).

THEOREM 1.1 (Bieberbach). Two crystallographic groups are iso-
morphic if and only if they are conjugate by an element of the affine
group.

It is known that there are only 10 affine diffeomorphism classes of

connected closed 3-dimensional flat manifolds. Six of them are ori-
entable and the others are not. The authors studied the Weil spaces

and Teichmiiller spaces of the six orientable 3-dimensional flat Rie-
mannian manifolds in [1]. In this paper, those of nonorientable case
will be investigated. We use the notation Z for the isometry group

Isom(R?) through this paper. So,
7 = Isom(R?) = R* x O(3).

2. Preliminaries

For a Bieberbach group m, we define the space of discrete represen-
tations of 7 into Z, the Weil space, as follows:

R(m;Z) = the space of all injective homomorphisms 6 of 7 into Z such

that 6(m) is discrete in Z and Z/6(7) is compact.

If 0,0 € R(m;Z), then R®/0(7) and R?/¢'(7) are affinely diffeomorphic.
For g € Z, u(g) denotes the conjugation by g. The group Inn(Z) of

inner automorphisms of Z acts on the space R(w,Z) from the left by

Inn(Z) x R(7,Z) — R(m,I).
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(1(9),0) — p(g) 0 0
The orbit space of this action is called the Teichmiiller space. That is,
T(m,Z)=Inn(Z)\ R(m,I).

If 0 and @' € R(w,T) represent the same point in 7 (7, Z), then 6 =
i(g) o @ for some g € Z. This implies

g-0(a)(x) = (g-0(c) - g7") - g(x) = 0'(a) - g(z) ~ g(2)
for all &« € w. Thus an isometry g of R? induces an isometry g :

R3/0(7) — R3/6'() for which the following diagram commutes:

R® 4 RS

! !

R3/0(7) —2— R3/0/ (7).

The next theorem, which says that there are only four 3-dimensional

nonorientable manifolds, is in [4]. For the convenience we restate here.

THEOREM 2.1. [4] There are just 4 affine diffeomorphism classes of
compact connected nonorientable flat 3-dimensional Riemannian man-
ifolds. They are represented by the manifolds R? /7 where 7 is one of
the 4 groups B; (1 < i < 4) given below. Here t, t; and t3 are trans-

lations by aj, ay and as respectively, and ® = /7> is the holonomy.

(1) B, is generated by {ti, t2, t3, €} where € = t1, etae ' = ty

1

and etze " = tgl; a; and ay are orthogonal to az while € = (ta, /2, E)

with E(al) = ai, E(ag) = ag, E(ag) = —as.

(2) B, is generated by {t;, to, t3, €} where €2 = ty,etae™! = ty
and etze' = tityt;"; the orthogonal projection of az on the (ajas)-
plane is 3(a; + ay), and € = (ta, 2, E) with E(a;) = a1, E(as) = a, and

E(ag) = a; + a» — as.
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(3) B3 is generated by {t|, ti, t3, a, €} where o® = t;,¢e* =

1 1 1 1

to, eae™ " = toa, atoa™ = t;l,atga_ = t3,€t1€_1 = t; and etz =

t;! ; The a; are mutually orthogonal and

a = (ta)2, A) with A(ay) = a1, A(ay) = —ay, A(as) = —as,

€ = (taz/g, E) with E(al) = ai, E(ag) = ag, E(ag) = —as.

(4) B, is generated by {t, ta, t3, a, ¢} where o? = t;, €2 =

1 1 1 1

to, el = totsa, ateal = 51, atza”l =651, etieTt =ty etze !t =

t~': the a; are mutually orthogonal and

o = (tay/2, A) with A(a1) = a1, A(ay) = —a, A(ag) = —as,

€ = (t(a2+a3)/2> E) Wlth E(al) = ai, E(ag) = as, E(ag) = —as.

Let X = [x; X2 x3| be a 3 x 3 matrix of which three column vectors
are x;, Xo and x3. The (i, j)-entry of the symmetric matrix X7 X is
the inner product (x;, x;) of two column vectors x; and x; of X. In

this work the symmetric matrix X7 X is useful because;

LEMMA 2.2. Let A be an orthogonal matrix. For any invertible
matrix X, the conjugate XAX ™! of A by X is orthogonal if and only

if XTX and A are commutative.

Proof. The fact that X AX ! is orthogonal means (X AX~1)(XAX~1)T
= I, which is equivalent to X A(XTX)™! = X1 A. Therefore X AX !

is orthogonal if and only if

(XTX)A = AXTX).
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Consider a 3 x 3 non-singular matrix A. Let X(A) be the space
consisting of 3 x 3 non-singular matrices by which the conjugates of A
are orthogonal., i.e.,

X(A)={X € GL(3,R) | XAX ! is orthogonal }.

Note that X(A) is not a subgroup of GL(3,R) but we are concerned
with the topology on X'(A).

LEMMA 2.3. If two orthogonal matrices A and B are similar, then
X (A) and X (B) are homeomorphic.

Proof. Let P be the 3 x 3 invertible matrix, with B = PAP™!. It is
obvious that the correspondence from X € X(A) to XP~! € X(B) is

a homeomorphism. O

3. Main Results

We start with looking at a notation of the topological space obtained
from two subgroups H; and Hs of G, i.e.,

H, -H, = {hl - ho | hi € Hl, and hy € Hg}
Note that Hy-Hs need not be a subgroup but a subspace of G. Of course

H; and Hy; may have a nontrivial subgroup in common.

A Bieberbach group 7 contains a unique maximal normal abelian

subgroup Z3, fitting the following commutative diagram of groups with

exact rows

0 73 T _  ® —— 1
(3.1) l 9l l

0 R3 R3 % O(3) —— O(3) —— 1,

where @ is called the holonomy group of w. It is a finite group and

¢ — O(3) is injective.
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The following theorem says that two 3-dimensional Bieberbach groups
with isomorphic holonomies yield the same Weil spaces.

THEOREM 3.1. Let M be a 3-dimensional nonorientable flat mani-
fold with m(M) = m. Then the Weil space R(m;T) is 8-dimensional.

Specifically.

(1) If ® = Zy, then R(m;T) = R? x (O(3) - (GL(2,R) x R*))/(Rey @
Re,) x {1},

(2) If ® = Zy X Zs, then R(m;Z) = R? x (O(3) - (R*)?)/Rey x {I}.
Proof. In each case there are four steps to obtain the Weil space

step 1 Find an embedding 0y of 7 into Z. As mentioned in Theorem
1.1, if 6y and 6 are two embeddings of a Bieberbach group 7 into Z,
then their images 6y(7) and 0(w) are conjugate by an affine motion.
That is, there exists an element £ € Aff(3) = R? x GL(3,R) such that
O(r) =& Oo(m) - €71, So,

step 2 Find all members ¢ of Aff(R?) which conjugates () into

Z. Note that this fact depends only on the matrix part of £. For a
holonomy group ® C O(3), let

X(®) = {X € GL(3,R)|XAX ! is orthogonal for all A € ®}.

Observe that X (®) does not have to be a group. But we need only its
"topological” structure. In fact, the space of all such £ € Aff(R3) is

{ €€ AE(3)|0(m) =& bo(m) - €'} =R® % X(2).

step 3 Find the centralizer Cags)(0o(m)) of Oy(7) in the group
Aff(3). The action of ® on Z? is induced from the exactness of the
top row of the above diagram (3.1). It is known that the centralizer
C(0o(r)) is the fixed point set (R*)® of the ® action on R3. It is a
normal subgroup of R?® x X (®). For £ € R? x X(®) and ¢ € C(0o(7)),
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¢ and ¢ - ¢ yield the same representation, because p(§ - )(fp()) =
(&) () (B () = p(&)(Bo(c))-

step 4 Factor out R? x X(®) by C(6y(7)) = (R*)®. The space of
representations is thus the orbit space

R(m;T) =R x X(D)/(R*)?.

(1) Case of & = Zy. Take the embedding 6 : 7 — 7 as a homomor-
phism defined by

90(1:@) = (ei, I) for 1 S 1 S 2,

1
Oo(e) = (561, E) where E =

OO =
o= O

and if 7 is isomorphic to B; of Theorem 2.1 then

Oo(t3) = (es, 1),

and if 7 is isomorphic to B, of Theorem 2.1 then

90(133) = (%(61 + 62) + €3, I)

The defining condition X € X (®) is XAX ' € O(3). It is equivalent
to (XTX)E = E(XTX) by Lemma 2.2. This implies that the third
column vector x3 of X is orthogonal to the other column vectors x;
and x5 of X. Hence the space

X(P) = {X =[x1 x2x3] € GL(3,R) | x; L x5 and x5 L x3}

_0(3) -Hg‘ ﬂ | AcGLE2R) and b e R*}

= 0(3) - (GL(2,R) x R*).

where R* means the set of all non-zero real numbers. Note that a
3-dimensional space O(3) and a 5-dimensional space GL(2,R) x R*

intersects the common space O(2) x Zs which is 1-dimensional, and
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X (@) has 4-components. And so O(3)-(GL(2,R) xR*) is 7-dimensional.
A brief computation shows that the centralizer is given by
(R*)® = {(c, I) € Aff(3) [c = [+ = 0]"}

= ]Rel D ]Reg.

This concludes the result (1).

(2) Case of & = Zy x Zy. Let’s take an embedding 0y : 71 — 7 as
follows:

Oo(ti) = (e;, 1) (1 <i<3),

Oule) = (e, A),

and if 7 is isomorphic to B3 of Theorem 2.1 then

() = (e, B),

and if 7 is isomorphic to B, of Theorem 2.1 then

() = (2 +e3). B),

1 0 0 1 0 0
where A = |0 -1 O | and £ = [0 1 O We look for all
0 0 -1 0 0 —1

matrices X

such that XAX~! and XEX~! are orthogonal. It is equivalent to
saying that X7 X is diagonal. Hence

X(®) = {X € GLB,R) | x; L x; if i # j}
—0(3) - (R")?.

The 3-dimensional spaces O(3) and (R*)3 have intersection (Z)3, con-

sisting of all diagonal matrices with entries +1. Since this space is
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O-dimensional, X' (®) is 6-dimensional. Clearly we get the centralizer
(R)? = {(c, I) € Aff(3) [c =[x 00]"}
= ]Rel,

and the Weil space
R(m;Z) =R? x (O(3) - (R*)*)/Re; x {I}.
O

REMARK 0.1. In each case of the above theorem, the (right) action
of (Re;®Rez) x{I} 2 R? or Re; x{I} 2 R on R3x X (®) is twisted. In
other words, one cannot write the orbit space as (R>x X (®))/R*x{[} ~
R x X (®) or (R? x X(P))/R x {I} ~ R* x X(®). However the action

is free and proper so that the orbit space is a manifold.

Finally we show that the Teichmiiller space is homeomorphic to the
Euclidean space R* or R3 depending on the holonomy group Z, or
72 x 7?2 respectively.

THEOREM 3.2. Let M be a 3-dimensional nonorientable flat mani-
fold with w(M) = 7. Then the Teichmiiller spaces are as follow:

(1) If ® = Zy, then T(m;Z) = (0O(2) \ GL(2,R)) x Rt ~# R?® x R ~
R%.

(2) If ® = Zy X Zy, then T(m;I) = (Z2)? \ (R*)? = (RT)? ~ R3.

Proof. The isometry group Z = R?® x O(3) acts on R(w,Z) on the
left by conjugation, and the orbit space is the Teichmiiller space of .
On the space R? x X (®) level the action is just a multiplication from
the left. From R3 x {I} C R? x O(3), every orbit must contain whole
R3. Thus, the Teichmiiller space is simply

0(3) \ X(®).
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For a general fact, recall that O(n) is a maximal compact subgroup of

n(n+1)

GL(n,R), and O(n) \ GL(n,R) ~ R™ =z . Thus we have the following
theorem. 0
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