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Abstract. The various deformation spaces associated with maximal

geometric structures on closed oriented 3-manifolds was studied in [2],

leaving out the geometry of R
3. In this paper, we study the Weil

spaces and Teichmüller spaces of non-orientable 3-dimensional flat

Riemannian manifolds. In particular, we find the Teichmüller spaces

are homeomorphic to the Euclidean spaces R
4 or R

3 depending on the

holonomy group Z2 or Z2 × Z2 respectively.

1. Introduction

The group of affine motions on the Euclidean space R
n is Aff(n) =

R
n

⋊ GL(n, R).

The group law is

h(a,A) · (b,B) = (a + Ab,AB),

and it acts on R
n by

(a,A) · x = Ax + a

for (a, A), (b, B) ∈ Aff(n) and x ∈ R
n. Let Isom(Rn) denote the group

of isometries of R
n. So

Isom(Rn) = R
n

⋊ O(n) ⊂ Aff(n),

where O(n) is the n-dimensional orthogonal group. A subgroup π of

Isom(Rn) is said to be crystallographic if π is compact and discrete.

If a crystallographic group π is torsion free, we say π is a Bieberbach
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subgroup of Isom(Rn). If π is a Bieberbach subgroup of Isom(Rn),

then the quotient space R
n/π is a Riemannian manifold of sectional

curvature κ = 0. Conversely, a flat closed Riemannian manifold of

dimension n is necessarily a quotient of R
n by a Bieberbach subgroup

of Isom(Rn) [4].

The following Bieberbach’s second theorem says that if two flat Rie-

mannian manifolds are homotopy equivalent, then they are affinely dif-

feomorphic (see [3]).

Theorem 1.1 (Bieberbach). Two crystallographic groups are iso-

morphic if and only if they are conjugate by an element of the affine
group.

It is known that there are only 10 affine diffeomorphism classes of

connected closed 3-dimensional flat manifolds. Six of them are ori-
entable and the others are not. The authors studied the Weil spaces

and Teichmüller spaces of the six orientable 3-dimensional flat Rie-

mannian manifolds in [1]. In this paper, those of nonorientable case

will be investigated. We use the notation I for the isometry group

Isom(R3) through this paper. So,

I = Isom(R3) = R
3

⋊ O(3).

2. Preliminaries

For a Bieberbach group π, we define the space of discrete represen-

tations of π into I, the Weil space, as follows:

R(π; I) = the space of all injective homomorphisms θ of π into I such

that θ(π) is discrete in I and I/θ(π) is compact.

If θ, θ′ ∈ R(π; I), then R
3/θ(π) and R

3/θ′(π) are affinely diffeomorphic.

For g ∈ I, µ(g) denotes the conjugation by g. The group Inn(I) of

inner automorphisms of I acts on the space R(π, I) from the left by

Inn(I) ×R(π, I) → R(π, I).
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(µ(g), θ) 7−→ µ(g) ◦ θ

The orbit space of this action is called the Teichmüller space. That is,

T (π, I) = Inn(I) \ R(π, I).

If θ and θ′ ∈ R(π, I) represent the same point in T (π, I), then θ′ =

µ(g) ◦ θ for some g ∈ I. This implies

g · θ(α)(x) = (g · θ(α) · g−1) · g(x) = θ′(α) · g(x) ∼ g(x)

for all α ∈ π. Thus an isometry g of R
3 induces an isometry ḡ :

R
3/θ(π) → R

3/θ′(π) for which the following diagram commutes:

R
3 g

−−−→ R
3





y





y

R
3/θ(π)

ḡ
−−−→ R

3/θ′(π).

The next theorem, which says that there are only four 3-dimensional

nonorientable manifolds, is in [4]. For the convenience we restate here.

Theorem 2.1. [4] There are just 4 affine diffeomorphism classes of

compact connected nonorientable flat 3-dimensional Riemannian man-

ifolds. They are represented by the manifolds R
3/π where π is one of

the 4 groups Bi (1 ≤ i ≤ 4) given below. Here t1, t2 and t3 are trans-

lations by a1, a2 and a3 respectively, and Φ = π/Z
3 is the holonomy.

(1) B1 is generated by {t1, t2, t3, ǫ} where ǫ2 = t1, ǫt2ǫ
−1 = t2

and ǫt3ǫ
−1 = t

−1
3 ; a1 and a2 are orthogonal to a3 while ǫ = (ta1/2, E)

with E(a1) = a1, E(a2) = a2, E(a3) = −a3.

(2) B2 is generated by {t1, t2, t3, ǫ} where ǫ2 = t1, ǫt2ǫ
−1 = t2

and ǫt3ǫ
−1 = t1t2t

−1
3 ; the orthogonal projection of a3 on the (a1a2)-

plane is 1
2
(a1 +a2), and ǫ = (ta1/2, E) with E(a1) = a1, E(a2) = a2 and

E(a3) = a1 + a2 − a3.
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(3) B3 is generated by {t1, t2, t3, α, ǫ} where α2 = t1, ǫ
2 =

t2, ǫαǫ−1 = t2α, αt2α
−1 = t

−1
2 , αt3α

−1 = t3, ǫt1ǫ
−1 = t1 and ǫt3ǫ

−1 =

t
−1
3 ; The ai are mutually orthogonal and

α = (ta1/2, A) with A(a1) = a1, A(a2) = −a2, A(a3) = −a3,

ǫ = (ta2/2, E) with E(a1) = a1, E(a2) = a2, E(a3) = −a3.

(4) B4 is generated by {t1, t2, t3, α, ǫ} where α2 = t1, ǫ2 =

t2, ǫαǫ−1 = t2t3α, αt2α
−1 = t

−1
2 , αt3α

−1 = t
−1
3 , ǫt1ǫ

−1 = t1, ǫt3ǫ
−1 =

t
−1; the ai are mutually orthogonal and

α = (ta1/2, A) with A(a1) = a1, A(a2) = −a2, A(a3) = −a3,

ǫ = (t(a2+a3)/2, E) with E(a1) = a1, E(a2) = a2, E(a3) = −a3.

Let X = [x1 x2 x3] be a 3 × 3 matrix of which three column vectors

are x1, x2 and x3. The (i, j)-entry of the symmetric matrix XT X is

the inner product 〈xi, xj〉 of two column vectors xi and xj of X. In

this work the symmetric matrix XT X is useful because;

Lemma 2.2. Let A be an orthogonal matrix. For any invertible

matrix X, the conjugate XAX−1 of A by X is orthogonal if and only

if XT X and A are commutative.

Proof. The fact that XAX−1 is orthogonal means (XAX−1)(XAX−1)T

= I , which is equivalent to XA(XT X)−1 = X−T A. Therefore XAX−1

is orthogonal if and only if

(XT X)A = A(XT X).
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Consider a 3 × 3 non-singular matrix A. Let X (A) be the space

consisting of 3 × 3 non-singular matrices by which the conjugates of A

are orthogonal., i.e.,

X (A) = {X ∈ GL(3, R) | XAX−1 is orthogonal }.

Note that X (A) is not a subgroup of GL(3, R) but we are concerned

with the topology on X (A).

Lemma 2.3. If two orthogonal matrices A and B are similar, then

X (A) and X (B) are homeomorphic.

Proof. Let P be the 3× 3 invertible matrix, with B = PAP−1. It is

obvious that the correspondence from X ∈ X (A) to XP−1 ∈ X (B) is

a homeomorphism.

3. Main Results

We start with looking at a notation of the topological space obtained

from two subgroups H1 and H2 of G, i.e.,

H1 · H2 = {h1 · h2 | h1 ∈ H1, and h2 ∈ H2}.

Note that H1 ·H2 need not be a subgroup but a subspace of G. Of course

H1 and H2 may have a nontrivial subgroup in common.

A Bieberbach group π contains a unique maximal normal abelian

subgroup Z
3, fitting the following commutative diagram of groups with

exact rows

(3.1)

0 −−−→ Z
3 −−−→ π −−−→ Φ −−−→ 1





y
θ





y





y

0 −−−→ R
3 −−−→ R

3
⋊ O(3) −−−→ O(3) −−−→ 1,

where Φ is called the holonomy group of π. It is a finite group and

Φ → O(3) is injective.
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The following theorem says that two 3-dimensional Bieberbach groups

with isomorphic holonomies yield the same Weil spaces.

Theorem 3.1. Let M be a 3-dimensional nonorientable flat mani-
fold with π1(M) = π. Then the Weil space R(π; I) is 8-dimensional.

Specifically.

(1) If Φ = Z2, then R(π; I) = R
3
⋊ (O(3) · (GL(2, R)×R

∗))/(Re1 ⊕

Re2) ⋊ {I},

(2) If Φ = Z2 × Z2, then R(π; I) = R
3

⋊ (O(3) · (R∗)3)/Re1 ⋊ {I}.

Proof. In each case there are four steps to obtain the Weil space

step 1 Find an embedding θ0 of π into I. As mentioned in Theorem

1.1, if θ0 and θ are two embeddings of a Bieberbach group π into I,

then their images θ0(π) and θ(π) are conjugate by an affine motion.

That is, there exists an element ξ ∈ Aff(3) = R
3

⋊ GL(3, R) such that

θ(π) = ξ · θ0(π) · ξ−1. So,

step 2 Find all members ξ of Aff(R3) which conjugates θ0(π) into

I. Note that this fact depends only on the matrix part of ξ. For a

holonomy group Φ ⊂ O(3), let

X (Φ) = {X ∈ GL(3, R)|XAX−1 is orthogonal for all A ∈ Φ}.

Observe that X (Φ) does not have to be a group. But we need only its

’topological’ structure. In fact, the space of all such ξ ∈ Aff(R3) is

{ ξ ∈ Aff(3)|θ(π) = ξ · θ0(π) · ξ−1} = R
3

⋊ X (Φ).

step 3 Find the centralizer CAff(3)(θ0(π)) of θ0(π) in the group

Aff(3). The action of Φ on Z
3 is induced from the exactness of the

top row of the above diagram (3.1). It is known that the centralizer

C(θ0(π)) is the fixed point set (R3)Φ of the Φ action on R
3. It is a

normal subgroup of R
3

⋊ X (Φ). For ξ ∈ R
3

⋊ X (Φ) and ζ ∈ C(θ0(π)),
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ξ and ξ · ζ yield the same representation, because µ(ξ · ζ)(θ0(α)) =

µ(ξ)µ(ζ)(θ0(α)) = µ(ξ)(θ0(α)).

step 4 Factor out R
3

⋊ X (Φ) by C(θ0(π)) = (R3)Φ. The space of

representations is thus the orbit space

R(π; I) = R
3

⋊ X (Φ)/(R3)Φ.

(1) Case of Φ = Z2. Take the embedding θ0 : π → I as a homomor-

phism defined by

θ0(ti) = (ei, I) for 1 ≤ i ≤ 2,

θ0(ǫ) = (
1

2
e1, E) where E =





1 0 0
0 1 0
0 0 −1



 ,

and if π is isomorphic to B1 of Theorem 2.1 then

θ0(t3) = (e3, I),

and if π is isomorphic to B2 of Theorem 2.1 then

θ0(t3) = (
1

2
(e1 + e2) + e3, I).

The defining condition X ∈ X (Φ) is XAX−1 ∈ O(3). It is equivalent

to (XT X)E = E(XT X) by Lemma 2.2. This implies that the third

column vector x3 of X is orthogonal to the other column vectors x1

and x2 of X. Hence the space

X (Φ) = {X = [x1 x2 x3] ∈ GL(3, R) | x1 ⊥ x3 and x2 ⊥ x3}

= O(3) ·

{[

A O
O b

]

| A ∈ GL(2, R) and b ∈ R
∗

}

= O(3) · (GL(2, R) × R
∗).

where R
∗ means the set of all non-zero real numbers. Note that a

3-dimensional space O(3) and a 5-dimensional space GL(2, R) × R
∗

intersects the common space O(2) × Z2 which is 1-dimensional, and
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X (Φ) has 4-components. And so O(3)·(GL(2, R)×R
∗) is 7-dimensional.

A brief computation shows that the centralizer is given by

(R3)Φ = {(c, I) ∈ Aff(3) | c = [∗ ∗ 0]T}

= Re1 ⊕ Re2.

This concludes the result (1).

(2) Case of Φ = Z2 × Z2. Let’s take an embedding θ0 : π → I as

follows:

θ0(ti) = (ei, I) (1 ≤ i ≤ 3),

θ0(α) = (
1

2
e1, A),

and if π is isomorphic to B3 of Theorem 2.1 then

θ0(ǫ) = (
1

2
e2, E),

and if π is isomorphic to B4 of Theorem 2.1 then

θ0(ǫ) = (
1

2
(e2 + e3), E),

where A =





1 0 0
0 −1 0
0 0 −1



 and E =





1 0 0
0 1 0
0 0 −1



. We look for all

matrices X

such that XAX−1 and XEX−1 are orthogonal. It is equivalent to

saying that XT X is diagonal. Hence

X (Φ) = {X ∈ GL(3, R) | xi ⊥ xj if i 6= j}

= O(3) · (R∗)3.

The 3-dimensional spaces O(3) and (R∗)3 have intersection (Z2)
3, con-

sisting of all diagonal matrices with entries ±1. Since this space is
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0-dimensional, X (Φ) is 6-dimensional. Clearly we get the centralizer

(R3)Φ = {(c, I) ∈ Aff(3) | c = [∗ 0 0]T}

= Re1,

and the Weil space

R(π; I) = R
3

⋊ (O(3) · (R∗)3)/Re1 ⋊ {I}.

Remark 0.1. In each case of the above theorem, the (right) action

of (Re1⊕Re2)⋊{I} ∼= R
2 or Re1⋊{I} ∼= R on R

3
⋊X (Φ) is twisted. In

other words, one cannot write the orbit space as (R3
⋊X (Φ))/R

2
⋊{I} ≈

R ⋊ X (Φ) or (R3
⋊ X (Φ))/R ⋊ {I} ≈ R

2
⋊ X (Φ). However the action

is free and proper so that the orbit space is a manifold.

Finally we show that the Teichmüller space is homeomorphic to the

Euclidean space R
4 or R

3 depending on the holonomy group Z2 or

Z
2 × Z

2 respectively.

Theorem 3.2. Let M be a 3-dimensional nonorientable flat mani-
fold with π(M) = π. Then the Teichmüller spaces are as follow:

(1) If Φ = Z2, then T (π; I) = (O(2) \GL(2, R))× R
+ ≈ R

3 × R
+ ≈

R
4.

(2) If Φ = Z2 × Z2, then T (π; I) = (Z2)
3 \ (R∗)3 = (R+)3 ≈ R

3.

Proof. The isometry group I = R
3

⋊ O(3) acts on R(π, I) on the

left by conjugation, and the orbit space is the Teichmüller space of π.

On the space R
3

⋊ X (Φ) level the action is just a multiplication from

the left. From R
3

⋊ {I} ⊂ R
3

⋊ O(3), every orbit must contain whole

R
3. Thus, the Teichmüller space is simply

O(3) \ X (Φ).
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For a general fact, recall that O(n) is a maximal compact subgroup of

GL(n, R), and O(n) \ GL(n, R) ≈ R
n(n+1)

2 . Thus we have the following

theorem.
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