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UNIFORMLY LIPSCHITZ STABILITY AND
ASYMPTOTIC BEHAVIOR OF PERTURBED
DIFFERENTIAL SYSTEMS

SaNc I Cuor* AND YooN HoeE Goo**

ABSTRACT. In this paper we show that the solutions to the per-
turbed differential system

v =160+ [ olo,y() Ty(s)s

to
have uniformly Lipschitz stability and asymptotic behavior by im-
posing conditions on the perturbed part ftto 9(s,y(s), Ty(s))ds and
the fundamental matrix of the unperturbed system y' = f(¢, ).

1. Introduction

The notion of uniformly Lipschitz stability (ULS) was introduced by
Dannan and Elaydi [8]. This notion of ULS lies somewhere between
uniformly stability on one side and the notions of asymptotic stability
in variation of Brauer[4] and uniformly stability in variation of Brauer
and Strauss[3] on the other side. An important feature of ULS is that
for linear systems, the notion of uniformly Lipschitz stability and that of
uniformly stability are equivalent. However, for nonlinear systems, the
two notions are quite distinct. Also, Elaydi and Farran[9] introduced
the notion of exponential asymptotic stability(EAS) which is a stronger
notion than that of ULS. They investigated some analytic criteria for an
autonomous differential system and its perturbed systems to be EAS.
Pachpatte[16,17] investigated the stability and asymptotic behavior of
solutions of the functional differential equation. Gonzalez and Pinto[10]
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proved theorems which relate the asymptotic behavior and boundedness
of the solutions of nonlinear differential systems. Choi et al.[7] studied
Lipschitz and exponential asymptotic stability for nonlinear functional
systems. Also, Goo[11,12,13] and Choi and Goo[5,6] and Goo et al.[14]
investigated Lipschitz and asymptotic stability for perturbed differential
Systems.

In this paper, we investigate ULS and asymptotic behavior for solu-
tions of the perturbed differential systems using integral inequalities.

2. Preliminaries

We consider the nonautonomous differential system
(2.1) ¥ = f(t,x), z(ty) = o,

where f € C(RT x R",R"), Rt = [0,00) and R" is the Euclidean n-
space. We assume that the Jacobian matrix f, = 0f/0x exists and is
continuous on RT x R and f(¢,0) = 0. Also, we consider the perturbed
functional differential system of (2.1)

t

22) o = I+ [ o). Ty(s)ds, ylto) = .
0

where g € C(RT x R" x R",R"), ¢(¢,0,0) = 0, and T : C(RT,R") —

C(R™,R") is a continuous operator .

The symbol | - | will be used to denote any convenient vector norm
in R". For an n x n matrix A, define the norm |A| of A by 4] =
SUP|zi<1 |Az|.

Let x(t,tg, o) denote the unique solution of (2.1) with x(to, tg, z¢) =
xg, existing on [tp,00). Then we can consider the associated variational
systems around the zero solution of (2.1) and around z(t), respectively,

(2.3) V' (t) = fo(t,0)v(t), v(to) = vo
and
(2.4) 2(t) = fu(t,z(t, to, 20))2(t), z(to) = 20

The fundamental matrix ®(t, g, zo) of (2.4) is given by
0
q)(t, to, IL‘()) = Txol'(t, to, ZL‘()),

and ®(t,19,0) is the fundamental matrix of (2.3).
We now give the following fundamental concept|8].
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DEFINITION 2.1. The system (2.1) (the zero solution z = 0 of (2.1))
is called
(S)stable if for any € > 0 and to > 0, there exists § = (o, €) > 0 such
that if [xg| < 0 , then |z(t)| < € for all t >ty > 0,
(US)uniformly stable if the ¢ in (S) is independent of the time to,
(ULS) wniformly Lipschitz stable if there exist M > 0 and § > 0 such
that |z(t)| < M|xo| whenever |zg| < and ¢ >ty >0
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and
d > 0 such that |®(t,tg, z0)| < M for |zo| <6 and t >ty > 0,
(EAS) exponentially asymptotically stable if there exist constants K > 0,
c> 0, and § > 0 such that

lz(t)| < K |mole ) 0 < tg <t

provided that |zg| < 4,
(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and ¢ > 0 such that

|D(t,to, 0)] < K e U100 < g <t
provided that |zo| < oc.
REMARK 2.2. [10] The last definition implies that for |zo| < 0
z(t)] < K |zole 1) 0 <ty < t.

For the proof we prepare some related properties.
We need Alekseev formula to compare between the solutions of (2.1)
and the solutions of perturbed nonlinear system

(2.5) y' = f(t,y) +g(t,y), y(to) = vo,

where g € C(RT x R",R") and ¢(t,0) = 0. Let y(t) = y(t, to, yo) denote
the solution of (2.5) passing through the point (¢g,yo) in Rt x R™.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

LEMMA 2.3. [2] Let xz and y be a solution of (2.1) and (2.5), re-
spectively. If yy € R™, then for all t > ty such that z(t,to,y9) € R,
y(tat()?y()) S Rn;

y(t7t07y0) = {B(tathyO) +/t @(ta S, y(S)) g(S,y(S)) ds.
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LEMMA 2.4. (Bihari-type inequality) Let u, A € C(R™), w € C((0,00))
and w(u) be nondecreasing in u. Suppose that, for some ¢ > 0,

u(t) <c+ /t A(s)w(u(s))ds, t >ty > 0.

to

Then .
u(t) < W w(e) + / As)ds].

to

where to <t < by, W(u) = [ -2 W~L(u) is the inverse of W (u),

up w(s)
and

t
by = sup {t > to: W(e) +/ A(s)ds € domW_l}.
to

LEMMA 2.5. [5] Let u, A1, A2, A3, Ag, A5, Ag € C(R+), w € C((O, OO))
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0,

u(t) §C—|-/ Al(s)u(s)ds—l-/ A2 (s)w(u(s))ds

to to

4 / "N(3) / C(r)u(r)drds

+ /t " (s) tSAG(T)w(u(T))des, 0<ty<t.
Then
u(t) < WHW(e) + / (M(5) + Aa(s) + Aa(s) / ()

to to

+ As(s) / Aﬁ-(f)df)ds},

to

t

where tg < t < by, W, W~ are the same functions as in Lemma 2.4,
and

by = sup {t >ty : W(e) + /t <)\1(s) + Aa(s) + As(s) /S A (T)dT

to to

+ As(s) )\G(T)dT) ds € domW_l}.

to

For the proof we need the following corollary.

COROLLARY 2.6. Let u, A1, A2, A3, \s € C(RT), w € C((0,00)) and
w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0 and
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0<to<t,

u(t) Sc—i—/ /\1(s)u(s)d5+/ A2 (s)w(u(s))ds

to to

t s
+ /to As($) M (T)w(u(r))drds.

to

Then

u(t) < Wt [W(c) +/ ()\1(5) + A2(s) + As(s) /8 )\4(T)d7') ds},

to to

t

where tg < t < by, W, W~ are the same functions as in Lemma 2.4,
and

by = sup {t >to: Wie)+ /t ()\1(3) + A2(s)

to

+ As(s) / )\4(T)d7-) ds € domW’l}.

to

THEOREM 2.7. [14] Suppose that x = 0 of (2.1) is ULS. Let the
following condition hold for (2.2):

l9(s,y(s), Ty(s))|ds < W(t, |yl, T|yl),

to
where 0 < to < t, W(t,u,v) € C(RT x RT x R",R") is monotone
nondecreasing in u and v for each fixed t > 0 with W (t,0,0) = 0.
Assume that u(t) is any the solution of the scalar differential equation

(2.6) ' (t) = KW (t,u, Tu),u(to) = ug > 0, K > 1,

existing on R such that |y(ty)| < u(to). If u =0 of (2.6) is ULS, then
y =0 of (2.2) is also ULS whenever K |yo| < ug.

LEMMA 2.8. [12] Let u, A1, A2, A3, Ay, A5, A6, A7, A\g € C(R+), w €
C((0,00)), and w(u) be nondecreasing in u, v < w(u). Suppose that
for some ¢ > 0 and 0 <ty <'t,

wty et [ npus+ [ atoutuods + [ 26 [t

to to to to

T t s
+ A5(7) Aﬁ(r)w(u(r))dr)des—i—/ )\7(3)/ As(T)w(u(r))drds.

to to to
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S

W(e) + / t ()\1(s)+)\2(s)+)\3(8) / (A7)

to to

=N
G
A

I

L

+ A5(7) /T Xe(r)dr)dT + A7(s) /8 /\8(T)dr) ds] ,

to to

where tg < t < by, W, W~ are the same functions as in Lemma 2.4,
and

S

by = sup {t > tg: W(c) + /t <)\1(3) + Aa(s) + Ag(s)/ (As(7)

to to
+ As(7) Xe(r)dr)dT + A7(s) )\g(T)dT) ds € domW_l}.
to to

For the proof we prepare the following corollary.

COROLLARY 2.9. Let u, A1, Aa, A3, A4, As, A, € C(RT), w € C((0,0)),
and w(u) be nondecreasing in u, v < w(u). Suppose that for some ¢ > 0
and 0 < tg < t,

t s T
u(t) < c+/ Al(s)/ (Ao (T)u(T) + A3(7) A (r)w(u(r))dr)drds

to to to
+/tt As(s) /ts X6 (T)w(u(T))drds.
Then
u(t) < W W(o) + / t (Ma(s) / " Oa(r) + As(r) / " Aa(r)dr)dr

to to to
S

+ As5(s) )\6(T)d7) ds] ,
to

where tg < t < by, W, W™ are the same functions as in Lemma 2.4,
and

by = sup {t >to: W(e) + /t ()\1(8) /S()\Q(T) + A3(7) ’ Ay (r)dr)dT

to to to

+ Xs(s) / AG(T)dT> ds € domW’l}.
to
LEMMA 2.10. [13} Let u, A1, A2, A3, Mg, As, Ag, A7 € C(R+), w e C((O, OO)),
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0
and 0 <ty < t,
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u(t) <c+ /t A1(s) /S ()\Q(T)U(T) + A3(m)w(u(r))

() /t " As(P)u(r)dr + Ao(7) /t ’ Ne(r)uo(u(r))dr ) drs.
Then
u(t) gw—l[W(CH/ M (s) / (ha(r) + 2a(7) + Ma(7) / Ao (r)dr

to to to

+ X6(7) /T /\7(r)dr> des},

to

t

where tg < t < by, W, W~ are the same functions as in Lemma 2.4,
and

t s T
b= sup {£ > 102 W(e) + / M (s) / (Ralr) + Xa(r) + A7) / s (r)dr

to to to

+ Xo(7) / ’ )\7(r)dr) drds € domW’l}.

to

3. Main results

In this section, we investigate uniformly Lipschitz stability and as-
ymptotic property for solutions of the perturbed differential systems.

THEOREM 3.1. For the perturbed (2.2), we assume that

(3.1) l9(t,y, Ty)| < a(t)|ly(@)] + b()w(ly(t)]) + Ty(?)]
and

¢
(3.2) Ty(t)] < C(t)/t k(s)w(ly(s)])ds

where a,b,c,k € C(RY), a,b,c,k,w € L'(RT), w € C((0,00)), and w(u)

is nondecreasing in u, u < w(u), and +w(u) < w(%) for some v > 0,

(3.3)

M(to) = W~ [W(M)+M / / (a(7)+b(7’)+c(7’) / k(r)dr) des},
to to

to

where M (ty) < oo and by = oo. If the zero solution of (2.1) is ULSV,
then the zero solution of (2.2) is ULS.
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Proof. Using the nonlinear variation of constants formula of Alek-
seev(1], the solutions of (2.1) and (2.2) with the same initial value are
related by

y(t,to, yo) = (¢, to, yo) +/ D(t,s,y(s)) /s g(1,y(7), Ty(7))drds.

to to
Since « = 0 of (2.1) is ULSV, it is ULS([8],Theorem 3.3). Using the
ULSV condition of z = 0 of (2.1), together with (3.1) and (3.2), we have

t s

()] < lz()] + t [@(t,5,(s))] t lg(7,y(7), Ty(7))|drds

< iyl + [ M [ (alyr)] + or)ulls(r))

to to

+er) [ Ky (ly(r) D) drds.

to

It follows that

t
()] < Mlyo| + / Miyo|

s

(a(T) lv(7)] + b(T)w (M)

to to ‘?JO| |?JO|
+c(7) /tT E(r)w ( ’ygsg‘)’)dr) drds

since 2w(u) < w(%) for some v > 0. Define u(t) = |y(t)||yo|~*. Then,
an application of Corollary 2.9 yields

w01 < v [won) 401 [ [ (atr) 0001+ o) [k )ards].

to

Thus, by (3.3), we have |y(t)| < M(tg)|yo| for some M (tg) > 0 whenever
lyo| < d. Hence, the proof is complete. O

REMARK 3.2. Letting a(f) = 0 in Theorem 3.1, we obtain the same
result as that of Theorem 3.2 in [6].

THEOREM 3.3. For the perturbed (2.2), we assume that

t

(3-4) t 19(s,5(s), Ty(s))lds < a(®)]y(t)] + bO)w(ly(®)]) + [Ty (?)]

and

t
(3.5) Ty(t)] < C(t)/ k(s)w(ly(s)|)ds

to
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where a,b,c,k € C(RY), a,b,c,k,w € LY(RT), w € C((0,00)), T is a
continuous operator, and w(u) is nondecreasing in u, u < w(u), and
Lw(u) < w(¥) for some v > 0,

o0

(36) M(to) =W WM+ [ (als)+b()+(s) / Sk(T)dT)ds],

to to
where M (ty) < oo and by = oo. If the zero solution of (2.1) is ULSV,
then the zero solution of (2.2) is ULS.

Proof. Let x(t) = z(t, to,yo) and y(t) = y(¢,t0,y0) be solutions of
(2.1) and (2.2), respectively. Since x = 0 o (2 1) is ULSV, it is ULS.
Applying Lemma 2.3, together with (3.4) and (3.5), we have

t
(0] < Mol + [ M (aly(s) + bs)ulu(s))
te(s) / k(r)w(ly(r))dr ) ds.

to
which leads to

t ly(s)| ly(s)|
ly(t)| < Mlyo| + \ M\yo|(a(s) " + b(s)w(W)

+c(s) /ts k(T)w<‘:y‘z(/:)—|)|)d7') ds

0

since 2w(u) < w(%) for some v > 0. Defining u(t) = |y(t)|[yo|~", then

it follows from Corollary 2.6 that

t s

O] < ool W [0+ M [ (afs) + b(s) + () / k(r)dr ) ds|.
to to

Hence, by (3.6), we have |y(t)| < M (to)|yo| for some M (tp) > 0 whenever

lyo| < d. This completes the proof. O]

REMARK 3.4. Letting a(f) = 0 in Theorem 3.3, we obtain the same
result as that of Theorem 3.3 in [6].

To obtain the asymptotic property, the following assumptions are needed:
(H1) The solution = 0 of (2.1) is EASV.
(H2) w(u) is nondecreasing in u, u < w(u).

THEOREM 3.5. Suppose that (H1), (H2), and the perturbing term
g(t,y, Ty) satisfies

(B7) Lot y(), Ty®)] < e (aOly®)] + beyw(ly(®)]) + Ty (1))
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and

t t
(3.8) Ty (1) SC(L‘)/ k(S)ly(S)!dSer(t)/ a(s)w(ly(s)|)ds
to to
where o > 0, a,b,c,k,d,q € C(RT), a,b,c,k,d,q,w € L'(R"), w €
C((0,00)), T is a continuous operator. If

M(tg) = W1 [W(c) + M/Oo e’ /S (a(T) + b(T)
(3.9) . oo
—I—c(T)/ k(T)dT+d(T)/ q(r)dr)des] < 00,

to to

where t >ty and ¢ = |yo|Me®%, then all solutions of (2.2) approach
zero ast — oo

Proof. Let x(t) = x(t, to,yo) and y(t) = y(¢,t0,y0) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV,
it is EAS by Remark 2.2. Using Lemma 2.3, together with (3.7) and
(3.8), we have

ly(®)]
t s

< |z(t)] + ) [©(t, 5,y(s))] ) l9(7,y(7), Ty(7))|drds

t s
< Mlpole=0) [ agemet=9 [ (o)

to to

+ b()w(|y(7)]) + c(7) ’ E(r)|y(r)|dr + d(T) /tT q(r)w(|y(r)\)d1") drds.

to

Applying the assumption (H2), we obtain

t s
)] < Mlole0) [ Mm@ [ am)lytrier
to to

+b(7)w(|y(7)lem)+0(7)/ k(r)y(r)|e® dr

to

+d(T1) /T q(r)w(ly(r) |e°”)d7“) drds.

to

Let u(t) = |y(t)|e®*. An application of Lemma 2.10 and (3.9) yields
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y(D)] < ce WA W (e) + M /t e /t ) (alr) +b(7)

T

+e(T1) /T k(r)dr + d(T)/ q(r)dr) des} < ce ™ M(tp),

to to
where t >ty and ¢ = M|ygle®®. Hence, all solutions of (2.2) approach

zero as t — oo. O

REMARK 3.6. Letting b(t) = 0 in Theorem 3.5, we obtain the same
result as that of Theorem 3.1 in [13].

THEOREM 3.7. Suppose that (H1), (H2), and the perturbed term
g(t,y, Ty) satisfies

(3.10t)
gt y(s), Ty(s)lds < e (aly(0)] + bOyw(ly(®)) + ITy()]).
and
t
(311) Ty(0)] < ) [ ats)ulla(s))ds

where a > 0, a,b,c,q,w € C(RY), a,b,c,q,w € L*(RT), T is a continu-
ous operator. If
(3.12)

M(tg) = W™ [W(c) +M

o0

(a(s) +0(s) + c(s) /5 q(7‘)d7‘> ds} < 00,

to to
where by = co and ¢ = M|yp|e®®, then all solutions of (2.2) approach

zero as t — oo

Proof. Let x(t) = x(t,to,yo) and y(t) = y(t,to,y0) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV,
it is EAS. Using Lemma 2.3, together with (3.10) and (3.11), we have

t
[y(t)] < Mlyole™=10) [ Memo=) (&= (a(s)ly(s)|

to

+b(s)ully(s)) + els) [ atryully(n)hdn)) ds.

to

By the assumption (H2), we obtain
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[y(t)] < Myole ™00 [ e (a(s)|y(s)]e + b(s)w(ly(s) ™)

to
+es) [ atully(r)ler)r ) ds.
to
Set u(t) = |y(t)|e®t. Then, an application of Corollary 2.6 and (3.12)

obtains
(a(s) +b(s) + ¢(s) /8 q(T)dT) ds}

to to

yO] < e W [W(o)+ M

< e ™ M(ty),

where ¢ = M|yg|e®®. Therefore, all solutions of (2.2) approach zero as

t — oo. O

REMARK 3.8. Letting a(t) = 0 in Theorem 3.7, we obtain the same
result as that of Theorem 3.7 in [14].

THEOREM 3.9. Suppose that © = 0 of (2.1) is ULS and (H2). Con-
sider the scalar differential equation
(3.13)

W (1) = KW (t,u, Tu) = K(a(t)u(t)—i—b(t)w(u(t))+c(t) /t k(s)w(u(s))ds),

where w € C((0,00), u(ty) = uop > 1,K > 1 and a,b,c,k € C(R™T)
satisfy the conditions:

a) J;;) !ggs,y(s) y(s))lds < W(t, |yl, Tly|),where [;\ g(s,y(s), Ty(s))ds
is in (2.2),
(b) M(to) = WHW (uo) + K [;°(a(s) +b(s) + c(s) [, k(r)dr)ds] < oo,

by = oo, and a,b,c, k,w € LY(RT). Then y—Oof(22) is ULS.

Proof. Let u(t) = wu(t,to,up) be any solution of (3.13). Then, by
Corollary 2.6, we obtain
t

|u(t)|§W—1[W(uo)+K (a(s)+b(s)—|—c(s) Sk(f)df)ds)}

to to

< M (to) < M (to)|uol,

Hence u = 0 of (3.13) is ULS. This implies that the solution y = 0 of
(2.2) is ULS by Theorem 2.7. O

REMARK 3.10. Letting b(¢) = 0 in Theorem 3.9, we obtain the same
result as that of Corollary 3.3 in [14].



Uniformly stability and asymptotic behavior of differential systems 441
Acknowledgement

The authors are very grateful for the referee’s valuable comments.

References

[1] V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary
differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-
36(Russian).

[2] F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math.
Anal. Appl. 14 (1966), 198-206.

[3] F. Brauer and A. Strauss, Perturbations of nonlinear systems of differential
equations, III, J. Math. Anal. Appl. 31 (1970), 37-48.

[4] F. Brauer, Perturbations of nonlinear systems of differential equations, IV, J.
Math. Anal. Appl. 37 (1972), 214-222.

[5] S. I. Choi and Y. H. Goo, Boundedness in perturbed nonlinear functional dif-
ferential systems, J. Chungcheong Math. Soc. 28 (2015), 217-228.

[6] S. I. Choi and Y. H. Goo, Lipschitz and asymptotic stability of nonlinear sys-
tems of perturbed differential systems, J. Chungcheong Math. Soc. 27 (2014),
591-602.

[7] S. K. Choi, Y. H. Goo, and N. J. Koo, Lipschitz and exponential asymptotic
stability for nonlinear functional systems, Dynamic Systems and Applications
6 (1997), 397-410.

[8] F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differ-
ential systems, J. Math. Anal. Appl. 113 (1986), 562-577.

[9] S. Elaydi and H. R. Farran, Ezponentially asymptotically stable dynamical sys-
tems, Appl. Anal. 25 (1987), 243-252.

[10] P. Gonzalez and M. Pinto, Stability properties of the solutions of the nonlinear
functional differential systems, J. Math. Appl. 181 (1994), 562-573.

[11] Y. H. Goo, Lipschitz and asymptotic stability for perturbed nonlinear differen-
tial systems, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014),
11-21.

[12] Y. H. Goo, Uniform Lipschitz stability and asymptotic behavior for perturbed
differential systems, Far East J. Math. Sci(FJMS) 99 (2016), 393-412.

[13] Y. H. Goo, Asymptotic property for nonlinear perturbed functional differential
systems, Far East J. Math. Sci(FJMS) 99 (2016), 1141-1157.

[14] Y. H. Goo and Y. Cui, Lipschitz and asymptotic stability for perturbed differ-
ential systems, J. Chungcheong Math. Soc. 26 (2013), 831-842.

[15] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory
and Applications Vol.I, Academic Press, New York and London, 1969.

[16] B. G. Pachpatte, Stability and asymptotic behavior of perturbed nonlinear sys-
tems, J. Math. Anal. Appl. 16 (1974), 14-25.

[17] B. G. Pachpatte, Perturbations of nonlinear systems of differential equations,
J. Math. Anal. Appl. 51 (1975), 550-556.



442 Sang Il Choi and Yoon Hoe Goo

*

Department of Mathematics
Hanseo University

Seosan 356-706, Republic of Korea
E-mail: schoi@hanseo.ac.kr

$ok

Department of Mathematics
Hanseo University

Seosan 356-706, Republic of Korea
E-mail: yhgoo@hanseo.ac.kr



